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Abstract. We prove a computational soundness theorem for the sym-
bolic analysis of cryptographic protocols which extends an analogous
theorem of Abadi and Rogaway (J. of Cryptology 15(2):103–127, 2002)
to a scenario where the adversary gets to see the encryption of a sequence
of adaptively chosen symbolic expressions. The extension of the theorem
of Abadi and Rogaway to such an adaptive scenario is nontrivial, and
raises issues related to the classic problem of selective decommitment,
which do not appear in the original formulation of the theorem.

Although the theorem of Abadi and Rogaway applies only to pas-
sive adversaries, our extension to adaptive attacks makes it substantially
stronger, and powerful enough to analyze the security of cryptographic
protocols of practical interest. We exemplify the use of our soundness
theorem in the analysis of group key distribution protocols like those
that arise in multicast and broadcast applications. Specifically, we pro-
vide cryptographic definitions of security for multicast key distribution
protocols both in the symbolic as well as the computational framework
and use our theorem to prove soundness of the symbolic definition.

Keywords: Symbolic encryption, adaptive adversaries, soundness the-
orem, formal methods for security protocols.

1 Introduction

Traditionally, security protocols have been designed and analyzed using two com-
peting approaches: the symbolic one, and the computational one. The symbolic
approach is characterized by an abstract (adversarial) execution model, where
cryptographic operations and objects are treated as an abstract data type, not
only when used by honest protocol participants, but also when used by malicious
players attacking the system. This allows for simple proofs of security, typically
based on syntactic properties of the messages exchanged during the execution of
the protocol. The computational approach is based on a more detailed execution
model that accounts for a much wider class of adversaries attacking the sys-
tem, namely arbitrary probabilistic polynomial time bounded adversaries that

� Research supported in part by NSF grants 0313241 and 0430595. Any opinions,
findings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

J. Kilian (Ed.): TCC 2005, LNCS 3378, pp. 169–187, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



170 D. Micciancio and S. Panjwani

do not necessarily respect the cryptographic abstractions used by the protocol.
The stronger security guarantees offered by the computational approach come
at a substantial price in complexity: proofs of security in this framework typi-
cally involve subtle probabilistic arguments, complicated running time analysis,
and the ubiquitous use of computational assumptions, like the intractability of
factoring large integers.

Recently, there has been a lot of interest in combining the two approaches,
with the generic goal of coming up with abstract models that allow computa-
tionally sound symbolic security analysis, i.e., a method to translate symbolic
security proofs into precise computational statements about the security of con-
crete protocol executions in the computational framework.

Our work follows a line of research initiated by Abadi and Rogaway in [2],
where a simple language of encrypted expressions is defined, together with a
computationally sound symbolic semantics. Technically, [2] introduces a map-
ping from expressions to patterns that characterize the information leaked by the
expressions when evaluated using a computationally secure encryption scheme.
The structure of the soundness result of [2] is rather simple: an adversary at-
tacking the system produces a symbolic expression and subsequently receives the
computational evaluation of either the expression or its pattern. The soundness
theorem of [2] states that if the expression satisfy certain syntactic restrictions
(namely, it does not contain encryption cycles) then the adversary cannot effi-
ciently determine if it received the evaluation of the expression or its pattern.

The result of [2] is an interesting first step demonstrating the feasibility of
computationally sound symbolic security analysis. The class of encrypted ex-
pressions considered in [2] is fairly general, and allows to describe the messages
transmitted in many practical protocols. However, the result itself is too simple
for direct application to security analysis of protocols. Intuitively, the scenario
considered in [2] involves a party sending a single message to another party over
an authenticated channel, and a passive adversary monitoring the channel. In
practice, security protocols involve the exchange of several messages, among two
or more parties, and in different directions. Moreover, messages may depend on
the computational interpretation of previously chosen messages and/or external
inputs that are not known at the beginning of the protocol.

Our Results. In this paper, we consider an extension of [2] wherein the ad-
versary produces a sequence of expressions, which are subsequently evaluated
according to a common key assignment. If all the expressions in the sequence
were specified at the same time, then this wouldn’t be any different from the
original soundness theorem of [2], as all the expressions in the sequence could be
concatenated into a single expression. What makes our extension interesting and
nontrivial is the fact that the sequence is adversarially specified in an adaptive
way, so that each expression in the sequence may depend on the computational
evaluation of the previous ones. The ability to specify the expressions adaptively
allows the adversary to generate probability distributions that do not correspond
to any fixed sequence of expressions, and immediately raises issues related to the
classic problem of selective decommitment [9] and adaptive corruption [5]. (See
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Section 3 for details.) In order to avoid these problems we introduce some syn-
tactical restrictions on the expressions, beside the acyclicity condition already
considered by [2]. Informally, the syntactic restrictions postulate that each key
is used in two stages: a key distribution stage during which the key can be used
as a message, and a key deployment stage during which the key is used to en-
crypt other messages. Using these syntactic restrictions, we are able to bypass
the selective decommitment problems, and prove a soundness result for symbolic
encryption with adaptively chosen expressions.

Our soundness result allows to analyze a generic class of protocols that in-
volve communication between multiple parties over an authenticated network.1

The execution model for these protocols involves an adversary that observes all
messages sent over the network and can adaptively change the execution flow
of the protocol (e.g., through interaction with the execution environment), but
is not allowed to modify or delete any of the messages sent or received by the
legitimate parties.

Our soundness result for adaptively chosen encrypted expressions substan-
tially increases the expressive power of the soundness theorem of [2], making it
powerful enough to analyze practical cryptographic protocols. We exemplify the
use of our soundness theorem in the analysis of group key distribution protocols,
like those used in multicast applications [23, 6, 22]. In the multicast key distri-
bution problem, a data source wants to broadcast information to a dynamically
changing group of parties, in such a way that at any given point in time only
current group members can decipher the transmitted messages. The problem is
typically solved by establishing a secret key, known to all and only the “current”
group members. Each time a user joins or leaves the group, a group controller
broadcasts some messages which are used by the new set of members to update
the group key.

We give formal definitions of security for multicast key distribution proto-
cols, in both the computational framework and the symbolic framework, and
show that if a protocol is secure in the symbolic setting, then the (implemen-
tation of the) protocol is also secure in the computational setting (provided the
messages used in the protocol conform with the syntactic restrictions of our
soundness theorem). Most multicast key distribution protocols we are aware of
(e.g., [23, 6]) satisfy these restrictions and can thus be proven secure (against
powerful computational adversaries) using the symbolic definition. To the best
of our knowledge, formal definitions for security of these protocols have not been
discussed in the literature prior to this work nor has there been any attempt to
relate security analysis of these protocols in the symbolic framework (as is done
implicitly in many papers) to computational security guarantees on their im-
plementations. Our soundness theorem is an important building block in that
direction.

1 Authenticated channels are a widely used model in cryptographic protocol design,
and can be implemented on top of non-authenticated networks using standard tech-
niques, like message authentication codes and digital signatures.
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Related Work. Several improvements and refinements have followed the origi-
nal work of Abadi and Rogaway [2], but they are mostly orthogonal to our results.
In [19], Micciancio and Warinschi prove a converse of the soundness theorem,
showing that if a sufficiently strong encryption scheme is used, then a compu-
tationally bounded adversary can recover all and only the information captured
by the symbolic patterns. The result is further refined by Gligor and Horvitz
[10], who give an exact characterization of the computational requirements on
the encryption scheme under which the completeness theorem of [19] holds true.

An extension of the soundness result of [2] to multiple message/player set-
tings, is presented by Abadi and Jürjens in [1]. This result considers an arbitrary
set of parties exchanging several messages over an authenticated network over
time. However, the protocol specification language used in [1] only allows to de-
scribe protocols in which all messages transmitted during the protocol execution
can be uniquely determined before the execution of the protocol begins. In other
words, the result of [1] does not account for scenarios where the messages are
chosen adaptively, and from a technical point of view, it is much closer to [2]
than to our work.

The papers [20, 14] present two different extensions of the framework of [2]
that allow for active attacks, i.e., adversaries that have a total control of the
communication network and may drop, alter, or inject messages in the network.
Both works are based on encryption schemes satisfying the stronger notion of
security against chosen ciphertext attack (CCA [21, 8]). Our results hold for any
encryption scheme secure against chosen plaintext attack (CPA [11]). Moreover,
the results of [20, 14] have a qualitatively different and somehow more complex
formulation than the results presented in this paper. In [20] Micciancio and
Warinschi consider trace properties2 of both symbolic and computational execu-
tions of cryptographic protocols and relate the two models by proving that (if a
CCA secure encryption scheme is used) any protocol that satisfies a trace prop-
erty in all its symbolic executions, also satisfies the corresponding trace property
in computational executions with overwhelming probability. We remark that the
results in [20] are incomparable with those presented in this paper as trace prop-
erties do not allow to readily model indistinguishability properties as considered
in this paper. Laud’s result [14] is quite different from the other soundness re-
sults considered so far. Rather than considering a computational and a symbolic
execution models, and relating the two, [14] only considers a computational exe-
cution model and a set of symbolic program transformations, and proves that the
symbolic transformations are computationally sound in the sense that they pre-
serve computational secrecy properties when both the original and transformed
program are executed in the computational model.

Other approaches to the problem of computationally sound symbolic analysis
are exemplified by [4, 3, 15, 13]. In [4, 3] Backes, Pfitzmann and Waidner present

2 These are a class of properties, extensively used in the formal verification of dis-
tributed protocols, which can be represented as the allowable sequences of internal
states (or external actions) performed by the honest protocol participants.
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an implementation of Dolev-Yao style terms achieving a simulation based se-
curity definition within a general computational framework. It is important to
notice that while [4, 3] allow to formulate and prove computational security prop-
erties of protocols built using their library, their results do not apply to protocols
that make direct use of encryption schemes satisfying standard security notions,
like CPA or CCA indistinguishability. We remark that [3] relies on syntactic
restrictions on the use of symmetric encryption similar to those used in this pa-
per. Our work shows that the difficulties encountered in [3] in trying to lift these
restrictions are not specific to their universally composable security framework,
but arise already in much simpler scenarios as those considered in this paper.
In [15] Lincoln, Mitchell, Mitchell and Scedrov present a probabilistic process
calculus that can be used to analyze computational security properties of cryp-
tographic protocols. All these works are both substantially more complex and
powerful than (though, technically incomparable to) the line of work initiated
by [2], as they allow to describe arbitrary probabilistic polynomial time compu-
tations. The work of Impagliazzo and Kapron [13] approaches the problem of
computationally sound symbolic analysis from still another side. They present
an axiomatic system with limited forms of recursion that can be used to carry
out proofs of the type used in the analysis of basic cryptographic constructions
without the explicit use of nested quantifiers and asymptotic notation. An inter-
esting question is whether the soundness theorem proved in this paper can be
proved within the logic of [13].

Organization. After giving some basic definitions in Section 2, we present our
soundness theorem in Section 3. The proof of the soundness theorem is given in
Section 5, after describing an application to multicast key distribution in Sec-
tion 4. Section 6 concludes with a discussion of future work and open problems.

2 Preliminaries

Let Keys and Const be two sets of symbols called keys and constants respec-
tively. We can assume that both sets are finite, and have size bounded by a
polynomial in the security parameter. For a given value of the security param-
eter, let Keys := {K1, · · · , Kn} be the set of keys. We define a language, Exp,
of expressions, called basic expressions, that is generated using the following
syntactic rules:

M → (M, M)|{M}K1 |{M}K2 | · · · |{M}Kn

M → Each symbol in Keys ∪Const

The rule M → (M, M) symbolizes a pairing operation while M → {M}Ki

for any Ki symbolizes encryption under Ki. Sequences of expressions can be
converted into a single expression using the paring operation in the obvious
way, e.g., the sequence (M [1], . . . , M [q]) can be represented by the expression
(M [1], (M [2], . . . , (M [q − 1], M [q]) . . .)). For any sequence (M [1], . . . , M [q]) and
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indexes 1 ≤ i ≤ j ≤ q, we use notation M [i..j] to denote the subsequence
(M [i], M [i + 1], . . . , M [j]).

For any M ∈ Exp, a key that occurs as a plaintext in some sub-expression
of M is referred to as a message key while one that is used to encrypt some sub-
expression is called an encryption key. We denote the set of all message (resp.
encryption) keys of M by MsgKeys(M) (resp. EncKeys(M)). We say that a
key Ki encrypts Kj (or Kj is encrypted under Ki) in M , denoted Ki →M Kj ,
if M contains a sub-expression {M ′}Ki

such that Kj ∈ MsgKeys(M ′). As in
[2], we call a key recoverable in M if it is in MsgKeys(M) and occurs in it
either unencrypted or encrypted under keys that are, in turn, recoverable in it.
The set of all recoverable keys of M is denoted RecKeys(M). The set of all
unrecoverable encryption keys in M , i.e. the set EncKeys(M)\RecKeys(M), is
denoted UEncKeys(M). As an example, if M = ((K1, {K2}K1), {K4}K3), then
EncKeys(M) = {K1, K3};MsgKeys(M) = {K1, K2, K4};RecKeys(M) =
{K1, K2} and UEncKeys(M) = {K3}.
Formal Semantics. The information that can be extracted from an expression
using known keys and the decryption algorithm can be represented by a syn-
tactic object, called pattern. We use a definition of patterns recently proposed
in [16] which characterizes encryption schemes satisfying the standard notion
of semantic security under chosen plaintext attack [11]. (These patterns are
slightly different from those used in [2, 19, 10], which correspond to encryption
schemes satisfying a variant of semantic security. A definition similar to ours was
also used in [12].) We define the structure of an expression M ∈ Exp, denoted
struct(M), as the expression obtained by substituting all message keys in M
by a symbol K ′, all encryption keys in it by K and all constants by a symbol
c, where K, K ′ /∈ Keys and c /∈ Const are all fresh symbols. For example,
struct({0}K2 , {(K2, {K1}K2)}K3) = ({c}K , {(K ′, {K ′}K)}K).

Definition 1. For any M ∈ Exp, the pattern of M given a set of keys T ,
denoted pat(M, T ), is an expression defined recursively as follows:

– If M ∈ Keys ∪Const, then pat(M, T ) = M .
– If M = (M1, M2), then pat(M, T ) = (pat(M1, T ), pat(M2, T )).
– If M = {M ′}Ki and Ki ∈ T , then pat(M, T ) = {pat(M ′, T )}Ki .
– If M = {M ′}Ki and Ki /∈ T , then pat(M, T ) = {struct(M ′)}Ki .

The pattern of M , denoted pattern(M), is defined as pat(M,RecKeys(M)).

This definition of patterns captures the intuitive idea that given a bitstring
interpretation of any expression encrypted under say Ki, an adversary can learn
everything about the expression if he knows Ki, but can learn nothing more
than its structure if he does not know Ki.

Just as in [2], we say that two expressions M1, M2 ∈ Exp are equivalent,
denoted M1 � M2, if their patterns, when viewed as strings of symbols, are
identical up to renaming of their keys. That is, M1 and M2 are equivalent if
there exists an injective map, φ, from the keys in M1 to the keys in M2 such that
when every key Ki (other than a structure key) in pattern(M1) is substituted
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with φ(Ki), the resulting expression is identical to pattern(M2). For example,
if we consider the expressions

M1 = ((K1, {0}K2), {K2, {K1}K2}K3)
M2 = ((K1, {1}K6), {K5, {K6}K1}K2)
M3 = ((K1, {K5}K2), {K5, {K6}K1}K2)

we have M1 �M2 but M1 ��M3.

Computational Semantics. We define computational semantics of all expres-
sions, including all basic expressions and their respective patterns, using a single
procedure. (We denote the set of all such expressions by Exp′ below). For any
symmetric encryption scheme, Π = {K, E ,D}, let Km(η) denote the random
variable corresponding to a vector of m keys sampled independently using the
key generation algorithm K, giving it security parameter η as input. The pro-
cedure for defining computational semantics of expressions takes the security
parameter η as input and works in two steps.

1. We generate a key vector τ from the distribution Kn+2(η) (where n =
|Keys|) and map all keys in Keys ∪ {K ′, K} to elements in this vector.
Specifically, for all i ∈ {1, · · · , n}, τ [i] corresponds to Ki, τ [n + 1] to K ′ and
τ [n + 2] to K.

2. In the second step, we look at expressions in Exp′ and for each expression
M we define the bitstring interpretation of M given τ as a random variable,
[[M ]]Π,τ , in the following recursive manner:
– If M ∈ Const ∪ {c}, then [[M ]]Π,τ is the bitstring representation of M ,

using some standard encoding.
– If M = Ki ∈ Keys, then [[M ]]Π,τ≡ τ [i]. If M = K ′, then [[M ]]Π,τ≡

τ [n + 1].
– If M = (M1, M2) for some M1, M2 ∈ Exp′, then [[M ]]Π,τ is the random

variable corresponding to ([[M1]]Π,τ , [[M2]]Π,τ ) (we use some standard
efficiently computable and invertible encoding for the pairing operation).

– If M = {M ′}Ki for some M ′ ∈ Exp′ and Ki ∈ Keys, then [[M ]]Π,τ is
the random variable corresponding to Eτ [i]([[M ′]]Π,τ ). If M = {M ′}K for
some M ′ ∈ Exp′, then [[M ]]Π,τ is the random variable corresponding to
Eτ [n+2]([[M ′]]Π,τ ).

Security of Encryption. We consider encryption schemes that are semantically
secure against chosen plaintext attacks. For any symmetric encryption scheme
Π = {K, E ,D}, a left-right oracle, LRΠ,b for Π is a program that first generates
a key k using the key generating algorithm K and then for each query, (m0, m1)
(m0 and m1 being bitstrings of equal length), given to it replies with the cipher-
text Ek(mb). Π is called ind-cpa secure if for any probabilistic polynomial-time
distinguisher D the following quantity

Advind−cpa
Π (D, η) = |Pr[DLRΠ,0(η)(η) = 1]− Pr[DLRΠ,1(η)(η) = 1]|

is a negligible function of η, i.e., it is less than 1/ηc for any c > 0 and sufficiently
large η.
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3 Soundness

We consider a setting in which an adversary gets to see the computational eval-
uation of a sequence of (adaptively chosen) expressions. We want to model the
fact that the adversary does not learn anything about the expressions, beside
whatever information can be deduced from their patterns.

We formalize the problem using a cryptographic experiment as follows. Fix
a symmetric encryption scheme Π = {K, E ,D}. Let A be any probabilistic
polynomial-time machine that issues queries consisting of pairs3 of basic ex-
pressions, the ith query of A being denoted by (M0[i], M1[i]). The experiment
runs in one of two worlds, decided based on a bit b sampled uniformly at ran-
dom in the beginning. After selecting b, the adversary is executed (given some
security parameter as input) and the queries of the adversary are answered using
an oracle, OΠ,b, parameterized by the encryption scheme Π and the bit b. This
oracle first selects a random key vector τ using the key generation algorithm of
Π, K, and for each query (M0[j], M1[j]), replies with a sample from the distri-
bution [[Mb[j]]]Π,τ , i.e. the bitstring interpretation of the bth expression in the
query (with respect to Π and τ). A concise description of the oracle and the
experiment appears below.

Oracle OΠ,b(η)
Let τ

$← Kn+2(η)
For the jth query received, (M0[j], M1[j]), re-
ply with a sample from [[Mb[j]]]Π,τ

Exptadpt
Π (A)

Let b
$← {0, 1}. Fix η.

Run AOΠ,b(η)(η)

The goal of the adversary is to guess the value of b with probability better
than random, and under the constraint that the two sequences of expressions
queried to the oracle have the same pattern. More specifically, let q denote
the number of queries made by A in any execution of the experiment, and let
Mb = Mb[1..q] be the sequence of expressions encrypted by the oracle OΠ,b(η).
(Without loss of generality, q can be assumed to be a fixed polynomial in the
security parameter, e.g., a polynomial upper bound on the running time of A.)
We require that M0 �M1. For technical reasons, in order to prove our soundness
theorem we need to introduce some additional restrictions on the syntax of M0
and M1.

Definition 2. A sequence of basic expressions, Mb[1], Mb[2], · · · , Mb[q], is called
legal if it satisfies the following two properties:

1. The expressions M0 and M1 contain no encryption cycles.4

2. No unrecoverable encryption key in Mb[1..i] occurs as a message key in Mb[j]
for any j > i. That is, for all i < j ≤ q

3 As standard in cryptography, we use distinguishability of pairs of messages to model
leakage of partial information about those messages.

4 An expression M is said to contain an encryption cycle if there exist keys
Ki1 , Ki2 , · · ·Kim such that Ki1 →M Ki2 →M · · ·Kim−1 →M Kim →M Ki1 . Ex-
amples of such expressions are {K1}K1 and ({K1}K2 , {(K3, {K2}K3)}K1).
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UEncKeys(Mb[1..i]) ∩MsgKeys(Mb[j]) = ∅
For example, if Mb[1] = {Ki}Kj then it is illegal to have Mb[2] = {Kj}Kl

or
even Mb[2] = Kj.

The first requirement is standard in cryptography, and was already used in
[2]. The second requirement is also very natural and it informally states that
each key is used in two stages: a key distribution stage where the key is used as
a message, and a subsequent deployment stage where the key is used to encrypt
other messages and keys. This is the way keys are used in many cryptographic
protocols, e.g., the key distribution protocols of [23, 6]. Intuitively, the reason
we introduce this requirement is that if a key is first used to encrypt messages,
and then revealed, the symbolic patterns of previously received messages may
change and, consequently, our proof breaks down. At a more technical level,
in the absence of the second requirement, an adversary can play the following
game: first issue the expressions {M1}K1 , . . . , {Ml}Kl

, and then, after getting the
corresponding ciphertexts, ask for a randomly chosen set of keys {ki1 , . . . , kim}
(i1, · · · , im ∈ {1, · · · , l}) by issuing the expression (Ki1 , . . . , Kim

). The question
of whether security of the ciphertexts (other than those that can be decrypted
using the revealed keys) is ensured in this game is the classic problem of selective
decryption for which no answer is known to date [9].

An adversary in Exptadpt
Π is called legal if the queries issued by it are such that

both M0[1], · · · , M0[q] and M1[1], · · · , M1[q] are legal sequences and M0 � M1.
The advantage of A in the experiment, denoted Advadpt

Π (A, η), is defined as the
following quantity:

Advadpt
Π (A, η) = |P[AOΠ,0(η)(η) = 1]−P[AOΠ,1(η)(η) = 1]|

where the probabilities are taken based on the randomness used by A and OΠ,b.
We now state our soundness theorem:

Theorem 1. If Π is an ind-cpa secure encryption scheme, then for any legal
adversary A, Advadpt

Π (A, η) is a negligible function of η.

We provide an overview of the proof of the soundness theorem in Section 5 but
before doing that, we discuss an application to multicast key distribution.

4 Application to Secure Multicast

In this section, we present an example to illustrate how our soundness theorem
can be used in the analysis of real cryptographic protocols. Our example is the
multicast key distribution problem in which a large set of users communicates
using a multicast (or broadcast) channel and at any time some of these users,
called “group members”, share a secret key which is known only to them and not
to the rest of the users. The group members change dynamically and in order to
maintain the secrecy property of the group key over time, a central authority,
called the group center, broadcasts messages to enable the members to update
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the key whenever a new member joins or an old member leaves the group. In
other words, the center “rekeys” the group whenever its composition changes.
The goal is to ensure that at any point in time, the non-members are unable to
compute the group key, even if several of them collude together and share all
their information in an attempt to do so.

This problem arises in many practical scenarios and has been studied ex-
tensively by the cryptography as well as computer networks communities. (See
for example [23, 6, 7, 22, 18].) However, there seems to have been very little at-
tempt towards formulating a sound cryptographic model for the problem and
proving security of any of the proposed solutions using standard cryptographic
techniques. Although some works implicitly use a Dolev-Yao like framework in
arguing for security of multicast key distribution protocols, it is not clear how
such analysis relates to actual security of the protocols. Our soundness theorem
provides a useful tool in relating proofs of security for these protocols in the
formal framework to security proofs in the standard computational framework
used in cryptography.

4.1 Security in the Computational Framework

We model a multicast key distribution protocol as a set of three programs Γ =
{I, C,U} where I is an initialization program, C is the group center’s program
used to compute the rekey messages and U is the program run by the group
members U = {u1, · · · , uN}.

These programs work as follows. I takes the security parameter η as input
and outputs the initial state of the center, sC0 , the initial states of all users
s1
0, s

2
0, · · · , sN

0 and the initial group membership G0 ⊂ U . (Typically, G0 = ∅.)
The center’s program, C, takes as input η, the current state sCt and a command
comt and returns a message mt (the rekey message at time t) and the updated
state of the center sCt+1. Each command comt given to the center is either of the
form add(ui) (which adds a new user to the group) or of the form del(ui) (which
removes an existing member from the group). The users’ program, U , takes as
input η, a user index i (≤ N), the previous state si

t−1 of user ui, and the current
rekey message mt, and outputs a string ki

t and the updated state si
t of ui. For

correctness, we require that at every time instant t ≥ 0, ki
t be identical for every

member ui in the current group Gt. This value is called the group key at time t
and is denoted kt.

Security Definition: The security of multicast key distribution is modelled
using an adversary that controls a subset of corrupted users and adaptively
issues commands to change membership of the group. The adversary’s goal is
to gain information about the group key when none of the corrupted users are
part of the group. Formally, for any protocol Γ = {I, C,U}, we consider the
following experiment, which we denote by Exptgkd

Γ . First, I is used to generate
the initial states of the group center and all users, and the adversary A is given
a set of corrupted users B ⊂ U , together with their initial states {si

0|ui ∈ B}.
The adversary then issues a sequence of t commands com1, · · · , comt and for
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each command comt′ , it is given the corresponding rekey message mt′ , computed
according to program C and the group center’s initial state produced by I. (At
any point in time, the users in B may or may not be in the group). Let k1, · · · , kt

be the group keys at times 1, · · · , t as computed by the honest group members.
Let also T ⊆ {1, · · · , t} be the set of time instants when none of the corrupted
users are in the group, and let k̄T = {ki : i ∈ T} be the corresponding keys. The
security requirement is that the keys in k̄T are pseudorandom. More precisely,
let k̄′T be a set of |T | uniformly and independently chosen keys, and let b be a
random bit. At the end of the experiment, the adversary is given either k̄T or k̄′T
(depending on whether b = 0 or b = 1, respectively) and her goal is to correctly
guess the value of b.5

Let pA(B, b) be the probability that A outputs 1 in Exptgkd
Γ when the cor-

rupted set of users is B (here probabilities are taken based on the random choices
of A, I and C). The advantage function of A in the experiment is defined as:

Advgkd
Γ (A, B, η) = |pA(B, 0)− pA(B, 1)|

Definition 3. A multicast key distribution protocol Γ is secure if for all prob-
abilistic polynomial-time adversaries A and all sets B ⊆ U , Advgkd

Γ (A, B, η) is
a negligible function of η.

We remark that the definition above allows the adversary to change the group
membership in an adaptive way, but does not permit adaptive corruption of the
users, i.e. the set of corrupted users must be chosen before the protocol starts
executing.

4.2 Computationally Sound Security in the Dolev-Yao Model

We now define security of multicast key distribution in the Dolev-Yao frame-
work and for this we consider a special class of key distribution protocols that
encompasses most of the protocols used in practical applications. Let ΓF =
{IF , CF ,UF } denote a multicast key distribution protocol in the Dolev-Yao
framework. The program IF works just as I in the previous definition except
that it initializes the state of every user ui as a fixed symbolic key Ki that is
unique to that user and the state of the center as the set of all the unique keys
K1, K2, · · · , KN , where N is a bound on the number of users.6 The program CF
takes commands of the form add(ui) and del(ui) as before but for each command
comt, returns an expression Mt (denoting the rekey message for time t). The in-
ternal state of CF at time t consists of all unique keys, all rekey messages sent till

5 We remark that this definition can be made stronger by giving to the adversary
either the key kt′ (if b = 0) or a random key k′

t′ (if b = 1) at every time instant t′

for which B ∩ Gt′ = ∅ (instead of giving the set of these keys, k̄t or k̄′
t, at the end

of the experiment as is done above). This strengthening does not affect our result in
any way and we use the above definition only for the sake of simplicity.

6 In practice, the group center can store a compact representation of all these keys
using a pseudorandom function.
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time t and the group composition at time t, Gt. UF takes a user index i as input
and returns a key, Ki

t , that can be obtained by applying the Dolev-Yao rules on
all the rekey messages received till the current time, given the knowledge of the
key Ki. Ki

t should also be such that it is not used as an encryption key in any of
the rekey messages sent by the group center at any time7. Again, for correctness
we require that for all time instants t, Ki

t be identical for each group member
ui at time t. We let M̄t denote the expression (M1, M2, . . . , Mt) and for any set
B ⊆ U , we let KB denote the set of unique keys of all users in the set B ⊆ U .

Definition 4. A multicast key distribution protocol ΓF is secure in the Dolev-
Yao framework if for every sequence of commands, com1, com2, · · · , comt and for
every subset B ⊆ U , the following holds: Let Kt′ and Gt′ be the group key and
group member set at time t′ ≤ t, and let T be the set of all t′ such that B∩Gt′ = ∅.
Then, ((M̄t, KT ), KB) � ((M̄t, K

′
T ), KB), where KT = {Kt′ : t′ ∈ T} and K ′T is

a set of |T | fresh keys.

For any protocol ΓF in the Dolev-Yao framework, the translation of ΓF in
the computational framework with respect to a symmetric encryption scheme
Π, is the protocol ΓΠ

F which behaves identically to ΓF with the difference that
a key assignment τ is generated for the set of all keys ever used in the protocol
execution (using the key generation algorithm for Π) and each symbolic expres-
sions M (a key or a rekey message) used in ΓF is replaced with the bitstring
interpretation of M , [[M ]]Π,τ . Using our soundness theorem, we can now show
the following connection between the above two definitions.

Theorem 2. Let ΓF be a multicast key distribution protocol in the Dolev-Yao
framework with the property that for any sequence of commands com1, · · · , comt,
the sequence of rekey messages, M1, M2, · · · , Mt, returned by the center’s pro-
gram CF is a legal sequence. Let Π be any ind-cpa secure symmetric encryption
scheme. If ΓF is secure in the Dolev-Yao framework (Definition 4), then ΓΠ

F is
secure in the computational framework (Definition 3).

Proof (Sketch): Suppose, towards contradiction, that ΓF satisfies Definition 4,
but ΓΠ

F does not satisfy Definition 3. Let A be a computational adversary and
B ⊂ U a set of initially corrupted users such that Advgkd

Γ Π
F

(A, B, η) is non-
negligible (in η). Given any such choice of A and B, we can build an adversary A′
that uses A as a black-box and has non-negligible advantage in the experiment
Exptadpt

Π defined in our soundness theorem. A′ first queries its oracle on the
unique keys of all users in B and invokes A on input B and the corresponding
keys. For any query comt′ of A, A′ uses the program CF to determine the rekey
message Mt′ and uses its oracle to determine the computational interpretation
of the same (which it then returns to A). Finally, A′ queries its oracle on the pair

7 The reason we introduce this requirement is that if a key is used to encrypt a message,
then the key is no necessarily pseudorandom anymore, as the encryption scheme may
leak partial information about the key.
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(KT , K ′T ) where T = {t′ : B ∩Gt′ = ∅} and K ′T is a set of |T | fresh (symbolic)
keys and the reply is passed on to A. A′ outputs whatever A outputs.

Given that the sequence of rekey messages generated in any run of ΓF is a
legal sequence and the fact that no key in KT is ever used as an encryption
key in any of the messages, it follows that the adversary A′ constructed above
is a legal adversary. It is easy to see that the advantage of A′ in Exptadpt

Π is
exactly the same as that of A in Exptgkd

Γ Π
F

(which means that if the latter is a
non-negligible quantity, so is the former). This leads us to a contradiction of our
soundness theorem.

We remark that many practical group key distribution schemes (e.g., [23])
satisfy the precondition of Theorem 2 (that requires all sequences of rekey mes-
sages generated by the protocol to be legal sequences). Moreover, these protocols
can be easily proved secure in the symbolic framework. It follows that their nat-
ural implementation is also secure in the computational framework.

5 Proof of the Soundness Theorem

This section provides an overview of the proof of our soundness theorem. More
details appear in the full version of the paper [17].

5.1 Defining Orders for Legal Sequences of Expressions

For any acyclic expression M ∈ Exp, the “encrypts” relation defines a partial
order on the keys in M and we consider the restriction of this partial order on just
its unrecoverable encryption keys. Any total order on the set of unrecoverable
encryption keys of M that is consistent with such a partial order is called a good
order for M . For example, in the expression

M := (((K1, {K2}K3), {(K6, {K1}K3)}K2), {K4}K5)

the unrecoverable encryption keys are K2, K3 and K5, and we have K3 →M K2.
This gives us a partial order K3 ≤ K2 on UEncKeys(M) and so the good
orders for M are K3 ≤ K2 ≤ K5, K3 ≤ K5 ≤ K2 and K5 ≤ K3 ≤ K2.

We now re-interpret the definition of legal sequences of expressions given in
Section 3. Recall that for any such sequence, M [1], M [2], · · · , M [q], the expression
M = M [1..q] is acyclic and for any i < j ≤ q, no unrecoverable encryption key
in M [1..i] is a message key in M [j]. The latter condition implies that for any
i ∈ {1, · · · , q− 1} no unrecoverable encryption key in M [1..i] can be recoverable
in M [1..i + 1], and therefore the sets

UEncKeys(M [1 . . . 1]) ⊆ UEncKeys(M [1 . . . 2]) ⊆ · · · ⊆ UEncKeys(M [1..q])

form a monotonically nondecreasing sequences.
This relation enables us to partition the unrecoverable encryption keys of M

into q sets such that the ith set in the partition, say UEnci, contains the keys
that are used as encryption keys in M [i] but in none of M [1], M [2], · · · , M [i−1],
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i.e. UEnci := UEncKeys(M [1..i]) \UEncKeys(M [1..i− 1]). The definition of
legal sequences implies that for any i < j ≤ q, no key from UEncj can encrypt
any key from UEnci in M . Now, using the fact that M is acyclic, we can find a
good order ≤ for every M [1..i] such that for any 1 ≤ i1 < j1 ≤ i, the keys from
UEnci1 “precede” all the keys from UEncj1 in ≤ i.e. for all Ki′ ∈ UEnci1 and
Kj′ ∈ UEncj1 , Ki′ ≤ Kj′ . We select the lexicographically first order among all
orders having this property and denote it by ≤M [1..i]. The order ≤M [1..1] is just
the lexicographically first good order defined on M [1] and for each i < q, the
ordering produced by ≤M [1..i−1] is a prefix of that produced by ≤M [1..i].

As an example, consider the following sequence of expressions:

M [1] = (K1, {K2}K3)
M [2] = {(K6, {K1}K3)}K2

M [3] = {K4}K5

Observe that this sequence is consistent with our definition of legal sequences.
The expressions M [1..2] and M [1..3] are

M [1..2] = ((K1, {K2}K3), {K6, {K1}K3}K2)
M [1..3] = (((K1, {K2}K3), {K6, {K1}K3}K2), {K4}K5)

We have UEncKeys(M [1..1]) = {K3}; UEncKeys(M [1..2]) = {K2, K3}
and UEncKeys(M [1..3]) = {K2, K3, K5} and so UEnc1 = {K3};UEnc2 =
{K2} and UEnc3 = {K5}. The lexicographically first good orders for M [1..2]
and M [1..3] are given by K3 ≤ K2 and K3 ≤ K2 ≤ K5. These relations are
denoted ≤M [1..2] and ≤M [1..3] respectively.

5.2 Defining Hybrid Oracles

The proof of the soundness theorem uses a hybrid technique. We define a set of
2n + 2 hybrid oracles (where n = |Keys|)8 and relate the success probability
of any legal adversary in distinguishing between any neighboring pair of these
oracles to its success probability in distinguishing between the instances of the
oracle OΠ,b (viz. OΠ,0 and OΠ,1) used in experiment Exptadpt

Π . We then use
this relation to show how any legal adversary with a non-negligible advantage
in Exptadpt

Π (i.e. a non-negligible success probability in distinguishing between
OΠ,0 and OΠ,1) can be used to mount a successful attack against the ind-cpa
security of the underlying encryption scheme Π.

We denote the hybrid oracles by O0
Π,0,O1

Π,0, · · · On
Π,0,On

Π,1,On−1
Π,1 , · · · ,O0

Π,1.
The extreme oracles, O0

Π,0 and O0
Π,1, correspond to the instantiations of OΠ,b

with b = 0 and b = 1 respectively. The behavior of oracle O0
Π,0 is close to that of

O1
Π,0, the behavior of O1

Π,0 is close to that of O2
Π,0 and so on up to On

Π,0. Simi-

8 Without loss of generality, the number of key symbols that can potentially be used
by the adversary in generating queries can be assumed to be a fixed polynomial in
the security parameter.
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larly, On
Π,1’s behavior is similar to that of On−1

Π,1 ’s, On−1
Π,1 ’s close to On−2

Π,1 ’s and so
on up to O0

Π,1. For each i ∈ {1, 2, · · · , n}, the oracle Oi
Π,0 is defined as follows:

Oracle Oi
Π,0(η)

1. Let τ
$← Kn+2(η)

2. For the jth query received, (M0[j], M1[j]), do the following:
(a) Compute the order ≤M0[1..j] and let S be the set of those keys in M0[j]

that are among the smallest i keys of ≤M0[1..j].
(b) Let Mnew be the expression obtained by substituting, for all Kl ∈ S, all

sub-expressions in M0[j] of the form {M ′}Kl
with {struct(M ′)}Kl

.
(c) Return [[Mnew]]Π,τ .

The oracles Oi
Π,1 (for i ∈ [n]) are defined analogously with the difference that

in steps 2(a) and 2(b), M0[j] gets replaced by M1[j] and ≤M0[1..j] by ≤M1[1..j].
The following fact about oracles On

Π,0 and On
Π,1 is easy to deduce:

Lemma 1. Whenever the queries received by the oracles come from a legal ad-
versary, the two oracles On

Π,0 and On
Π,1 have identical behavior i.e. for any se-

quence of queries, the distribution of the replies given by one of them is exactly
the same as that of the replies given by the other.

For any i ∈ [n] and b ∈ {0, 1}, we define the advantage of A in distinguishing
between oracles Oi

Π,b and Oi−1
Π,b , Advadpt

Π,i,b, as the following quantity:

Advadpt
Π,i,b(A, η) =

∣∣∣P[AO
i
Π,b(η)(η) = 1]−P[AO

i−1
Π,b (η)(η) = 1]

∣∣∣
The following lemma relates these advantages to the advantage of A in

Exptadpt
Π .

Lemma 2.
∑n

i=1
∑

b∈{0,1}Advadpt
Π,i,b(A, η) ≥ Advadpt

Π (A, η)

5.3 The Reduction

Given any legal adversary A in experiment Exptadpt
Π , we construct a distin-

guisher D attacking the ind-cpa security of Π such that the advantage of D in
performing an ind-cpa attack on Π is related (by a polynomial multiplicative
factor) to A’s advantage in Exptadpt

Π . This essentially implies that any successful
attack in Exptadpt

Π can be effectively translated into an attack on the underlying
encryption scheme itself.

Our construction of D will be such that the advantage of D in Exptind−cpa
Π

will be 1/poly times the expected advantage of A in distinguishing between oracles
Oi

Π,b and Oi−1
Π,b , where i and b are treated as random variables sampled uniformly

from {1, · · · , n} and {0, 1}. More precisely, the construction will be such that

Advind−cpa
Π (D, η) =

1
n
E

i
$←[n];b $←{0,1}

(
Advadpt

Π,i,b(A, η)
)

=
1
n

n∑
i=1

∑
b∈{0,1}

(
1
n
· 1
2
·Advadpt

Π,i,b(A, η)
)



184 D. Micciancio and S. Panjwani

Now, applying Lemma 2 we get

Advind−cpa
Π (D, η) ≥ 1

2n2 Advadpt
Π,i,b(A, η)

Thus, a non-negligible advantage of A in experiment Exptadpt
Π would imply

a non-negligible advantage of D in Exptind−cpa
Π and the theorem would follow

immediately from this.

The Construction. The distinguisher D works as follows: it first selects a ran-
dom number i′ in the range {1, · · · , n} and a random bit b′ ∈ {0, 1} and then
tries to simulate the behavior of the oracle pair {Oi′

Π,b′ ,Oi′−1
Π,b′ } using its own

oracle LRΠ,b. D runs A inside it and answers A’s queries using its simulated
setup. To carry out the simulation, it guesses a value i randomly from {1, · · · , n}
and hopes that each query, (M0[j], M1[j]), issued by A would be such that the
i′th key in the order ≤Mb′ [1..j] is Ki (or else the number of unrecoverable en-
cryption keys in Mb′ [1..j] is smaller than i′ and Ki is neither a recoverable
key nor an unrecoverable encryption key in Mb′ [1..j]). If D fails in its guess, it
gives up and outputs 0. Else, it treats the key used by LRΠ,b as correspond-
ing to Ki and answers A’s queries in such a way that the behavior of LRΠ,b

with b = 0 (resp. b = 1) corresponds to the simulation of the oracle Oi′−1
Π,b′

(resp. Oi′
Π,b′).

Adversary DLRΠ,b(η)(η)

1. Let i′ $← {1, 2, · · · , n} and b′ $← {0, 1}.
2. Guess a value i

$← {1, 2, · · · , n}.
3. Generate a key vector τ as follows: (τ [1], . . . , τ [i − 1], τ [i + 1], . . . , τ [n + 2])

$← Kn+1(η) (the ith entry in τ is empty and the rest are random keys).
4. Run A(η).
5. When A issues the jth query (M0[j], M1[j]), do the following:

(a) Compute the order ≤Mb′ [1..j]. Check if either Ki is the i′th key in
≤Mb′ [1..j]; OR |UEncKeys(Mb′ [1..j])| < i′ and Ki /∈ UEncKeys(Mb′

[1..j]) ∪RecKeys(Mb′ [1..j])
(b) If so, do the following:

i. Let S be the set of those keys in Mb′ [j] that are among the smallest
(i′ − 1) keys of ≤Mb′ [1..j].

ii. Let Mnew be the expression obtained by substituting, for all Kl ∈ S,
all sub-expressions in Mb′ [j] of the form {M ′}Kl

with
{struct(M ′)}Kl

.
iii. Return SampleLRΠ,b(Mnew, Ki, τ) to A.

(c) Else, output 0 and halt.
6. Output whatever A outputs.

The crux of the code lies in the subroutine Sample (invoked at the end of
step 5(b)) which is given below
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Procedure SampleLRΠ,b(M, Ki, τ)

1. If M is a constant or c, return the corresponding bitstring.
2. If M = Kl (for some l ∈ [n]), return τ [l]. If M = K ′, return τ [n + 1].
3. If M = (M1, M2), return (Sample(M1, Ki, τ), Sample(M2, Ki, τ)).
4. If M = {M ′}Kl

and l �= i, return Eτ [l](Sample(M ′, Ki, τ)). If M = {M ′}K ,
return Eτ [n+2](Sample(M ′, Ki, τ)).

5. If M={M ′}Kl
and l= i, return LRΠ,b(Sample(M ′, Kj ,τ), [[struct(M ′)]]Π,τ).

The proofs of the two lemmas and the analysis of the distinguisher can be
found in the full version of the paper[17].

6 Future Work

We have proved a generalization of the soundness theorem of [2] in which the
adversary can issue a sequence of adaptively chosen expressions, rather than
a single expression, and demonstrated the usefulness of the theorem in an ap-
plication to secure multicast key distribution. For simplicity, in this paper we
considered a language of expressions that make use of only symmetric encryp-
tion operations, but most of the techniques can be easily extended to other
cryptographic primitives whose security can be expressed as an indistinguisha-
bility property. Examples of such primitives are public key encryption, in which
two different keys are used to encrypt and decrypt messages, and pseudoran-
dom number generators, that can be used to expand a key into a sequence of
multiple seemingly independent keys. Some of these extensions (e.g., the use of
pseudorandom generators) are especially interesting in the context of multicast
security protocols as the protocol of [6] (which was shown to be optimal in the
Dolev-Yao model in [18]) makes use of these operations.

The proof of our soundness theorem introduces a syntactic restriction (besides
the acyclicity condition already used in [2]) about the order in which each key
is used as a message or as an encryption key. An interesting question is whether
either restriction can be lifted, possibly using a special encryption scheme with
additional security properties (a good candidate might be non-committing en-
cryption introduced by Canetti, Feige, Goldreich and Naor in [5]). Although
most practical protocols satisfy the syntactic restrictions in our soundness the-
orem, removing the ordering restriction would allow to model attack scenarios
with adaptive corruption of users, where, when the adversary wants to corrupt
user i (holding a secret key ki as its internal state) it can simply issue the ex-
pression Ki to learn the value of the key. Currently this is allowed only if Ki

has not already been used to encrypt other messages. Designing protocols that
are secure against adaptive corruption raises issues similar to the selective de-
commitment problem discussed in Section 3, and is not easily addressed using
the techniques developed in this paper. We leave the investigation of multicast
key distribution protocols secure under adaptive corruption of the users to fu-
ture work.
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