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Abstract—Exploiting runtime memory access traces can be a
complementary approach to compiler optimizations for the energy
reduction in memory hierarchy. This is particularly important
for emerging multimedia applications since they usually have
input-sensitive runtime behavior which results in dynamic and/or
irregular memory access patterns. These types of applications are
normally hard to optimize by static compiler optimizations. The
reason is that their behavior stays unknown until runtime and
may even change during computation. To tackle this problem,
we propose an integrated approach of software [compiler and
operating system (OS)] and hardware (data access record table)
techniques to exploit data reusability of multimedia applications
in Multiprocessor Systems on Chip. Guided by compiler analysis
for generating scratch pad data layouts and hardware components
for tracking dynamic memory accesses, the scratch pad data
layout adapts to an input data pattern with the help of a run-
time scratch pad memory manager incorporated in the OS. The
runtime data placement strategy presented in this paper provides
efficient scratch pad utilization for the dynamic applications. The
goal is to minimize the amount of accesses to the main memory
over the entire runtime of the system, which leads to a reduction
in the energy consumption of the system. Our experimental results
show that our approach is able to significantly improve the energy
consumption of multimedia applications with dynamic memory
access behavior over an existing compiler technique and an alter-
native hardware technique.

Index Terms—Compiler optimizations, dynamic memory access
pattern, multiprocessor system on chip (MPSoC), scratch pad
memory (SPM).
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I. INTRODUCTION

IN Multiprocessor Systems on Chip (MPSoCs), the effect of

the increasing processor–memory speed gap is being more

significant due to the heavier access contention on the network

and the use of shared memory. Therefore, improvement in

memory performance is critical to the successful use of MPSoC

systems. In order to narrow the processor–memory speed gap,

hardware caches have been widely used to build a memory

hierarchy in all kinds of system chips. However, hardware-only

cache implementation has several drawbacks. The hardware-

controlled approach incurs high power and area cost [1].

An alternative to hardware-controlled cache is a “software-

controlled cache,” which is essentially a random access mem-

ory called scratch pad memory (SPM). The main difference

between SPM and hardware-controlled cache is that SPM does

not need hardware logic to dynamically map data or instructions

from off-chip memory to the cache since it is done by software.

This difference makes SPM more energy and cost efficient for

embedded applications [2]. Due to these advantages, SPMs are

widely used in various types of embedded systems. In some

embedded processors such as ARM10E, Analog Devices ADSP

TS201S, Motorola M-core MMC221, Renesas SH-X3 and TI

TMS370CX7X, SPM is used as an alternative to hardware

cache. Consequently, an approach for effective SPM utilization

is essential for the efficacy of SPM-based memory subsystems.

A previous work on SPM utilization has focused on the devel-

opment of approaches for efficiently assigning frequently ac-

cessed data and instructions to SPM to maximize improvement

of performance and energy consumption.

The objective of this paper is to propose an efficient tech-

nique to exploit the data reusability of multimedia applications

with dynamic behavior on SPM-based MPSoCs. The memory

access behavior is not fixed for an embedded system since the

accessed values vary dynamically according to the input data.

For example, depending on whether the specific input activates

one execution path or the other, some of the data accesses may

be executed or not. Thus, when multimedia applications are ex-

ecuted on different sets of input data, different memory access

patterns emerge. Our methodology allows a designer to identify

such situations and generate different data layouts that make the

most efficient use of the SPM for each possible behavior. Our

approach proactively controls the movement and placement of

data in the hierarchy based on runtime data access history. Thus,

the data placement is adaptively optimized to the input.

Specifically, our management scheme is based on hardware/

software cooperation. The memory manager in the operating
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system (OS) determines SPM data placement based on dynamic

data access history. The history is recorded through a simple

hardware table. To decide good data layouts for various input

streams, the compiler first analyzes application behavior with

representative input sets. Then, data layouts for each of the

input sets are generated. At runtime, the memory manager

compares runtime memory access traces with the profiled data

access history to determine the data layout for the current input.

We show that this extension to the memory subsystem signifi-

cantly reduces the overall energy consumption of multimedia

applications. The energy savings are due to increased SPM hit

rates with minimized data movement overhead.

The rest of this paper is organized as follows. Section II

discusses related work. Section III presents a motivational

example that highlights the need for an adaptive SPM man-

agement approach. Section IV describes the main hardware

component of our adaptive SPM management approach and

associated design considerations. Sections VI and VII describe

the software support required from the compiler and OS for

our approach. Section VIII describes the methodology and

experimental setup used to assess the efficacy of our approach

and presents detailed simulation results and analysis. Finally,

the conclusion is presented in Section IX.

II. RELATED WORK

Many papers have focused on the problem of improving data

reuse in caches, primarily by means of loop transformations

(see, e.g. [3] and [4]). However, we do not address this problem

in this paper. We assume that all possible loop transformations

for improving locality of accesses are already performed before

applying the technique presented in this paper.

A. Regular/Irregular Memory Access Pattern

Analysis for SPM

There are several prior studies on using SPMs for data ac-

cesses. The studies are mostly based on compile-time analysis.

They can be categorized into two parts, static and dynamic.

Static methods [1], [5]–[9] determine which memory objects

(data or instructions) may be located in SPM at compile time,

and the decision is fixed during the execution of the program.

This may lead to the nonoptimal use of the SPM if behavior of

the application during execution is different from compile-time

allocation assumptions. Static approaches use greedy strategies

to determine which variables to place in SPM, or formulate the

problem as an integer-linear programming problem (ILP) or a

knapsack problem to find an optimal allocation.

Dynamic SPM allocation approaches include those in [2],

[10]–[16]. Cooper and Harvey [10] proposed using SPM for

storing spilled values. Ozturk et al. [15] proposed to manage

the available SPM space in a latency-conscious manner with

the help of compilers. Specifically, the proposed scheme places

data into the SPM, taking into account the latency variations

across the different SPM lines. Francesco et al. [16] proposed

an integrated hardware/software approach for runtime SPM

management. Their hardware consists of SPMs coupled to

direct-memory-access (DMA) engines to reduce the copy cost

between SPM and main memory, and they provide a high-level

programming interface which makes it very easy to manage

the SPMs at runtime. In this paper, we also provide high-level

programming interface to manage DMA engines described in

Section VII. The difference compared to [16] is that they

determine copy candidates to map in the SPM at compile time,

but we determine them at runtime. In multimedia applications,

this difference leads to significant energy saving; we will show

the impact of the difference in Section VIII-B. Udayakumaran

and Barua [14] proposed an approach that treats each array as

one memory object. Placement of parts of array to the SPM is

not possible, but the approach does consider all global and stack

variables. Kandemir et al. [12] address the problem of dynamic

placement of array elements in SPM. The solution relies on

performing loop transformations first to simplify the reuse

pattern or to improve data locality. Dynamic approaches also

use ILP formulations or similar methods to register allocation

to find an optimal dynamic allocation.

A few approaches have looked at memory system design

for MPSoCs [17]–[19]. Meftali et al. [17] and Kandemir and

Dutt [18] proposed an optimal memory allocation technique

based on ILP for application-specific SoCs. Issenin et al. [19]

introduced a multiprocessor data reuse analysis technique that

allows the system designer to explore a wide range of cus-

tomized memory hierarchy organizations with different sizes

and energy profiles.

While the research described earlier focused explicitly on

regular access patterns, Verma et al. [9] and Li et al. [20]

proposed approaches that work with irregular array access

pattern. Verma et al. [9] proposed a static approach to put half

of the array to SPM. They also profile an application, find out

which half of the array is more often used, and place it in the

SPM. However, they do not care if the accesses are regular

or not. Unlike in [9], we perform the task of finding a set

of array elements to be placed to SPM with finer granularity.

In addition to that, the replacement of data in SPM happens

at runtime in our approach as compared to static placement

in [9]. Li et al. [20] introduced a general-purpose compiler

approach, called memory coloring, which adapts the array

allocation problem to graph coloring for register allocation.

The approach operates in three steps: SPM partitioning to

pseudoregisters, live-range splitting to insert copy statements

in an application code, and memory coloring to assign split

array slices into the pseudoregisters in SPM. However, their

approach is prone to internal memory fragmentation when the

sizes of assigned array slices are less than pseudoregister size

(where the partitioned SPM space). They try to solve this

problem by making several sizes of pseudoregisters. However,

this approach cannot completely solve the problem because

the partitioning method uses a constant variable to divide the

SPM space, which leads to unavoidable fragmentation. We

solve this problem by formulating it as a 2-D (time and space)

knapsack problem that can assign array slices to SPM without

any internal fragmentation.

Absar and Catthoor [21] and Chen et al. [22] also present

approaches for irregular array accesses. The meaning of ir-

regularity in their work is limited to the case of an indirect

indexed array. In addition to that, the indexing array must be
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referenced by an affine function. In these works, the authors

identify the reused block or tile which is accessed through in-

directly indexed arrays in video/image processing applications.

Our approach differs from theirs in that we can solve indirect

indexed arrays with nonaffine reference functions. In addition,

our approach also considers all other types of irregular accesses

found in various media applications.

B. Dynamic Behavior Analysis for Cache Memory Subsystems

To the best of our knowledge, there are no existing successful

approaches for runtime SPM management. A software caching

technique is the only runtime approach proposed so far. It

has largely not been successful. Software caching [23]–[25]

emulates a cache in SPM using software. By compiler-inserted

codes, the tag, data, and valid bits are all managed at each

memory access. Even though the compiler already optimizes

away some [23], [24], significant software overhead is incurred

to manage these fields.

There are some other studies related to the runtime ap-

proaches for dynamic behavior optimization on hardware-

controlled cache-based systems by Kandemir and Kadayif [26]

and Ding and Kennedy [27]. In these studies, the selection of

data placement for the cache-based system can be changed by

loop-transformation-based approaches at runtime. In [26], the

loop transformation is performed over the course of a program’s

execution according to the data cache miss estimating function.

The proposed technique can be used to automatically determine

which placements result in minimum cache misses over specific

regions of a program while taking into account the added

overhead of dynamic layout changes. The approach is based on

program’s control flow, called nest flow graph. It adds some

optimized code at certain program execution points on the

graph. The work is good for applications with well-behaved

loops. However, the dynamic code selection might result in

I-cache misses.

The study in [27] is the first work on improving cache

performance for dynamic applications by using a combination

of runtime computation and data transformation. This paper

is based on an inspector–executor framework [28] that paral-

lelizes unstructured codes for distributed memory machines.

Unfortunately, the framework cannot localize nonaffine refer-

ences. Therefore, this paper would perform as badly as the orig-

inal computation with such references. Our approach differs

from theirs in that we can optimize all types of dynamically be-

haved loops found in various multimedia applications without

increasing code size or causing I-cache misses.

III. MOTIVATIONAL EXAMPLE

Embedded systems today are evolving into complex multi-

processor systems that incorporate an OS layer in their

software. In a general on-chip system, multiple IPs share one

on-chip bus to access system memory. Each programmable

IP has a DMA to access memory directly instead of relying

on the CPU. In our approach, we consider MPSoC systems

consisting of several processing elements, and each processing

element has its own local SRAM (scratch pad). We restrict the

Fig. 1. Simplified loop code in the motion estimation.

Fig. 2. Memory access distribution with two input sets.

network architecture to a bus-based architecture since it is still

the most popular network [29]–[32]. We assume that process-

ing elements communicate with each other through a shared

memory. Each processing element has a single port for both

local and shared memory accesses, as usually is the case in real

systems. In addition, each processing element executes its own

task, and the processing elements do not share local memory

address space. Therefore, our runtime SPM manager optimizes

the data layout with the assigned task on the corresponding

local storage.

To understand some of the inefficiency of traditional SPM

management, it is helpful to first examine the access behavior

of a particular application in detail. Fig. 1 shows a loop code

from MPEG2 encoder. This loop body constitutes a major part

of motion estimation, which takes 37%–84% of total execution

time in our studies with various input sets. Most of the memory

accesses in MPEG2 encoder occur in this routine.

In order to obtain a clear picture of how data in memory

are accessed throughout the program execution, we profiled the

accesses and plotted the address distribution for a given execu-

tion phase. The profiling results for a 100 000-cycle sample of

the MPEG2 encoder are shown in Fig. 2. The memory access

distribution for two different input sets is shown in Fig. 2,

namely, test.YUV and rec.YUV. The distributions show that

two bands of memory are heavily accessed for each input set.

These bands are located roughly from addresses 70 950 000

to 71 000 000, 71 250 000 to 71 350 000 with an input file of
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rec.YUV and 71 250 000 to 71 350 000, 7 145 000 to 7 150 000

with an input file of test.YUV. In general, the dynamic loop

controls lead to differently accessed memory region [27].

Often, traditional schemes analyze and optimize the dynamic

behavior through statistical information generated by profiling:

A benchmark code is executed with various types of input sets

to gather memory access behavior for each input, and statis-

tically, highly accessed data regions are obtained. At compile

time, these schemes optimize data layout based on the profiling

result.

In Fig. 2, these schemes place either part of the data or the

entire data in the accessed bands onto the SPM. If only part of

the data is placed in SPM, it loses some portion of reusability

of the program, since the access pattern depends on the input.

If the entire data are placed in SPM, it causes excessive data

transfers, because the program sometimes does not access some

parts of the accessed bands. In addition, it is not always possible

since there is only a limited SPM space. Therefore, both cases

may result in a nonoptimal solution. To solve this problem,

we propose an HW/SW integrated approach that analyzes the

input characteristic at runtime and optimizes a data layout

fitting based on the input. Using the proposed technique takes

significantly better energy gain than the traditional schemes

illustrated in Section VIII. However, our technique does not

predict 100% of dynamic memory access patterns; thus, it may

not be applied to real-time systems as itself. By using worst-

case execution time (WCET) analysis such as in [33], the

proposed technique may apply to soft real-time systems, since

WCET analysis generates information whether it is applicable

to a certain real-time system.

IV. DART

In this section, we introduce a new hardware component

called the data access record table (DART) which records

runtime memory access history to support decisions of data

placement at runtime. Each DART entry tracks the accesses

to particular memory regions, facilitating detection of dynamic

memory access behavior across data blocks while they are

accessed. The information recorded in DART is used in the OS

for making a decision about which region of data block to place

onto the SPM. To make a good decision, it should be able to

characterize dynamic behavior of a program and identify which

input is being processed.

A. WML

Our scheme seeks to optimize a data layout in a manner that

is sensitive to the dynamic memory locations accessed. Since

there are an excessively large number of memory locations, we

introduce the notion of a working memory location (WML).

Ideally, track of the usage frequencies of all data in memory

should be kept because it would give us the most accurate

information. However, it would lead to an unmanageably large

amount of information. Instead, we define a region of heavily

accessed data block, called WML, that represents heavily ac-

cessed memory regions as shown in Fig. 2.

Definition 1: The WML is a region of reused block of data

that is used in a contiguous loop-iteration sequence.

Fig. 3. Memory accesses with DART in Fig. 1.

By observing the access behavior of the WML, our approach

can determine what region of data should be placed onto

the SPM. A hardware DART is used to maintain and utilize the

access behaviors of the WMLs to guide data placement on the

SPM. The numbers of WMLs and address bands are measured

by profiling. For example, Fig. 2 shows three WMLs (7145×,

7130×, and 7095×).

The DART contains record entries for each WML. Each

entry in the table contains an access frequency counter, where

the counter value represents the frequency of accesses to the

corresponding WML. The additional hardware cost incurred

by the DART is relatively small, because it consists of a small

number of highly accessed address bands (WMLs) and counter

entries. We determine the size of DART based on the maximum

number of WMLs in a given application.

An example of a data access operation with DART is shown

in Fig. 3, where data in a WML are accessed. The WML address

band entry is initialized by the OS when the first loop is started,

and the OS updates the address band entry for each loop.

The comparator tests if the current address matches with

the address entry. If the result is yes, then an increment of

the corresponding DART counter will be performed. Each

entry covers an accessed region corresponding to a WML. An

increment operation on the counter is performed in parallel with

the data access.

V. OVERALL WORKFLOW WITH COMPILER AND OS

The overall workflow of our approach is shown in Fig. 4. The

proposed approach consists of three parts: DART, compiler, and

OS. The input to the system is C code that has already been

parallelized at the task level and mapped to processing units.1

For instance, the task graph [34] of H.263 decoder is shown in

Fig. 4. A brief overview of the workflow involving the compiler

and OS is presented next.

The compiler analyzes each input task through five steps.

First, profiling is used for gathering data access traces. During

profiling, each program task is run multiple times with repre-

sentative input data to collect the number of accesses to each

array element; memory access traces are obtained for each input

data. In the second and third steps, reuse analysis and lifetime

1The optimal mapping problem is beyond the scope of this paper, so we
assume that mapping is already done by a compiler.
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Fig. 4. Overall workflow for proposed approach.

(LT) detection with the traces are performed. By using formal

metrics, candidates of data clusters to be copied to SPM are

determined in the fourth step. The data cluster is defined in

more detail in the next section. The final step is to decide the

location of data clusters in order to maximally use the limited

SPM space. In this step, data layouts are made by the compiler

for the representative input sets. These layouts are used as

inputs to the OS for optimizing data layout.

The runtime SPM manager in the OS periodically refers to

the DART and the access trace, and selects a data layout for the

current input data. Finally, the DMA places data clusters onto

the SPM for the selected layout. In the next section, we describe

how data layouts are generated in our approach.

VI. DATA LAYOUT CANDIDATE GENERATION

BY COMPILER

The problem of efficient data layout generation is to find

a good layout of data elements in the SPM address space

to minimize address fragmentation. Although the problem is

known to be NP-complete [2], we employ heuristics and are

able to find a good (suboptimal) solution for the problem in

polynomial time.

Briefly, a designer identifies a set of representative inputs that

can trigger the different behaviors that will arise at runtime. The

applications are then fed with the different input patterns, and

for each execution, a different data layout scenario is obtained.

The following sections describe these tasks in more detail.

A. Data Selection Using Data Reusability and LT Analysis

The usefulness of memory hierarchy depends on the amount

of reuse in data accesses. To measure the amount of reuse, we

now present a data reusability model that we used to determine

candidates of data elements to be copied to SPM.

We use a data reusability factor as a metric which measures

how many references access the same location during different

loop iterations. Let Tni
be data reusability factor for ith element

of data block n, which depends on the estimated element size of

N words, as well as on the access frequency F corresponding

to each array element, which is obtained by profiling. The

reusability factor is defined next.

Definition 2—(Reusability Factor) Tni
= F/N : Our tech-

nique selects candidates of data to be located in SPM when data

elements have data reusability factor of more than one, because

those data elements can reduce at least one main memory access

(supported by DMA engine). Since the number of the elements

is excessively large, we transfer the data elements onto SPM as

a data cluster. Before we define a data cluster, we first introduce

the terms iteration vector, LT, and LT distance (LT-D).

Definition 3—Iteration Vector: Given a nest of n loops, the

iteration vector i of a particular iteration of the innermost loop

is a vector of integers that contains the iteration numbers for

each of the loops in order of nesting level. In other words, the

iteration vector is given by

I = {(i1, i2, . . . , in)|Lboundik
≤ ik ≤ Uboundik

}

where ik, 1 ≤ k ≤ n, represents the iteration number of

the loop at nesting level k, and each L/U bound denotes

lower/upper bound of corresponding loop nest. The set of all

possible iteration vectors for a loop statement is an iteration

space.

Each data access can be represented by the iteration vector. If

a data element is accessed again, then both accesses have their

own iteration vectors.
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Fig. 5. Data clustering algorithm.

Definition 4—LT: LT of a data element d is defined as a

difference between the iteration vector of the first access (FA)

and the last access (LA). It represents the loop execution time

duration, which is a nonempty interval in a loop-iteration space

LT (d) = LA(i1, i2, . . . , in) − FA(i1, i2, . . . , in).

Definition 5—LT-D: The LT-D is a difference in LTs of two

elements in a data array.

LT -D = |LT (na) − LT (nb)|, where na and nb represent

ath and bth elements in a data block n.

Making LT-D small minimizes fragmentation that might

appear when data objects are transferred in and out of the SPM.

This increases the chance of finding a large-enough block of

free space in the SPM, which results in the least possible main

memory accesses. For this purpose, we introduce the notion of

a data cluster.

Definition 6—Data Cluster: A data cluster is a union of data

elements that have the most beneficial LT-D in an array.

The data clustering algorithm is shown in Fig. 5. In the algo-

rithm, the most beneficial LT-D should be carefully determined

because it determines the efficiency of our technique. We de-

termine LT-D with the help of a simple and practical heuristic.

The decision procedure is like this: First, the smallest LT-D is

taken. Second, clusters with the LT-D are generated. Next, the

energy saving from allocation of the clusters is estimated. In the

fourth step, LT-D is increased to the next larger one. Steps 2–4

are repeatedly executed until an LT-D is found whose gain does

not exceed the others.

We illustrate our procedure for cluster generation with the

program example shown in Fig. 6(a), which is extracted from

the SUSAN algorithm for image noise filtering. For this pro-

gram, the footprint of the addresses of accessed data elements

with varying values of iterators y and x is shown in Fig. 6(b).

With every increment of the iterator x, the footprint shifts right

by ten elements. If we increment y by one, the footprint shifts

down by ten elements. If we continue iterating over x and y, we

can notice that some of the elements are read more than once.

For example, Fig. 7 shows a set of 25 elements, which is read

three times during ten consecutive iterations of two outer loops.

Moreover, the other 25-element set, which is formed by shifting

that set by integer numbers of steps, behaves exactly the same

way: After they are read for the first time, in five iterations, they

are read again, and in another five iterations, they are read for

the last time.

Fig. 6. Example access trace with an input. (a) a loop body. (b) elements
accessed during the first iteration of x, y.

Fig. 7. Cluster generation.

All those reused data elements can be copied into the SPM

when they are accessed for the first time and can be read from

there later. We can compute the iteration vectors of the FA and

LA to the elements that are reused by the memory access trace.

As shown in Fig. 7, the candidate elements can be combined

into a cluster. The clustering algorithm is performed as follows.

The first step is to select one element in the 25 elements since

they have the highest reusability. The first element is selected.

Second, LTs of each element are calculated

First : LA(2, 2, 0, 0) − FA(0, 2, 10, 0) = (2, 0,−10, 0)

Second : LA(2, 2, 0, 1) − FA(0, 2, 10, 1) = (2, 0,−10, 0)

. . .

25th : LA(2, 2, 4, 4) − FA(0, 2, 14, 4) = (2, 0,−10, 0).

Third, LT-Ds are calculated

Second−First = (0, 0, 0, 0)

Third−First = (0, 0, 0, 0)

. . .

25th − First = (0, 0, 0, 0).

In this case, all the distances of the candidate elements are

zero. Thus, the most beneficial LT-D is determined as zero.

Finally, the unit of 25 elements is obtained as a data cluster.

The clustering procedure is iteratively applied to the remaining

part of the array A. The most beneficial LT-D depends on the

memory access pattern of an application. It is determined by

the amount of energy saving estimated by Definition 10.
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In general, all data clusters cannot be assigned to SPM

since the SPM size is usually small (e.g., 1–16 kB). It is a

capacity constraint in a data placement problem. In addition,

some of selected clusters may not be assigned to the SPM

because the memory address fragments can be scattered in the

SPM address space (i.e., memory fragmentation). To solve this

data cluster allocation problem with the goal of minimizing

the fragmentation and with a capacity constraint, the formal

definition of the problem is presented in the next section.

B. DLDP

A good data layout can place most of the data clusters in the

SPM, which yields the least possible main memory accesses.

In general, the data layout reorganization problem is to obtain

such a good data layout. To obtain a better probability of finding

a good layout, with minimal fragmentation, when clusters are

transferred in and out, we propose to use a layout decision

algorithm that increases the chances of finding a large-enough

free space.

In this paper, the data layout decision problem (DLDP) is to

find a particular ordering for each selected data cluster in the

SPM address space for each loop in an application; the clusters

should fit temporally and spatially into the SPM and deliver

the highest overall energy saving by the method. To solve this

problem, we formulate the problem as a 2-D (time and space)

knapsack problem. A formal statement of the DLDP mapping

to the 2-D knapsack is given in Definition 10, following the

definition of several terms used.

Definition 7—Capacity Constraint: Let the SPM have a

limited capacity C. For a set of assigned data clusters d ∈ Da,∑
d∈Da

Size(d) must not exceed the total capacity of the SPM

C in iteration time T , where T consists a normalized loop-

iteration space as given in Definition 3.

Definition 8—Profit: This is the amount of energy saving

calculated by how many main memory accesses can be reduced

by maximizing SPM utilization, Eprofit(d).
Definition 9—Overhead: Data transfer overhead is repre-

sented by Eoverhead(d), which gives the energy needed for that

data movement at runtime.

Definition 10—Definition of the DLDP:

1) Objective function: Find a good (suboptimal) layout

of assigned set of data clusters Da which maxi-

mizes the energy saving: Esaving =
∑

d∈Da
(Eprofit(d) −

Eoverhead(d)).
2) Subject to: the capacity constraint in Definition 7.

The objective function of this problem is to minimize total

energy consumption while maximizing the profit. The energy

formulation used in the objective function is described in more

detail in [35].

The 1-D (space) knapsack problem for memory object move-

ment into SPM is formulated in [1]. It is a special case of

DLDP in which there is only a static time; the formulation

has no consideration of the time dimension. Since the problem

is NP-complete and is a special case of DLDP, DLDP is also

NP-complete. We can search for a good-enough solution by

Fig. 8. Instance of DLDP to which the reduce and split operators are applied.

using a best-first search with a heuristic. In the next section,

we describe our approach to solve the DLDP.

C. DLDP Solver

Our approach exploits a divide and conquer principle to

effectively seek a solution to maximize the objective function

in Definition 10. Our algorithm for solving the DLDP has two

steps. Section VI-C-1 gives the algorithm of the divide step.

Section VI-C-2 presents a best first search method for each

problem instance, as a conquer step.

1) Divide Step: This procedure employs two basic opera-

tions: reduce, which simplifies a problem instance, and split,

which decomposes a problem instance into smaller independent

problem instances. An example of the two operations is shown

in Fig. 8.

Fig. 8 shows an instance of DLDP that has seven clus-

ters d1, . . . , d7 that need to be allocated to an SPM of

size 10 (x-axis). Results are shown for ten time units T =
{1, 2, 3, . . . , 10} (y-axis).

The reduce operator performs two kinds of simplification.

The first kind removes from the problem instance any clusters

d whose size exceeds the capacity available in its LT (d). For

example, in the instance of Fig. 8(a), block d2 has size 11 at

time T = 1, 2, 3, yet the SPM capacity is only 10. Therefore,

the reduce operator removes d2 from the instance, which results

in the instance shown in Fig. 8(b).

The second kind of simplification removes unnecessary times

from the instance. In the instance of Fig. 8(b), at times 1, 5, 6,

7, and 10, the total size does not exceed the capacity. Since the

constraints at these five times are satisfied in all assignments

of the clusters, these times can be removed from the instance;

thereby, the reduce operator can also remove d5, resulting in the

instance shown in Fig. 8(c).

There is a second method by which the reduce operator

removes times from an instance. It is often the case that two

adjacent times have the same block. If the two times have the
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Fig. 9. Procedure of the divide step with simplification.

same capacity, then either time can be removed. In the instance

of Fig. 8(c), times 2 and 3 impose the same size constraint as

do times 8 and 9. Thus, times 3 and 9 can be removed from the

instance, resulting in the instance of Fig. 8(d).

The split operator decomposes a problem instance into sub-

problems that can be solved independently. A split can be

performed between any two adjacent times, t and t′, such that

clusters(t) ∩ clusters(t′) == φ. In the instance of Fig. 8(d), a

split can be made in between times 4 and 8, resulting in two

subproblems: one comprising times 2 and 4 and clusters d1, d3,

and d4; and a second comprising time 8 and clusters d6 and d7.

In Fig. 9, let Size(clusters(t)) be the total required size at

time t—that is
∑

d∈clusters(t) size(d), where clusters(t) repre-

sents assigned data clusters at the time t. In addition, let next(t)
be the next time t + 1. The main procedure (Simplify()) uses

the reduce and split operations for DLDP instance P as shown

in Fig. 9.

2) Conquer Step With the k-Way Best First Search: In the

previous section, the split procedure divides a problem instance

(P ) of DLDP to smaller problem instances (p1, p2, . . . , pl).
Each p ∈ P is an objective of the k-way best first search [36] in

the conquer step. The k-way best-first search is used to search

for good-enough clusters ordering in SPM space. Instead of

searching the whole set of orderings of clusters (which contains

D! orderings), the algorithm selects the k-best clusters in a

sorted manner. Selection of the value of k should be done based

on time-complexity and solution-optimality requirements.

The search algorithm builds a search tree and stores at each

node the maximum energy gain and the minimum energy gain

on the objective function for the DLDP instance.

Definition 11—Metric for Searching:

EMAX = max
d′∈children(d)

(currentMAX + child(d, d′))

EMIN = min
d′∈children(d)

(currentMIN + child(d, d′))

where child(d, d′) is the profit of the cluster assigned in moving

from node d to node d′, and children(d) is the set of nodes that

are children of d.

The search scheme repeatedly performs the following:

1) Select an unprocessed cluster; 2) process the cluster and

then create its k-best number of children; and 3) propagate

new max and min profits by Definition 11 through the tree,

and use these profits to select the k clusters. It performs this

sequence of three stages until the search tree contains no

more unprocessed clusters. Notice that whenever a cluster is

observed, its k children are immediately created, producing a

search tree. Thus, the search tree’s new leaves are always the

children blocks which have the k-highest profit. Let us now

consider the three major steps in more detail.

The first step finds the next node to process. The k-way best-

first search selects leaf clusters by descending the search tree,

starting at the root and taking the children with the k-highest

profits at unobserved clusters. Our implementation orders the

children from left to right so that their profits are nondecreasing

with a priority queue.

The second step processes and expands the node. For each

of these unobserved nodes, the maximum and minimum energy

gain values on its objective function are obtained, and k-best

children nodes are chosen to branch on. The k nodes are created

and then processed and expanded in the same way. At each step,

the set of nodes contributing to the currentMAX is stored to a

solution set.

The third step propagates the new energy gain and prunes

some nodes. Starting at nodes just created and working up the

tree to the root, the values of the maximum energy gain and the

minimum energy gain are updated for each node. As this stage

assigns and reassigns energy gain, it checks to see if any node

has one child whose maximum energy gain does not exceed

the minimum energy gain of the other child. In such a case, the

reused block of maximum can be no better than that of the block

of minimum, so the cluster of maximum and all its descendants

are removed from the tree.

This search procedure produces a placement of clusters for

an input. By iterating these compiler procedures, data layout

scenarios for the representative input sets are obtained.

VII. CLUSTER MANAGEMENT SCHEME IN OS

This section introduces some new components at the OS

level, which are capable of automatically managing the content

of the SPM. The goal is to make the approach absolutely

transparent, from the developer’s point of view.

A. Data Layout Adaptation

To invoke the runtime adaptation procedure, we provide a

high-level function Remap() which executes the procedure to

determine an adapted layout corresponding to the current input

at runtime. To increase efficiency of our system, the runtime

SPM manager starts in a segment of the SPM.

Our management scheme periodically checks the informa-

tion in DART and the memory access traces to optimize the cur-

rent data layout based on the current input data. This adaptation
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Fig. 10. Runtime data layout adapting procedure.

procedure does not come for free. The cost of our system in-

cludes data transfer latency during layout reorganizing and trace

comparison latency for a data layout scenario selection. Both

costs can be balanced by adjusting the frequency of Remap()

calls. Thus, the costs are amortized over multiple computation

iterations. The compiler should make sure that this cost does

not outweigh any energy or performance gain by either adapting

infrequently or making it adjustable at runtime. The adaptation

period is determined by the compiler as follows.

Step 1) In a given loop hierarchy, the iteration step of the

outer most loop is the initial period of the adaptation

procedure.

Step 2) With the given period, energy gain/overhead is mea-

sured.

Step 3) To find the best period, binary search is used. One

way is to increase the period by two times the current

value. The other way is to divide that by a factor of

two. Thus, each step gets closer to the best solution.

Step 4) Iterate Step 2–3 for finding the best period until no

closer solution exists.

As will be shown in Section VIII-D, the procedure of data

layout adaptation incurs negligible overhead in practice.

The runtime SPM manager integrated as part of the OS

requires some preparatory steps. To make trace handling more

manageable, the access frequencies of each trace are accumu-

lated in the region of WML. This accumulated trace is used in

the comparison procedure as shown in Fig. 10.

By comparing the traces with records of DART, the runtime

SPM manager can predict what part of data would be frequently

used in the current input data. Fig. 10 shows the pseudocode of

how to select the data layout.

After the decision of the layout scenario to move a set of

clusters, the TransferCopy() function is internally invoked. This

function contains a set of rules that, according to the data

that are requested to be moved, selects the appropriate action

to be taken during DMA transfer. In the function, the call of

TransferCopy() leads to the transfers as described hereinafter.

Fig. 11. Address translation.

B. DMA for Preloading Clusters

The layouts (including dynamically allocated clusters) have

to be loaded by the SPM manager. Those clusters should be

placed into the SPM at runtime. For that, we use a DMA engine

to minimize any latency due to the movement.

The use of a DMA engine requires a coordinated hardware/

software effort: The software must decide whether to use

the DMA module for any given transfer or send commands

to do the transfer. To that end, the hardware generates

signals (interrupt) when data transfer is completed. With the

signals, the software can synchronize while working in other

tasks.

The DMA is controlled by the OS. To implement this, we

propose the utilization of a tailored data transfer function. De-

pending on the selected layout, the function decides, at runtime,

how to execute the data transfer: using a DMA resource, giving

a high priority to the transfer, or not.

The DMA routines are used to specify the memory transfers

between the SPM and the main memory (TransferCopy() shown

in Fig. 10). A DMA job is initialized using DMAjob(). Its first

two arguments (width and length) specify the shape of the clus-

ter transfer. Subsequent arguments contain information on the

address and stride. This information is needed by the transfer

engine to generate the addresses for the burst/copy operations.

The source/destination arguments indicate the direction of the

data transfer. If the CheckDMAstat() function is called, the

processor will be stalled until a DMA transfer completion.

Otherwise, the processor continues its execution in parallel with

the DMA.

C. Address Translation at Runtime

The decision whether to put an object into the SPM and

where it should be located is moved from the application to

the runtime system in OS. Therefore, the actual address of a

memory object may change at runtime. An additional address

translation buffer is used (as shown in Fig. 11) to dynamically

translate a memory access to the desired address decided by our

runtime system. This address translator is implemented by a set

of address relocation registers. These registers are built with

high-speed logic to make the address translation efficient. Each

access to memory must go through the address translator. Only

the OS can change a memory map using privileged instructions

that load or modify the relocation registers.

For correct SPM addressing, each entry field of the translator

records the address region of each cluster. The runtime SPM
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manager updates the entry field when Remap() is called. The

difference between main memory and SPM address of a cluster

is called the relocation offset. On an access, the comparator

checks if the memory access belongs to a cluster region in

the buffer, and applies address translation if there is a match.

The input address of the address translation buffer is added

to the corresponding relocation offset to generate the data

address on the SPM. However, the final address is only valid

if the corresponding data have been transferred to the SPM by

the DMA. The buffer has a valid bit field that indicates if the

data transfer to the SPM has completed. The bit is triggered by

a signal on DMA completion.

VIII. EXPERIMENTS

We conducted several tests to assess the functionality and

performance of our proposed approach. We explore how much

our runtime adaptation procedure influences the energy con-

sumption while minimizing the overhead. Next, we test the

effect of the adaptation period on energy-delay efficiency. We

chose to base our analysis on benchmark traces taken from real-

world data processing algorithms, like transformations, filters,

etc., most of which are derived from MediaBench [37]. The

goal of our experiments is to compare our runtime adaptation

approach with alternative software/hardware approaches and

to estimate the ability of these approaches to exploit data

reusability of the data accesses for a number of multimedia

applications.

A. Experimental Setup

We created a tool set that implements our proposed tech-

nique. We used a Pentium 4 workstation for profiling each task.

The SimpleScalar simulator-based [38] chip multi-processors

(CMP) simulator (with four processing elements) was used for

obtaining the number of misses for the cache. The SimpleScalar

simulator was augmented and modified to provide several CMP

features [39]. An external main memory with 18-cycle latency

and the local SRAM (scratch-pad) with one-cycle latency were

simulated in the default configuration. In our experiments, we

used a relatively small off-chip memory and did not account for

the energy dissipation in the off-chip buses due to limitations of

the used energy model [40], [41]. We used CACTI [40], [41]

for energy estimation of both the cache and SPM at 90-nm

technology. The SPM is implemented at the same technology

as the cache, but we remove the tag memory array, tag column

multiplexers, tag sense amplifiers, and tag output drivers in

CACTI that are not needed for the SPM. The other hardware

components such as DART are estimated by WATTCH [42].

The simulator [39] is integrated with WATTCH. To generate

the main memory energy parameter, a detailed model of a

mobile SDRAM, from Micron Technologies [43], was selected

in our experiments. We chose Micron’s mobile SDRAM as it

represents one of industry’s best low-power SDRAMs and is

widely used in media devices.

The experimental input is a set of codes obtained from

MediaBench [37] with various sizes (7.2–504 kB) of input

data. A brief description of the applications and their input

TABLE I
PROGRAM CODES AND INPUTS

data sets is given in Table I. For each benchmark, we selected

two input data sets exhibiting significantly different charac-

teristics. For the MPEG2, we chose video of CIF and QCIF

resolutions, with a fast and relatively slow moving scenes

(fast.m2v and slow.m2v), and low and high change in back-

ground scenery (low.YUV and high.YUV). For the H263, our

input data include slow/short and relatively long moving scenes

(small.263 and large.263). For JPEG and Susan, we selected

images with different sizes and different content (corners.pgm,

color.pgm, snap.jpg, and small.jpg). The images include sub-

stantial amount of color and background detail or black and

white images with and without sharp boundaries. For MP3, our

input data set includes a simple voice of a man and sound of

a crowd of people laughing (voice.pcm and crowd.pcm). The

benchmarks were compiled using gcc with optimizations turned

on (−O2). The experiments are performed with 2k, 4k, and

8k SPM sizes and with the same size of the cache (1–8 way

set-associative).

B. Comparison With an Existing Method

This section presents the results obtained by comparing

our method for dynamic behavior of multimedia applications

against one of the best existing methods. For comparison, since

there exist no other automatic compiler methods to handle

dynamic behavior of multimedia application for SPM, we use

the most general existing compiler-directed SPM allocation

method for regular/irregular memory access patterns from [44].

The existing method represents one of the state-of-the-art.

Fig. 12 compares the energy consumption of multimedia

applications using our approach versus the existing approach

which is the baseline with all SPM sizes. With the comparison,

the SPM is managed only by compile-time decision. With our

approach, the SPM is managed by the combination of com-

pile time and runtime decision. The figure shows an average

reduction of 28.8% in energy consumption using our method.

This result demonstrates that our approach has the potential

to significantly improve energy consumption beyond today’s

state-of the-art. The energy reduction with our approach is

because memory accesses in a dynamically behaved loop are

not easily amenable to optimization by the existing approach.

In general, energy improvements from allocation by runtime

decision to SPM are proportional to the percentage of data
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Fig. 12. Energy consumption with the proposed approach against one existing
SPM management technique [44].

accesses made to dynamically behaved loop execution. Our

scheme will not benefit greatly from applications with a small

portion of accesses going to data consumed by the dynamic

execution. In our studies, applications are almost dominated by

dynamically accessed data, and more than half of data accesses

are made to dynamic execution flows. Some applications may

have very high percentages of dynamically executed accesses

but cannot be easily placed as a whole data cluster due to

allocation pressure from limited SPM sizes. This is the case in

2k SPM.

Fig. 12 also shows the effect of increasing SPM size in

energy consumption from our approach. The average energy

saving from our method varies from 14.4% to 51.3%, when the

SPM size is varied from 2k to 8k. In our studies, our approach

is always better than the comparison. It is not a surprising

result since multimedia applications have lots of dynamic

memory accesses. It is also important to note that increasing

SPM size sometimes gives a relatively small additional benefit

on average. The reason is that a small fraction of data clusters

are frequently reused in some cases. Such a case is also

seen for caches. A very large cache does not always lead

to great performance improvement than a moderate size of

cache [45].

This experiment implicitly shows relative memory accesses

to dynamically accessed data going to main memory after

applying our approach. Sometimes, main memory to SPM

copying codes (usually DMA call) increase the number of main

memory accesses, but it is reduced much more by the improved

locality afforded by SPM. Thus, the average reduction across

benchmarks is a significant 36% reduction in main memory

accesses from our method. In our observation, the proposed

approach was able to make a decision that placed many im-

portant data clusters into SPM with minimizing transfers. This

was sometimes correlated with a small increase in transfers for

less important data, which were evicted to make space for the

more frequently accessed data. That explains the high reduction

in main memory accesses for many benchmarks.

C. Comparison With Caches

This section compares the energy efficiency of software/

hardware steered data reorganization approach versus alterna-

tive architectures using a hardware cache controller with the

least recently used (LRU) replacement policy. It is important to

note that our method is useful regardless of this comparison

because there are a great number of embedded architectures

which have SPM and main memory but have no data cache.

These architectures are popular because SPMs are simple to

design and verify, and provide better real-time guarantees for

global and stack data, power consumption, and cost [1], [8],

[14] compared to caches. Nevertheless, it is interesting to

see how our method compares against processors containing

caches.

We examined the effect of using the SPM on the reduction

of traffic to main memory as well as on the energy spent in the

memory subsystem. The sizes of the SPM and the cache have

been selected to be the closest values that are powers of two.

The cache line size has been selected to be the minimal allowed

by the simulator [38] (8 bytes, which is two data elements in

all benchmarks). In this way, we compare solely how well is

the data reusability of the data exploited without considering

spatial locality issues.

Fig. 13 shows the impact of our approach on energy reduc-

tion over varying cache associativity and size. Energy consump-

tion of each cache configuration is the base line (100%). Each

bar represents energy consumption of SPM of the same size.

The energy savings when using SPM in comparison with cache

arise from two sources. It can be seen that the SPM consumes

less energy than a cache of the same size per access (about

two times less for direct mapped cache [40]). It is possible to

make better data placement decisions for the SPM compared to

that made according to the LRU policy of the cache controller,

which results in less accesses to the main memory.

In the case of direct mapped cache, the SPM data placement

is always better for all studied cases. In other cases, 8-way set

associative is the best. However, the energy consumption per

access is much higher than SPM. As a result, the scratch pad-

based memory subsystem consumes 11%–49% less energy than

the system with a cache of the same size. From the results, we

see that the hardware-controlled cache-only approach performs

significantly worse than ours on average, and we found that

very small caches perform very poorly for applications. The

additional hardware components such as DART and address

translator do not significantly affect the proposed approach

since they are simple buffer memories. Therefore, the energy

consumption of the proposed approach is always lower than all

cache configurations. These results show that, on the average

(i.e., across all benchmarks and cache configurations we ex-

perimented with), using SPM instead of a conventional cache

decreases the total data access energy by 36.2% (assuming that

the cache and SPM have the same capacity).

We also observe that increasing the associativity from 1

to 4 improves cache performance, whereas going from 4 to

8 in general degrades the performance of the conventional

cache version. The reason is that the increment of hardware

complexity (overhead) factor we used is not amortized by a

significant drop in the number of conflict misses as a result

of increased associativity. These results clearly show that, even

under the higher associativities, the SPM version significantly

outperforms the cache version. Benini et al. [46] also reported

the similar results.
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Fig. 13. Energy savings with various sizes of cache.

From this experiment, we see that our SPM management

method not only shares similarities with a cache memory design

but also has some important differences. Like caches, our

method gives preference to more frequently accessed variables

by allocating them more space in SPM. One advantage of our

technique is that it avoids copying infrequently used data to fast

memory; a cache copies in infrequent data when accessed, pos-

sibly evicting frequent data. One downside of our technique is

that ours is based on profiling results. Thus, the accuracy of the

preference to more frequently accessed variables depends on

the coverage of the possible memory access histories generated

through profiling. To increase the accuracy, we did profiling

multiple times with representative input data sets to cover all

possible (realistic) memory access histories. By doing this, our

approach can take 98% accuracy in our studies.

D. Effect of Energy-Delay Cost With Varying

Adaptation Period

As earlier mentioned, in the layout adaptation procedure,

the proposed approach yields two kinds of latency, which

are data transfer latency (occurred in layout reorganization)

and comparison latency (occurred in tracking of the dynamic

behavior). These latencies are proportional to the decision of

invocation period of Remap() call. Both costs can be balanced

by adjusting frequency of Remap() call. Thus, the cost of layout

Fig. 14. Effect on the various adaptation periods.

adaptation should be analyzed to prove the system’s efficacy.

The algorithm described in Section VII-A is used to find a

practically good period.

We performed experiments with the two inputs, as shown in

Table I, over the direct mapped cache. The average is shown

in Fig. 14. The results show the impact of various invocation

periods on the energy-delay ratio. We plot the normalized

energy-delay ratio on the y-axis (the value one is the best) and

the invocation frequency on the x-axis. The frequency repre-

sents a rate over the outer most loop-iteration length; the rate

is the outer most loop-iteration length over invocation period

length.
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As shown in Fig. 14, the longest (0.1) period may miss a lot

of dynamic access behavior. As a result, it misses reuse advan-

tages in part of the clusters; thus, the energy saving is slightly

decreased. The shortest (6.4) period has a large comparison

overhead and frequent DMA calls with partial data clusters.

Thus, it has a larger delay and energy overhead. We observe

from these results that eliminating the extra off-chip memory

accesses (due to the frequent DMA call with small array slices)

helps to improve energy-delay ratio in all benchmarks. Fig. 14

shows that the periods generated by our approach range from

0.83 to 0.91 on the y-axis (energy-delay ratio). In particular, the

largest energy savings are obtained for the MPEG-D and Susan

codes, with generated periods of 0.91 and 0.9 (energy-delay

ratio), respectively. As expected, our approach generates good-

enough savings with small delay. The results clearly emphasize

the importance of selecting an appropriate invocation period.

IX. CONCLUSION

In this paper, we presented a method to improve the ef-

ficiency of SPM management in the memory hierarchy by

tracking dynamic memory access behavior due to input data

patterns to execute irregular memory access and/or different

control flow in applications. By tracking memory usage, our

proposed approach allows more frequently accessed data to

remain in SPM longer and therefore have a larger chance of

reuse. The reuse block choices are made with the help of a

DART, which records dynamic reference analysis in a location-

sensitive manner. We also introduced the concept of a WML,

which allows the DART to feasibly characterize the accessed

memory locations.

This paper complements conventional SPM management

methods to enable tracking of the runtime behavior of media

applications. The proposed method can be used with existing

optimizations for memory subsystem as well as locality opti-

mizations or transformations. In addition, if more input data are

used, our approach can provide even more benefits.

For future work, we will examine more sophisticated mem-

ory access pattern scenarios, analyze more sophisticated selec-

tion algorithms, and improve our adaptive SPM management

scheme. In general, we believe that the schemes presented in

this paper can be extended into a more general framework for

intelligent runtime management of the SPM memory hierarchy.
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