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Adaptive Sampling With Multiple Mobile Robots

Bin Zhang and Gaurav S. Sukhatme

Abstract— When a scalar field, such as temperature, is to
be estimated from sensor readings corrupted by noise, the
estimation accuracy can be improved by judiciously controlling
the locations where the sensor readings (samples) are taken.
In this paper, we solve the following problem: given a set of
static sensors and a group of mobile robots equipped with
the same sensors, how to determine the data collecting paths
for the mobile robots so that the reconstruction error of the
scalar field is minimized. In our scheme, the static sensors are
used to provide an initial estimate and the mobile robots refine
the estimate by taking additional samples at critical locations.
Unfortunately, it is computationally expensive to search for the
best set of paths that minimizes the field estimation errors and
hence the field reconstruction errors as well). We propose a
heuristic to find ‘good’ paths for the robots. Our approach
first partitions the sensing field into equal gain subareas and
then we use a single robot planning algorithm to generate a
path for each robot separately. The properties of this approach
are studied in simulation. Our approach also implicitly solves
a multi-robot coordination/task allocation problem, where the
robots are homogeneous and the size of task set might be large.

I. INTRODUCTION

A sensor actuator network (also a robotic sensor network),
which consists of both static and mobile nodes, provides a
new tool for measuring and monitoring the environment. On
the one hand, with less energy consumed, the static sensor
nodes are able to provide high resolution temporal sampling.
On the other hand, with the ability to move, the mobile nodes
(henceforth) are able to change the spatial distribution ofthe
sensor readings leading (if running the appropriate algorithm)
to a high density of readings in important areas. The key
challenge is an adaptive sampling problem - come up with
trajectories that the robots can follow, sampling alone which
will improve the field reconstruction. In [1], we proposed
an adaptive sampling algorithm for a system consisting
of a set of static sensor nodes and one mobile robot, a
robotic boat. The system, part of the NAMOS project at
USC (http://robotics.usc.edu/ namos), is used for measuring
scalar fields, such as temperature, salinity and chlorophyll
concentration. We have shown [1] that by combining optimal
experimental design and path planning, we are able to
achieve an improved estimation performance, i.e., a lower
Integrated Mean Square Error (IMSE) with the same (finite)
initial energy available to the mobile robot.
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In [1], we assume that the scalar field to be reconstructed
changes slowly. That is, during the time the mobile robot
is sent out for a data collecting tour, the readings from the
static sensors are still valid. However, this might not be true
in practice since it takes a while for the mobile robot to
finish a tour. One way to overcome this drawback is to use
multiple mobile robots in parallel to accomplish the task.
If we can generate ‘good’ paths for all the mobile robots
and let them carry out the sampling task simultaneously, the
speedup could be significant. Another advantage of a system
with multiple mobile robots is energy efficiency. In many
cases, the ideal distribution (leading to the best reconstruction
of the field) of the sensor readings contains several clusters.
Since normally, we already have static sensors covering the
whole sensing field, the mobile robots may just need to take
readings within each cluster. If only one mobile robot is
deployed, it has to move between the clusters. If multiple
mobile robots are used and the number of robots is more
than the number of clusters, each robot only needs to stay
within a cluster and the energy to move from one cluster to
another could be saved.

Fig. 1. One of the robotic boats used in the NAMOS project at USC.

In this paper, we investigate the problem of adaptive
sampling using multiple mobile robots. Specifically, given
a set of static sensor nodes deployed uniformly across the
sensing field, and a team of mobile robots each with the
same energy, how to exploit the information collected by
the static sensors and coordinate the motion of the mobile
robots so that error associated with the reconstruction of the
underlying scalar field is minimized. Here we assume that all
the mobile robots have the same energy consumption profile
and the underlying scalar field is continuous and has finite
second order derivative at any point.



As in the case of single robot problem [1], we use
techniques from optimal experimental design to define a
gain associated with each location and then apply a search
algorithm to find ‘good’ paths for the mobile robots. The
challenge in the multiple mobile robot case comes from the
path planning. Even in the case of a single robot, to find
the path with maximum sum of gains is NP-complete. This
is called the Orienteering problem, which has been studied
in the theoretical computer science and operating research
communities. In the case of multiple mobile robots, the
situation is even worse since the search space grows expo-
nentially with the number of the mobile robots. Therefore,
we will have to compromise performance by approximation
so that the path planning can be done quickly enough to
be realistically feasible for a real-world situation. In this
paper, we propose a divide and conquer approach to solve
the problem. Once the gain of each location in the sensing
field is computed, we partition the sensing field into subareas
with equal gain. Now the path planning problem reduces to
a set of problems. Each robot is assigned a subarea and a
path planning algorithm for single robot within each region
is applied. An advantage of this approach is that the path
planning for a single mobile robots can be done in parallel
since the subareas do not overlap.

This paper is organized as follows. We first discuss related
work in the next section. Then, the optimal experimental
design is explained briefly in section III. We discuss the
partition strategy in section IV and the simulations results are
presented in section V. We discuss future work and conclude
in section VI.

II. RELATED WORK

Adaptive sampling and actuated sensing have been studied
in the sensor network community. Based on Wavelet theory,
Willett [2] proposed an algorithm to extend the life time of a
static sensor network by putting some sensors to sleep with-
out significantly increasing the estimation errors. Rahimi[3]
proposed a sequential algorithm for a single mobile node to
minimize the estimation error with the limitation on the time
or distance the mobile node travels. In his approach, more
readings are taken in the place where there is higher residual.
Krause [4] proposed a near-optimal algorithm to solve the
problem of static sensor node deployment. However, it is
assumed that the underlying phenomenon is a Gaussian
Process and a dense deployment of sensors is needed to
find the correlation between readings at any two locations.
Based on the same assumption, Singh [5] introduced an
approximation algorithm to solve a problem that is similar
to ours and also extended to the case with multiple mobile
robots by using sequential allocation. Our approach does not
assume previous dense deployment of the sensors.

Another problem related to adaptive sampling with multi-
ple mobile robots is the multi-robot exploration and mapping.
It is normally assumed that the robots are deployed in an
unknown environment and no global information is available.
In this case, many techniques of coordinated exploration
and mapping are based on the idea of the frontier points

or cells [6], [7], [8], [9]. To assign frontier points to in-
dividual robots, a market-based approach is used and the
target locations are assigned through auctions [7], [8], [9].
There are different ways to evaluate the target locations for
each robot. In the case where the energy consumption is
important, the assignment with best tradoff between energy
and utility is chosen [9]; Fox took the uncertainty of the
localization into consideration and proposed a strategy that
trades off between the frontier and the hypothesis. Normally,
the coordination strategies assign each robot one target
location to visit. In the case multiple target locations areto be
assigned, a sequential allocation is used [7], [8]. Stroupe[10]
proposed a value-based coordination algorithm, which trades
off between dynamic target observing, exploration, sampling
and communications. However, the energy consumption is
not considered. In this paper, we are looking at a slightly
different problem. First, we are going to use the static sensors
to provide a coarse estimation of the scalar field and hence
rough global information is available. Second, multiple target
locations are to be assigned to each robot and each robot
then visits these locations sequentially. Finally, because of
the existence of the static sensor nodes, we assume that
communication can be achieved by using multi-hop protocol
and hence we do not consider communication as a constraint.

III. ADAPTIVE SAMPLING

In this paper, we assume that no parametric model is
available for the scalar field and non-parametric regression
is appropriate. A Kernel estimator is one of the most popular
non-parametric regression techniques since it is easy to
understand, analyze and implement. Local Linear Regression
is a kernel estimator where the value of the scalar field at any
locationx is estimated by using weighted linear regression.
It is assumed that the closer two locations are, the higher the
correlation between the values. As a result, when the linear
regression is applied to locationx, more weight is given to
the data points closer tox while less weight is given to the
data points far away. We assume a non-parametric model
shown as equation 1.

y = m(x) + σ(x)ǫ, (1)

where x is sensor location,y is the corresponding sensor
reading, σ2(x) is the variance of the noise andǫ is a
random variable with zero mean and unit variance and
are independent ofx. The local linear regression can be
represented by equation 2.

m̂(x,H) = e1 · (X
T
x WxXx)−1XT

x WxY, (2)

where Xx =





1 (x1 − x)T

· · · · · ·
1 (xn − x)T



, Y = [y1, · · · , yn]T ,

Wx = diag{KH(x1 − x), · · · ,KH(xn − x)} and e1 =
[1, 0, · · · , 0]. The kernel KH(u) determines how much
weight would be assigned to each data point and is normally
defined by a baseK(u) and a matrixH,

KH(u) = |H|−1/2K(H−1/2(u)).



H determines the size and shape of the neighborhood and
H−1/2 is called the bandwidth matrix.

If K(u) satisfies
∫

uu
T K(u)du is finite and

∫

ul1
1 · · ·uld

d K(u)du = 0 for all non-negative integers
l1, · · · , ld such that their sum is odd, it has been proved
that the estimation error associated with the local linear
regression is given by the following equation [11]:

MSE{m̂(x;H)} =
C1σ

2(x)

n|H|1/2f(x)

+
1

4
C2tr

2{HHm(x)}

+op{n
−1|H|−1/2 + tr2(H)}.(3)

where n is the number of samples,f(x) is the density
function with

∫

f(x)dx = 1, and Hm(x) is the Hessian
matrix of m(x) andC1 andC2 are the constant depending
on kernelK(u).

If nH−1/2 is big enough andH is small enough, the
infinitesimal can is negligible. By applying Lagrange-Euler
differential equation, we can find the optimal bandwidth and
corresponding IMSE as follows.

h∗ = (
dR(K)v(x)

nf(x)µ2(K)2tr2{Hm(x)}
)

1
d+4 , (4)

IMSE(X1, . . . ,Xn0+n) ∝

∫

(
trd{Hm(x)}v2(x)

n2f̂2(x)
)

2
d+4 dx,

(5)
where f̂(x) = n−1

∑n
i=1

KH(Xi − x) is the density func-
tion.

Assume that initially there aren0 readings from static
sensor nodes(x1, y1), ..., (xn0

, yn0
), the path of the mobile

robot passes through the pointsxn0+1, ..., xn0+n, then the
optimal path should minimize IMSE. The IMSE can be
estimated with the equation 5 and the corresponding density
can be estimated by usinĝf(x) = n−1

∑n
i=1

KH(Xi −x) .
Similar to the information gain defined in robot exploration
literature, we define the gain for each point as follows.

G(x) = IMSE(X1, . . . ,Xn0
) − IMSE(X1, . . . ,Xn0

,x),
(6)

The gain associated with the path is defined as

G(p) = IMSE(X1, . . . ,Xn0
) − (7)

IMSE(X1, . . . ,Xn0
,Xn0+1, . . . ,Xn0+n).

Now, the problem is to find the path or paths collecting
the most gains and hence a path planning problem needs to
be solved.

IV. DIVIDE AND CONQUER

A. Discretization

In the problem of adaptive sampling with static sensor
nodes and multiple mobile robots, the main constraint is
that the energy available to each mobile robot is limited.
Therefore, path planning for the mobile robots needs to
take into consideration the energy consumption model. The

Algorithm 1 : Adaptive Sampling With Multiple Mobile
Robots
Construct the state graphG=(V , E);
Collect readings from static sensorsr0;
for each vertexv ∈ V do

Compute gaing(v);
end
PartitionG into subgraphsG1, ..., Gm;
for i = 1 to m do

πi = ABFS(Gi, E);
Collect new readingri;

end
Reconstruct the scalar field fromr0 ∪ r1 ∪ ... ∪ rm;

simplest model is to assume that the energy consumed by a
mobile robot to move from locationA to B is proportional
to the length of the line segment connecting theA and B.
The energy consumption model used in this paper is the
one for the robotic boat of the NAMOS project [12], as
shown in Figure 1. In this model, the state is the location
and the orientation of the boat. The energy consumed for
state transition not only depends on the distance between two
states but also depends on the orientations of the two states.
The details of the energy consumption model are described
in [1] and will not be repeated here.

In our approach, we first construct a graph from the
sensing field and the energy consumption model. Each vertex
of the graph represents one state of the mobile robot and
the coordinates of any vertex are within the sensing field.
The edges between vertices represent a state transition. The
length of an edge represents the energy consumed for state
transition. An important assumption is that all the mobile
robots share the same energy consumption model and are
equipped with the same sensors, i.e., the team of the robots
is homogeneous. Otherwise, each mobile robot would need
its own state transition graph and the graph partition method
below can not be used. For each vertex of the graph, the
Hessian matrix is estimated by using Local Polynomial
Regression using the readings from the static sensors and the
gain is computed by using equation 6. Note that the vertices
with the same coordinates share the same gain. If the robot
visits one location twice but in different orientation, it will
only collect the gain once.

B. Graph Partition

Once the graph is constructed and the gain associated with
each state is computed, we divide the graph into subgraphs
to simplify the problem. The graph is partitioned in such
a way that the sum of the gains of the vertices in each
sub-graph are the same. The basic idea here is that with
the same amount of energy consumed, the same amount
of gain is achieved. Another constraint on the partition is
that the boundary between two sub-graphs should be as
straight as possible. Generally speaking, a complex boundary
would result in more energy consumption. The complexity
of the boundary can be measured by using the length of



the boundary and the length of the boundary in turn can
be measured by using the number of cuts of between sub-
graphs. Therefore, the partition problem is to find a partition
of m sub-graphs so that the total of gain of all the nodes
in each sub-graphs is the same, wherem is the number of
mobile robots.

Graph partition is a well known NP-complete problem and
there is no polynomial time algorithm to find the optimal
partition. However, many approximation algorithms have
been proposed. The approach used in this paper exploits
a multilevel paradigm [13]. This approach consists of two
stages. In the first stage, the graph is contracted until the size
is less than a given threshold. Then, an interactive process
of expansion and refinement is performed in such a way that
the weight is balanced. This algorithm runs quickly with
reasonable graph sizes.

C. Path Planning for a Single Robot

Once the graph is partitioned, the problem is reduced to a
set of smaller problems each with a single mobile robot and
many search algorithms can be used. The problem of finding
the best path such that the gain collected along the path is
maximized is called the Orienteering problem. This problem
has been well-studied and many approximation algorithms
are proposed. Most of the algorithms employ a prime and
dual scheme and the typical one is proposed in [14], [15].
In [1], A Bread First Search algorithm was proposed to find
a approximate solution. Although the approximation factoris
not good, the algorithm runs quickly and the performance is
good. The approximate BFS is used here as the single mobile
path planning algorithm. However, any other path planning
algorithm can well be used here.

In summary, the algorithm is described in Algorithm 1,
where m is the number of mobile robots,E is the initial
energy for the mobile robots,G is the state graph,Gi is a
subgraph andπi is the path generated in subgraphGi.

V. SIMULATIONS

We carried out a series of simulations in a unit square.
Three scalar fields are used in the simulations. They are
shown in Figure 2 and their equation are below.

r =
1

1 + exp( 1

2
x2 − y + 1

5
)

(8)

r = exp(−
1

2
(4x2 − 10y + 3)) (9)

r = exp(−
(5x − 1)2 + (5y − 1)2

2
) (10)

In the first field, there is a boundary across the sensing field
and it separates the high and low values. The second scalar
field has a ridge across the sensing field. In our simulation,
we smooth the readings by applying a local linear regression
on the data to reduce the noise associated with it. As a result,
in the place where the scalar field is not symmetric, the
place with the maximum trace of the Hessian matrix would
be moved. The biggest difference between field 1 and the

other two is that in field 1, the estimation of the Hessian
matrix would not only have errors in magnitude but also in
location. Therefore, we expect higher estimation errors in
reconstructing field 1.

When sensor readings are taken, either from the static
sensor nodes or the mobile robots, we assume a Gaussian
noise associated with the readings. Note that all the scalar
fields vary from 0 to 1 and we use the ratio of the noise to the
variation of the scalar field to describe the noise level. In the
simulations, we use a coffeehouse design [16] to determine
the locations of the static sensor nodes. The simulations are
performed in groups. The sensing field is discretized into
a graph consisting of 100 vertices uniformly distributed in
the unit square. For each set of initial sensor readings, we
estimate the Hessian matrix for each vertex in the graph and
then compute the corresponding information gain. Then the
graph is partitioned into subgraphs with equal gain. After
that, the path planning procedure is called 25 times for each
initial energy level and the new readings are collected. The
scalar field is estimated and the IMSE is computed for 25
times. The whole process is in turn carried out for 10 times.
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Fig. 3. The paths planned for all 4 robots. The underlying phenomenon
is scalar field 3. Note the cluster of samples in lower left where the most
variation in the field happens.

One example of the paths planned for all the robots is
shown in Figure 3. The underlying phenomenon is defined
by equation 10. The paths are generated in such a way
that more readings are taken in the lower left part of the
sensing field, where the trace of the Hessian matrix is much
higher than other places. Figure 4 shows how the IMSE
changes with increased initial energy available to the mobile
robots in three different settings. In all simulations, theIMSE
decreases when the initial energy available to the mobile
robots increases. We study the effect of two parameters, the
number of static sensors and the noise level. The simulation
results show that both of them have an effect on the perfor-
mances. The simulation with the best performance is shown
in Figure 4(a), where 50 static sensors are used and the noise
level, 5%, is low. When the initial energy is 1.6 units, which
means approximately 36 new readings are taken, the IMSE
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Fig. 2. Scalar fields used in the simulation.
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Fig. 4. The IMSE of the reconstruction of scalar field 1 with different noise levels (σ) and different number of static sensor nodes (m).

decreases to 64% of the initial IMSE. When the noise level
of the readings increases, not only does the absolute value
of the IMSE increases, the rate at which the IMSE decreases
also decreased. As shown in Figure 4(b), with the same
initial energy of 1.6, the IMSE is still approximately 75%
of the initial IMSE. Fewer initial static sensors also reduce
the rate of IMSE decrease, as shown in Figure 4(c), where
there only 25 static sensors to provide initial readings. The
reason for this is that both parameters affect the accuracy of
the estimation of the Hessian matrix. When the number of
initial readings is small or the sensor noise is high, the error
in the estimation of the Hessian matrix is high, which in turn
causes more readings to be taken at the non-critical places.

Figure 5 shows the results of simulations on the other two
scalar fields. Both sets of simulations are performed with the
same noise level and the same number of static sensors as
in Figure 4(a). As we discussed above, both of the scalar
fields are symmetric and hence estimation of the Hessian
matrix only has error in magnitude with much less error on
the location. Therefore, IMSE in both situations has a high
decrease rate, which is obvious in Figure 5.

VI. CONCLUSION AND FUTURE WORK

In this paper we presents a simple strategy to coordinate
multiple mobile robots to take sensor readings so that errors
associated with the reconstruction of a scalar field, would
be reduced. Linear local regression is used to estimate the
scalar field and an optimal experimental design is used to

define the information gain of each location. The sensing
field is partitioned into subareas with equal gain.Within each
subarea path planning for a single mobile robot is used to
generate the path for each individual robot. This properties
of the strategy are studied using simulation.

However, equal gain is not the only strategy to partition
the sensing field. For example, another even simpler strategy,
partitioning the sensing field into subareas with equal area
might be a good option. We performed preliminary simu-
lations on the latter strategy and the results show that it
might be competitive with the equal gain strategy. We are
currently working on the detailed analysis on the second
strategy. Figure 6 shows the preliminary simulation results
from the equal area strategy. Figure 6(a) shows the paths
planned for the four robots in one simulation. Compared
with Figure 3, fewer readings are to be taken in the lower
left part of the sensing field. However, equal area strategy is
still able to achieve a estimation error that is very close to
the equal gain strategy, as shown in Figure 6(b).

We plan to apply this approach to the robotic boats in
the NAMOS project, as shown in Figure 1. Currently, there
are two robotic boats with the same configuration and they
are used for measuring physical, chemical and biological
parameters on the water surface as well as in depth. Our
plan is to test our strategy on the robotic boats in a lake
or harbor where there are reasonable variations in the scalar
field, such as temperature, on the surface.
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