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Adaptive Sampling With Multiple Mobile Robots

Bin Zhang and Gaurav S. Sukhatme

Abstract—When a scalar field, such as temperature, is to In [1], we assume that the scalar field to be reconstructed
be estimated from sensor readings corrupted by noise, the changes slowly. That is, during the time the mobile robot
estimation accuracy can be improved by judiciously controlling is sent out for a data collecting tour, the readings from the
the locations where the sensor readings (samples) are taken. . . . T .

In this paper, we solve the following problem: given a set of _statlc Se_nsor_s e _St'” valid. Hovyever, this m'ght{ not hee tr

static sensors and a group of mobile robots equipped with n praCt|Ce since It takes a Wh|le fOI’ the m0b|le I’ObOt to
the same sensors, how to determine the data collecting paths finish a tour. One way to overcome this drawback is to use
for the mobile robots so that the reconstruction error of the  multiple mobile robots in parallel to accomplish the task.
scalar field is minimized. In our scheme, the static sensors are |t \ve can generate ‘good’ paths for all the mobile robots

used to provide an initial estimate and the mobile robots refine d let th tth lina task simult v th
the estimate by taking additional samples at critical locations. &N@ [l them carry out the sampling task simultaneously, the

Unfortunately, it is computationally expensive to search for the ~SPpeedup could be significant. Another advantage of a system
best set of paths that minimizes the field estimation errors and with multiple mobile robots is energy efficiency. In many

hence the field reconstruction errors as well). We propose a cases, the ideal distribution (leading to the best recoatitn
heuristic to find ‘good’ paths for the robots. Our approach = ot the field) of the sensor readings contains several cister

first partitions the sensing field into equal gain subareas and . . .
then we use a single robot planning algorithm to generate a Since normally, we already have static sensors covering the

path for each robot separately. The properties of this approach Whole sensing field, the mobile robots may just need to take
are studied in simulation. Our approach also implicitly solves readings within each cluster. If only one mobile robot is
a multi-robot coordination/task allocation problem, where the  deployed, it has to move between the clusters. If multiple

robots are homogeneous and the size of task set might be large. mobile robots are used and the number of robots is more

than the number of clusters, each robot only needs to stay

I. INTRODUCTION within a cluster and the energy to move from one cluster to

. nother could be saved.
A sensor actuator network (also a robotic sensor network],

which consists of both static and mobile nodes, provides a

new tool for measuring and monitoring the environment. On A\
the one hand, with less energy consumed, the static sensor| i &
nodes are able to provide high resolution temporal sampling
On the other hand, with the ability to move, the mobile nodes
(henceforth) are able to change the spatial distributiotihef
sensor readings leading (if running the appropriate algor)

to a high density of readings in important areas. The key
challenge is an adaptive sampling problem - come up with
trajectories that the robots can follow, sampling alonecivhi
will improve the field reconstruction. In [1], we proposed
an adaptive sampling algorithm for a system consisting
of a set of static sensor nodes and one mobile robot, a -
robotic boat. The system, part of the NAMOS project at =
USC (http://robotics.usc.edu/ namos), is used for meaguri
scalar fields, such as temperature, salinity and chlorbphyl

concentration. We have shown [1] that by combining optimal : . . .
. . ) In this paper, we investigate the problem of adaptive
experimental design and path planning, we are able tg

. . L . sampling using multiple mobile robots. Specifically, given
achieve an improved estimation performance, i.e., a lower . i
. ... 4 set of static sensor nodes deployed uniformly across the
Integrated Mean Square Error (IMSE) with the same (finite . . ; .
I ; : ensing field, and a team of mobile robots each with the
initial energy available to the mobile robot. . . .
same energy, how to exploit the information collected by
. : . . . . the static sensors and coordinate the motion of the mobile
This work is supported in part by the National Science FupndatNSF) bot that iated with th tructioh®f t
under grants CNS-0325875, 11S-0133947, EIA-0121141 amatgrCcCR- 0DOLS SO Ihat error associated wi e reconstruction®
0120778, ANI-00331481 (via subcontract). underlying scalar field is minimized. Here we assume that all
B. Zhang binz@sc.edu and G. S.  Sukhatme the mobile robots have the same energy consumption profile
gaur av@isc. edu are with the Robotic Embedded Systems Laboratorya d th derlvi lar field i ; d has fini
Computer Science Department, Unversity of Southern Caldorad4l W. nd the underlying scalar field Is continuous an as finite

37th Place, Los Angeles, CA 90089, USA second order derivative at any point.

Fig. 1. One of the robotic boats used in the NAMOS project aCUS



As in the case of single robot problem [1], we useor cells [6], [7], [8], [9]. To assign frontier points to in-
techniques from optimal experimental design to define dividual robots, a market-based approach is used and the
gain associated with each location and then apply a seararget locations are assigned through auctions [7], [g], [9
algorithm to find ‘good’ paths for the mobile robots. TheThere are different ways to evaluate the target locations fo
challenge in the multiple mobile robot case comes from theach robot. In the case where the energy consumption is
path planning. Even in the case of a single robot, to findnportant, the assignment with best tradoff between energy
the path with maximum sum of gains is NP-complete. Thiand utility is chosen [9]; Fox took the uncertainty of the
is called the Orienteering problem, which has been studiddcalization into consideration and proposed a strategy th
in the theoretical computer science and operating researtthdes off between the frontier and the hypothesis. Nogmall
communities. In the case of multiple mobile robots, thehe coordination strategies assign each robot one target
situation is even worse since the search space grows expoeation to visit. In the case multiple target locations arée
nentially with the number of the mobile robots. Thereforeassigned, a sequential allocation is used [7], [8]. Strqup¢
we will have to compromise performance by approximatioproposed a value-based coordination algorithm, whicresad
so that the path planning can be done quickly enough tff between dynamic target observing, exploration, sangpli
be realistically feasible for a real-world situation. Inisth and communications. However, the energy consumption is
paper, we propose a divide and conquer approach to solmwet considered. In this paper, we are looking at a slightly
the problem. Once the gain of each location in the sensimdifferent problem. First, we are going to use the static gens
field is computed, we partition the sensing field into subaredo provide a coarse estimation of the scalar field and hence
with equal gain. Now the path planning problem reduces tmugh global information is available. Second, multipley&

a set of problems. Each robot is assigned a subarea andbeations are to be assigned to each robot and each robot
path planning algorithm for single robot within each regiorthen visits these locations sequentially. Finally, beeaok

is applied. An advantage of this approach is that the pathe existence of the static sensor nodes, we assume that
planning for a single mobile robots can be done in parallelommunication can be achieved by using multi-hop protocol
since the subareas do not overlap. and hence we do not consider communication as a constraint.

This paper is organized as follows. We first discuss related
work in the next section. Then, the optimal experimental lll. ADAPTIVE SAMPLING
design is explained briefly in section Ill. We discuss the In this paper, we assume that no parametric model is
partition strategy in section IV and the simulations resale  available for the scalar field and non-parametric regressio
presented in section V. We discuss future work and conclud® appropriate. A Kernel estimator is one of the most popular
in section VI. non-parametric regression technigues since it is easy to

understand, analyze and implement. Local Linear Regnessio
Il. RELATED WORK is a kernel estimator where the value of the scalar field at any

Adaptive sampling and actuated sensing have been studi@gationx is estimated by using weighted linear regression.
in the sensor network community. Based on Wavelet theorl}, is assumed that the closer two locations are, the higteer th
Willett [2] proposed an algorithm to extend the life time of acorrelation between the values. As a result, when the linear
static sensor network by putting some sensors to sleep witfggression is applied to location more weight is given to
out significantly increasing the estimation errors. RaHBhi the data points closer to while less weight is given to the
proposed a sequential algorithm for a single mobile node ®@ata points far away. We assume a non-parametric model
minimize the estimation error with the limitation on the &m shown as equation 1.
or distance the mobile node travels. In his approach, more
readings are taken in the place where there is higher rdsidua y =m(x) + o(x)e, 1)

Krause [4] proposed a near-optimal algorithm to solve thﬁ/herex is sensor locationy is the corresponding sensor
problem of static sensor node deployment. However, it iFeading 2(x) is the variance of the noise andis a
assumed that the underlying phenomenon is a Gaussﬁndom, variable with zero mean and unit variance and
I?rocess and a_dense deploymer_lt of sensors is neeqle arg independent ok. The local linear regression can be
find the correlation between readings at any two Iocat'on%presented by equation 2
Based on the same assumption, Singh [5] introduced an '
approximation algorithm to solve a problem that is similar m(x,H) =e; - (XZWme)’lXxTWTY, 2
to ours and also extended to the case with multiple mobile 1 (x—x)T
robots by using sequential allocation. Our approach does O ere X — o ! . v — . T
assume previous dense deployment of the sensors. Where 2x = 1 |’ = [yl
Another problem related to adaptive sampling with muIti-W — diag{Kn(x: _();”) _x) Ki(xn, — x)} and e; —
ple mobile robots is the multi-robot exploration and magpin , * I "

It I 4 that th bot deoloved i 1,0,---,0]. The kernel Ky (u) determines how much
IS normally assume at the rouols are deployed n eight would be assigned to each data point and is normally
unknown environment and no global information is available

. . X . defined by a bas& (u) and a matrixH,
In this case, many techniques of coordinated exploration

and mapping are based on the idea of the frontier points Ky(u) = |H|Y2K(HY?(u)).



H determines the size and shape of the neighborhood andigorithm 1: Adaptive Sampling With Multiple Mobile

H~'/2 s called the bandwidth matrix. Robots
If K(u) satisfies [uu’K(u)du is finite and Construct the state graphi=(V, E);
fu uifK (u)du = 0 for all non-negative integers Collect readings from static sensor;
li,---,lg such that their sum is odd, it has been proved for each vertex» € V do
that the estimation error associated with the local linear Compute gairy(v);
regression is given by the following equation [11]: end
Partition G into subgraphs=,, ..., G,,;
2 for i = 1tom do
MSE{m(x;H)} = m m; = ABFS(G;, E);
1 Collect new reading;;
+ZCQtT2{HHm(X)} end

Reconstruct the scalar field from Ur; U...Ur,,;

+op{nHH|TY? + tr*(H)}.(3)

where n is the number of samplesf(x) is the density
function with [ f(x)dx = 1, and H,,(x) is the Hessian simplest model is to assume that the energy consumed by a
matrix of m(x) andC; and C, are the constant dependingmobile robot to move from locationl to B is proportional
on kernelK (u). to the length of the line segment connecting theand B.

If nH~'/2? is big enough andHd is small enough, the The energy consumption model used in this paper is the
infinitesimal can is negligible. By applying Lagrange-Eule one for the robotic boat of the NAMOS project [12], as
differential equation, we can find the optimal bandwidth anghown in Figure 1. In this model, the state is the location

corresponding IMSE as follows. and the orientation of the boat. The energy consumed for
dR(K)v(x) L state transition not only depends on the distance between tw
h* = O T )T+, (4) states but also depends on the orientations of the two states
nf () pa (K) 22 {Hom (x) } The details of the energy consumption model are described
4 ) in [1] and will not be repegted here.
IMSE(Xy. ... Xpoin) & /(tT {Hm () }v7 (%) g, In our approach, we first construct a graph from the
n?f2(x) sensing field and the energy consumption model. Each vertex

R (5)  of the graph represents one state of the mobile robot and
where f(x) = n™' 371 Ky (X; —x) is the density func-  the coordinates of any vertex are within the sensing field.
tion. The edges between vertices represent a state transitien. Th

Assume that initially there are, readings from static |ength of an edge represents the energy consumed for state
sensor node$x1, Y1), ..., (Xny, Yn, ), the path of the mobile transition. An important assumption is that all the mobile
robot passes through the points,+1, ..., Xno+n, then the robots share the same energy consumption model and are
optimal path should minimize IMSE. The IMSE can beequipped with the same sensors, i.e., the team of the robots
estimated with the equation 5 and the corresponding densiy homogeneous. Otherwise, each mobile robot would need
can be estimated by usinf(x) =n~! Y"1 | Ky(X; —X) . its own state transition graph and the graph partition netho
Similar to the information galn defined in robot exploratiorbebw can not be used. For each vertex of the graph, the
Iiterature, we define the gain for each point as follows. Hessian matrix is estimated by using Local P0|yn0mia|
G(x) = IMSE(X,, X,.,) — IMSE(X,, X,1g, %), Regrgssion using the re_adings frc_:m the static sensors an_d th

6) gain is computed by using equation 6. Note thgt the vertices
with the same coordinates share the same gain. If the robot
visits one location twice but in different orientation, itliw
Gp) = IMSE(Xy,...,Xp,)— (7)  only collect the gain once.

IMSE(Xy, ..., X0, Xngt1s - - - Xngtn)-

The gain associated with the path is defined as

B. Graph Partition

Now, the problem is to find the path or paths collecting Once the graph is constructed and the gain associated with
the most gains and hence a path planning problem needseiach state is computed, we divide the graph into subgraphs
be solved. to simplify the problem. The graph is partitioned in such

a way that the sum of the gains of the vertices in each
. ] IY’ DIVIDE AND CONQUER sub-graph are the same. The basic idea here is that with
A. Discretization the same amount of energy consumed, the same amount

In the problem of adaptive sampling with static sensoof gain is achieved. Another constraint on the partition is
nodes and multiple mobile robots, the main constraint ithat the boundary between two sub-graphs should be as
that the energy available to each mobile robot is limitedstraight as possible. Generally speaking, a complex baynda
Therefore, path planning for the mobile robots needs taould result in more energy consumption. The complexity
take into consideration the energy consumption model. Thad the boundary can be measured by using the length of



the boundary and the length of the boundary in turn caather two is that in field 1, the estimation of the Hessian
be measured by using the number of cuts of between sulmatrix would not only have errors in magnitude but also in
graphs. Therefore, the partition problem is to find a partiti location. Therefore, we expect higher estimation errors in
of m sub-graphs so that the total of gain of all the nodeseconstructing field 1.
in each sub-graphs is the same, whetds the number of ~ When sensor readings are taken, either from the static
mobile robots. sensor nodes or the mobile robots, we assume a Gaussian
Graph partition is a well known NP-complete problem andhoise associated with the readings. Note that all the scalar
there is no polynomial time algorithm to find the optimalfields vary from 0 to 1 and we use the ratio of the noise to the
partition. However, many approximation algorithms havevariation of the scalar field to describe the noise levelhin t
been proposed. The approach used in this paper explogisnulations, we use a coffeehouse design [16] to determine
a multilevel paradigm [13]. This approach consists of twdhe locations of the static sensor nodes. The simulatioas ar
stages. In the first stage, the graph is contracted untililee s performed in groups. The sensing field is discretized into
is less than a given threshold. Then, an interactive proceasgraph consisting of 100 vertices uniformly distributed in
of expansion and refinement is performed in such a way thtte unit square. For each set of initial sensor readings, we
the weight is balanced. This algorithm runs quickly withestimate the Hessian matrix for each vertex in the graph and

reasonable graph sizes. then compute the corresponding information gain. Then the
. . graph is partitioned into subgraphs with equal gain. After
C. Path Planning for a Single Robot that, the path planning procedure is called 25 times for each

Once the graph is partitioned, the problem is reduced toiaitial energy level and the new readings are collected. The
set of smaller problems each with a single mobile robot anstalar field is estimated and the IMSE is computed for 25
many search algorithms can be used. The problem of findingnes. The whole process is in turn carried out for 10 times.
the best path such that the gain collected along the path is

maximized is called the Orienteering problem. This problem < ‘ ‘ ‘ ‘
has been well-studied and many approximation algorithms —©— robot 1
are proposed. Most of the algorithms employ a prime and *°[ T btz g
dual scheme and the typical one is proposed in [14], [15]. ©°8f —4— robot 4 |1
In [1], A Bread First Search algorithm was proposed to find |
a approximate solution. Although the approximation fagtor
not good, the algorithm runs quickly and the performance is oer
good. The approximate BFS is used here as the single mobile 05
path planning algorithm. However, any other path planning o4}
algorithm can well be used here. osl
In summary, the algorithm is described in Algorithm 1, '
where m is the number of mobile robotdy is the initial 0.2
energy for the mobile robots; is the state graphi7; is a o1k
subgraph and; is the path generated in subgra@h. . a T_A : : ‘
0 0.2 0.4 0.6 0.8 1

V. SIMULATIONS
. . . . . . Fig. 3. The paths planned for all 4 robots. The underlyingnpoineenon
We carried out a series of simulations in a unit SQUar&sscalar field 3. Note the cluster of samples in lower left wehitre most

Three scalar fields are used in the simulations. They at@riation in the field happens.
shown in Figure 2 and their equation are below.
One example of the paths planned for all the robots is

= - 1 . (8) shown in Figure 3. The underlying phenomenon is defined
1+exp(322 —y+3) by equation 10. The paths are generated in such a way
1, that more readings are taken in the lower left part of the
r= exp(*g(‘lw — 10y +3)) (9)  sensing field, where the trace of the Hessian matrix is much
) ) higher than other places. Figure 4 shows how the IMSE
r=exp(— (52 —1)"+ (5y — 1) ) (10) changes with increased initial energy available to the iaobi
2 robots in three different settings. In all simulations, IMSE

In the first field, there is a boundary across the sensing fiettecreases when the initial energy available to the mobile
and it separates the high and low values. The second scalabots increases. We study the effect of two parameters, the
field has a ridge across the sensing field. In our simulationumber of static sensors and the noise level. The simulation
we smooth the readings by applying a local linear regressioasults show that both of them have an effect on the perfor-
on the data to reduce the noise associated with it. As a resuttances. The simulation with the best performance is shown
in the place where the scalar field is not symmetric, than Figure 4(a), where 50 static sensors are used and the noise
place with the maximum trace of the Hessian matrix wouldevel, 5%, is low. When the initial energy is 1.6 units, which
be moved. The biggest difference between field 1 and thmeans approximately 36 new readings are taken, the IMSE
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Fig. 2. Scalar fields used in the simulation.
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Fig. 4. The IMSE of the reconstruction of scalar field 1 witffetient noise levels«) and different number of static sensor nodes).(

decreases to 64% of the initial IMSE. When the noise levealefine the information gain of each location. The sensing
of the readings increases, not only does the absolute valfield is partitioned into subareas with equal gain.Withiotea
of the IMSE increases, the rate at which the IMSE decreasesgbarea path planning for a single mobile robot is used to
also decreased. As shown in Figure 4(b), with the sangenerate the path for each individual robot. This propertie
initial energy of 1.6, the IMSE is still approximately 75% of the strategy are studied using simulation.

of the initial IMSE. Fewer initial static sensors also reduc

the rate of IMSE decrease, as shown in Figure 4(c), whe e ?
. Sy . e sensing field. For example, another even simpler strateg
there only 25 static sensors to provide initial readingse Th__~ -~ . R .
partitioning the sensing field into subareas with equal area

reason for this is that both parameters affect the accurbcy Q. . o .
L . : ight be a good option. We performed preliminary simu-
the estimation of the Hessian matrix. When the number of .
ations on the latter strategy and the results show that it

initial readings is small or the sensor noise is high, thererr _. " : .
. N ; T S might be competitive with the equal gain strategy. We are
in the estimation of the Hessian matrix is high, which in turn ; . .
. - currently working on the detailed analysis on the second
causes more readings to be taken at the non-critical places, . - : .
Strategy. Figure 6 shows the preliminary simulation result

Figure 5 shows the results of simulations on the other tw ;
scalar fields. Both sets of simulations are performed wigh th]Cgom the equal area strategy. Figure 6(a) shows the paths

. . planned for the four robots in one simulation. Compared
same noise level and the same number of static sensors a8 Ei . .
- . with Figure 3, fewer readings are to be taken in the lower
in Figure 4(a). As we discussed above, both of the scalrflr N .
! . Lo .Teft part of the sensing field. However, equal area stratsgy i
fields are symmetric and hence estimation of the Hessian . L .
matrix only has error in magnitude with much less error Ori':lll able to achieve a estimation error that is very close to
the location. Therefore, IMSE in both situations has a higf‘l e equal gain strategy, as shown in Figure 6(b).
decrease rate, which is obvious in Figure 5. We plan to apply this approach to the robotic boats in
the NAMOS project, as shown in Figure 1. Currently, there
VI. CONCLUSION AND FUTURE WORK are two robotic boats with the same configuration and they
In this paper we presents a simple strategy to coordinatee used for measuring physical, chemical and biological
multiple mobile robots to take sensor readings so that rroparameters on the water surface as well as in depth. Our
associated with the reconstruction of a scalar field, woulgdlan is to test our strategy on the robotic boats in a lake
be reduced. Linear local regression is used to estimate tbeharbor where there are reasonable variations in therscala

scalar field and an optimal experimental design is used fld, such as temperature, on the surface.

However, equal gain is not the only strategy to partition
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