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Abstract

This paper introduces an algorithm for the automatic relegadetermi-
nation of input variables in kernelized Support Vector Maelk. Rele-
vance is measured by scale factors defining the input spatré&cpaand

feature selection is performed by assigning zero weightsrédevant

variables. The metric is automatically tuned by the minatian of the

standard SVM empirical risk, where scale factors are add et usual
set of parameters defining the classifier. Feature seleitiashieved
by constraints encouraging the sparsity of scale factofe rEsulting
algorithm compares favorably to state-of-the-art feat@lection proce-
dures and demonstrates its effectiveness on a demandiiad éapres-
sion recognition problem.

1 Introduction

In pattern recognition, the problem of selecting relevaariables is difficult. Optimal
subset selection is attractive as it yields simple and m&table models, but it is a com-
binatorial and acknowledged unstable procedure [2]. Inesproblems, it may be better
to resort to stable procedures penalizing irrelevant taéega This paper introduces such a
procedure applied to Support Vector Machines (SVM).

The relevance of input features may be measured by continweights or scale factors,
which define a diagonal metric in input space. Feature sefeconsists then in determin-
ing a sparse diagonal metric, and sparsity can be encoubggamhstraining an appropriate
norm on scale factors. Our approach can be summarized bgttivegof a global optimiza-

tion problem pertaining to 1) the parameters of the SVM di@ssand 2) the parameters
of the feature space mapping defining the metric in inputepaks in standard SVMs,

only two tunable hyper-parameters are to be set: the peatializof training errors, and
the magnitude of kernel bandwiths. This formalism has thexpected benefit of provid-
ing an efficient algorithm to monitor slack variables whifgimizing the metric. This fast

uptade allows to derive an automatic scaling procedurectfe in terms of stability in

comparizon with state-of-the-art feature selection meésho

The paper is organized as follows. After presenting previpproaches to hard and soft
feature selection procedures in the context of SVMs, wegmrtesur algorithm. This ex-
posure is followed by an experimental section illustraiisgperformances and conclusive
remarks.



2 Feature Selection via adaptive scaling

Scaling is a usual preprocessing step, which has importaodmes in many classification
methods including SVM classifiers [9, 3]. It is defined by aehn transformation within
the input spacex = Xx, whereX = diag o) is a diagonal matri®l, = o0k Of scale
factors.

Adaptive scaling consists in letting to be adapted during the estimation process with the
explicit aim of achieving a better recognition rate. Fomedrclassifiersg is a set of hyper-
parameters of the learning process. According to the stralatisk minimization principle
[8], o can be tuned in two ways:

1. estimate the parameters of classiffeby empirical risk minimization for sev-
eral values of o1, }4_, to produce a structure of classifiefs multi-indexed by
{ok}{_,. Select one element of the structure by finding the{sg}{_; minimiz-
ing some estimate of generalization error.

2. estimate the parameters of classifieand the hyper-parametefs;, }¢_, by em-
pirical risk minimization, while a second level hyper-paeter, say,, constrains
{0k }4_, in order to avoid overfitting. This procedure produces acstme of clas-
sifiers indexed by, whose value is computed by minimizing some estimate of
generalization error.

The usual paradigm consists in computing the estimate afrgdination error for regularly
spaced hyper-parameter values and picking the best solaimng all trials. Hence, the
first approach requires intensive computation, since ihtstshould be completed over a
d-dimensional grid oves, values.

Several authors suggested to address this problem by aptgdn estimate of generaliza-
tion error with respect to the hyper-parameters. For SVMsifeers, Cristianinet al. [4]
first proposed to apply an iterative optimization schemestorete a single kernel width
hyper-parameter. Westaet al. [9] and Chapelleet al. [3] generalized this approach to
multiple hyper-parameters in order to perform adaptivdisgand variable selection.

The experimental results in [9, 3] show the benefits of thisnogation. However, rely-
ing on the optimization of generalization error estimatesranany hyper-parameters is
hazardous. Once optimized, the unbiased estimates beanmellased, and the bounds
provided by VC-theory usually hold for kernels definegriori (see the proviso on the
radius/margin bound in [8]). Optimizing these criteria nthys result in overfitting.

In the second solution considered here, the estimate ofrgkration error is minimized
with respect tooy, a single (second level) hyper-parameter, which constrgin }¢_, .
The role of this constraint is twofold: control the complgxof the classifier, and en-
courage variable selection in input space. This approachléed to some successful
soft-selection procedures, such as lasso and bridge [$leirfrequentist framework and
Automatic Relevance Determination (ARD) [7] in the Bayesicamework. Note that this
type of optimization procedure has been proposed for ligaavl in both frequentist [1]
and Bayesian frameworks [6]. Our method generalizes thpsageh to nonlinear SVM.

3 Algorithm

3.1 Support Vector Machines

The decision function provided by SVM stgn( fo (x)), where functionfq is defined as:
fo(x) =w'¢g(x) +b=_ yiciKg(xi,x) +b , @

(2



where the parametefsv, b) are obtained by solving the following optimization probtem

n
min lew + CZ&
wbé 2 i=1 )
subjectto y; (W g (xi) +b)>1-§& i=1,...,n
& >0 i=1,....n .

with ¢4 (x) defined asp(Xx). In this problem settingC' and the parametees of the
feature space mapping (typically a kernel bandwidth) analble hyper-parameters which
need to be determined by the user.

3.2 A global optimization problem

In [9, 3], adaptive scaling is performed by iteratively findithe parameterswv, b) of the
SVM classifierfo for a fixed value obr = {04 }¢{_, and minimizing a bound on the esti-
mate of generalization error with respect to hyper-paramséfo, }¢_, , C). The algorithm
minimizes 1) the SVM empirical criterion with respect to pareters and 2) an estimate of
generalization error with respect to hyper-parameters.

In the present approach, we avoid the enlargement of thd Bgper-parameters by letting
{or}¢_, to be standard parameters of the classifier. Complexity igrobed by C' and

by constraining the magnitude ef. The latter defines the single hyper-parameter of the
learning process related to scaling variables. The legnritterion is defined as follows:
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Like in standard SVM classification, the minimization of aimate of generalization error
is postponed to a later step, which consists in picking ths $@ution among all trials on
the two dimensional grid of hyper-parametérs, C).

In (3), the constraint olr should be chosen such as the constraint allows sparseostuti
o, should be allowed to go to zero, henegehould be positive. To encourage sparsity,
zeroing a smalb, should allow a high increase of, I # k, hencep should be small. In
the limit of p — 0, the constraint counts the number of non-zero scale paessyegsulting

in a hard selection procedure. This choice might seem apigtegor our purpose, but it
amounts to attempt to solve a highly non-convex optimizatimblem, where the number
of local minima grows exponentially with the input dimensi& To avoid this problem,
we suggest to usg = 2, which is the smallest value for which the problem is convex
with the linear mappingpy (x) = Xx. Indeed, for linear kernels, the constraint @n
amounts to minimize the standard SVM criterion where theapization on the/? norm is

replaced by the penalization of tiéer> norm. Hence, setting = 2 provides the solution
of the/! SVM classifier described in [1]. For non-linear kernels hegrethe two solutions
differ notably since the present algorithm modifies the roétrinput space, while thé!
SVM classifier modifies the metric in feature space. Finallyte that the unicity is not
guaranteed for any other kernel, but for Gaussian kernelslaige bandwidthss, — 0),
settingp = 2 ensures uniqueness.



3.3 An alternated optimization scheme

Problem (3) is complex; we propose to solve iteratively aeseof simplier problems.
The functionf is first optimized with respect to parametéss, b) for a fixed mapping
¢o (standard SVM problem). Then, the parametersf the feature space mapping are
optimized while some characteristics pfare kept fixed: At step, starting from a given
o) value, the optimalw (a(®)), b(c(*))) are computed. Them(s+1) is determined by a
descent algorithm.

In this scheme(w (a(*)),b(c(*))) are computed by solving the standard quadratic opti-
mization problem (2). Our implementation, based on an iotgroint method, will not

be detailed here. Several SVM retraining are necessaryhbuytare faster than the usual
training since the algorithm is initialized appropriatelith the solutions of the preceding
round.

For solving the minimization problem with respectdowe use a reduced conjugate gra-
dient technique. The optimization problem was simplifiedalsguming that some of the
other variables are fixed. We tried several versionsy fixed; 2) Lagrange multipliera
fixed; 3) set of support vectors fixed. For the three versitrespptimal value ob, or at
least the optimal value of the slack variabfesan be obtained by solving a linear program,
whose optimum can be computed directly (in a single itergtivVe do not detail our first
version here, since the two last ones performed much b&tiermain steps of the two last
versions are sketched below.

3.4 Sclaling parameters update

Starting from an initial solutior{or, w(o'), b(o)), our goal is to update by solving a
simple intermediate problem providing an improved solutmthe global problem (3). We
first assume that the Lagrange multiplieeslefiningw are not affected by updates, so
thatw is defined asv = 3°7_ | ajy;0q (%i)-

Regarding problem (3) is sub-optimal whewr varies; nevertheless is guaranteed to
be an admissible solution. Hence, we minimize an upper batiride original primal
cost which guarantees that any admissible update (prayalotecrease of the cost) of the
intermediate problem will provide a decrease of the coshefariginal problem.

The intermediate optimization problem is stated as foltows
(
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Solving this problem is still difficult since the cost is a colex non-linear function of
scale factors. Hence, as stated abeveiill be updated by a descent algorithm. The latter
requires the evaluation of the cost and its gradient witipeestoe. In particular, this
means that we should be able to compig , & andd Y-, &/80 for any value ofo.



For given values ofr anda;, £ is the solution of the following problem:

r;ign cizzlsi

. - (5)
subjectto y; ZajyjKa'(Xi,Xj)+b >1-& i=1,...,n
j=1
6120 i:l,...,n,

whose dual formulation is

n n
max Do l—yi | Y ajyiKo(xi ;)

i= 1 7j=1
(6)
subject to Z,u,y,—o
C’>u220 i=1,...,n .

This linear problem is solved directly by the following atgbm: 1) sort
1—y; (E;‘Zl ajy]-K(xz-,xj)) in descending order for all positive examples on the one

side and for all negative examples on the other side; 2) ctartha pairwise sum of sorted
values; 3) seti; = C for all positive and negative examples whose sum is positive

With , C 37 | & and its derivative with respect i are easily computed. Parameters
o are then updated by a conjugate reduced gradient techriigu@, conjugate gradient
algorithm ensuring that the set of constraintssoare always verified.

3.5 Updating Lagrange multipliers

Assume now that only the support vectors remain fixed whitéwping o. This assump-
tion is used to derive a rule to update at reasonable cormgpabist the Lagrange multipliers
o together witho by computingda /0. At (e, o, b), the following holds [3]:

1. for support vectors of the first categofy (x;) = v;
n
> ayiKo(xi %) +b=y; ; )
j=1
2. for support vectors of the second category (suchghat0) a; = C.
From these equations, and the assumption that supportrseetnain support vectors (and

that their category do not change) one derives a system @driaquations defining the
derivatives ofo andb with respect tar [3]:

1. for support vectors of the first category

- b
Z —yJKU' X,,XJ + Z OéjijgKa-(Xi,Xj) + % =0 (8)

j=1 j=1

2. for support vectors of the second categ%%z =0



3. Finally, the system is completed by stating that the Liageamultipliers should
obey the constrain _ a;y; = 0:

j=1
n
aaj

- Yi
j=1 do

=0 (9)

The value ofex is updated from these equations, and the step size is lingtedsure that
C > «a; > 0 for support vectors of the first category. Hence, in this iogrsw is also an
admissible sub-optimal solution regarding problem (3).

4 Experiments

In the experiments reported below, we uged 2 for the constraint oer (3). The scale pa-
rameters were optimized with the last version, where thefsatpport vectors is assumed
to be fixed. Finally, the hyper-parametées, C') were chosen using the span bound [3].
Although the value of the bound itself was not a faithful estie of test error, the average
loss induced by using the minimizer of these bounds was quital.

4.1 Toy experiment

In [9], Westonet al. compared two versions of their feature selection algorjtiorstandard
SVMs and filter methodsi.e. preprocessing methods selecting features either based on
Pearson correlation coefficients, Fisher criterion saoréghe Kolmogorov-Smirnov statis-
tic). Their artificial data benchmarks provide a basis fomparing our approach with
their, which is based on the minimization of error boundsoTypes of distributions are
provided, whose detailed characteristics are not givea.Heithe linear problem, 6 dimen-
sions out of 202 are relevant. In the nonlinear problem, wadures out of 52 are relevant.
For each distribution, 30 experiments are conducted, amdvthrage test recognition rate
measures the performance of each method.

For both problems, standard SVMS achieve a 50% error rateeirconsidered range of
training set sizes. Our results are shown in Figure 1.
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Figure 1: Results obtained on the benchmarks of [9]. Lafedr problem; right nonlinear
problem. The number of training examples is representeten-txis, and the average
test error rate on thg-axis.

Our test performances are qualitatively similar to the ai#ained by gradient descent on
the radius/margin bound in [9], which are only improved by fibrward selection algorithm



minimizing the span bound. Note however that Westoral. provide results when the

correct number of features was provided by the user, whaheapresent results were
obtained fully automatically. Knowing the number of feasithat should be selected by
the algorithm is somewhat similar to get= 0 andoy to its optimal value.

In the non-linear problem, faiz = 10 training examples, an average of 26.5 features are
selected; fom = 100, an average of 6.6 features are selected. These figures Baow t
although our feature selection scheme is effective, it khba more stringent: a smaller
value ofp would be more appropriate for this type of problem. The twevant variables
are selected id7% of cases fom = 10, in 90% for n=50, and inl00% for n = 75 and

n = 100. For these two values af, they are even always ranked first and second.

Regarding training times, the optimization ef required an average of 40 times more
computing time than standard SVM fitting. These increasakdess than linearly with
the number of variables, and are certainly yet to be improved

4.2 Expression recognition

We also tested our algorithm on a more demanding task totsesbility to handle a large
number of features. The considered problem consists irgrezing the happiness expres-
sion among the five other facial expressions correspondingitersal emotions (disgust,
sadness, fear, anger, and surprise). The data sets are g 60 gray level images of
frontal faces, with standardized positions of eyes, nosemanouth. The training set com-
prises60 positive images, antB0 negative ones. The test set is madd®positive images
and110 negative ones.

We used the raw pixel representation of images, resultigB0 highly correlated fea-

tures. For this task, the accuracy of standard SVMs is 921894¢st errors). The recogni-
tion rate is not significantly affected by our feature setecscheme (10 errors), but more
than 1300 pixels are considered to be completely irrelesitite end of the iterative pro-

cedure (estimatingr required about 80 times more computing time than standaid)SV

This selection brings some important clues for buildingveht attributes for the facial

recognition expression task.

Figure 2 represents the scaling facterswhere black is zero and white represents the
highest value. We see that, according to the classifiergllegant areas for recognizing the
happiness expression are mainly in the mouth area, eslyemieithe mouth wrinkles, and
to a lesser extent in the white of the eyes (which detects epes) and the outer eyebrows.
On the right hand side of this figure, we displayed maskedafgcesj.e. support faces
scaled by the expression mask. Although we lost many impoféatures regarding the
identity of people, the expression is still visible on thésees. Areas irrelevant for the
recognition task (forehead, nose, and upper cheeks) haredrased or softened by the
expression mask.

5 Conclusion

We have introduced a method to perform automatic relevaetermination and feature
selection in nonlinear SVMs. Our approach considers thaairtatric in input space defines
a set of parameters of the SVM classifier. The update of thle $aetor is performed by

iteratively minimizing an approximation of the SVM cost. &84l to this global criterion we

derived an efficent method to compute (under mild hypothésésvalue of the slack vari-

able while the metric varies. Thanks to this good estimdtesapproximation of the cost
function we are using is tight enough to allow large updatthefmetric when necessary.
Furthermore, because at each step our algorithm guaramtldbal cost to decrease it is
stable.



Figure 2: Left: expression mask of happiness provided bystating factorsr; Right,
top row: the two positive masked support face; Right, bottom: four negative masked
support faces.

Preliminary experimental results show that the method ides/sensible results in a rea-
sonable time, even in very high dimensional spaces, agraliesl on a facial expression
recognition task. In terms of test recognition rates, outhoe is comparable with [9, 3].

Further comparisons are still needed to demonstrate tlotigabmerits of each paradigm.

Finally, it may also be beneficial to mix the two approachks:rmethod of Cristianiret al.

[4] could be used to determig andC'. The resulting algorithm would differ from [9, 3],
since the relative relevance of each feature (as measureg)/lby) would be estimated by
empirical risk minimization, instead of being driven by atimate of generalization error.
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