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Abstract—The algorithmic challenge of maximizing informa-
tion diffusion through word-of-mouth processes in social net-
works has been heavily studied in the past decade. While
there has been immense progress and an impressive arsenal of
techniques has been developed, the algorithmic frameworks make
idealized assumptions regarding access to the network that can
often result in poor performance of state-of-the-art techniques.

In this paper we introduce a new framework which we call
Adaptive Seeding. The framework is a two-stage stochastic opti-
mization model designed to leverage the potential that typically
lies in neighboring nodes of arbitrary samples of social networks.
Our main result is an algorithm which provides a constant factor
approximation to the optimal adaptive policy for any influence
function in the Triggering model.

I. INTRODUCTION

For several decades there have been numerous studies on
the way in which information spreads from one individual to
another in a society, and an interest in understanding how
to instigate such processes of information diffusion. With
the exploding adoption of social networking services in the
past decade, information diffusion through social networks
is becoming easier to analyze and predict, as well as to
engineer. A problem which received considerable attention in
this context is that of influence maximization. As elegantly
formulated by Kempe, Kleinberg, and Tardos [1], influence
maximization is the algorithmic challenge of selecting a small
set of individuals that can serve as early adopters of a new
technology and encourage its adoption through word-of-mouth
in a social network. As a result of extensive follow-up study
to their seminal work, there is now an impressive arsenal
of algorithmic and data-mining techniques for maximizing
influence in social networks (see e.g. [2]–[10]).

Despite the immense progress made in the past decade,
influence maximization algorithms are often designed under
idealized assumptions regarding accessibility to the network.
Specifically, the guarantees hold for cases where the algorithm
can select any node in the network, when in practice it often
only has access to a small sample. In marketing applications
for example, merchants often apply influence maximization
techniques on users who visit their online store, or have
engaged in other ways (e.g. subscribe to a mailing list, follow
the brand, or installed an application). Similarly, in many

other cases, whether due to scale, privacy, or profile-based
targeting, influence maximization algorithms are applied on
relatively small samples of the network. This naturally raises
a concern regarding the performance of current state-of-the-
art influence maximization techniques. Since social networks
are often characterized by heavy-tailed degree distributions,
observing high degree nodes is a rare event. Therefore, if we
think of degree as a proxy for influence, for almost all samples
– arbitrary subsets of users in the network – application of
influence maximization techniques will be ineffective.

It therefore seems compelling to explore alternative ap-
proaches that can somehow overcome this barrier. Consider
momentarily the possibility of applying influence maximiza-
tion algorithms on neighbors of the sample. Since high degree
nodes have (by definition) many neighbors, one can hope
such nodes will be connected to the sample. Assuming social
networks indeed posses this property, this would imply that
influence maximization techniques applied on neighbors of
the sample could yield substantially improved results. Indeed,
as we now briefly discuss, analytical and empirical evidence
support this intuition.

The friendship paradox and beyond. First discovered by
Feld [11], the friendship paradox states that in any network the
expected degree of a node is bounded from above by the ex-
pected degree of a neighbor. Feld shows this by characterizing
the expected degree of a neighbor in terms of the expectation
and variance of the degree distribution in the network. Apply-
ing this characterization, it is easy to show (see full version
for details) that for a power-law graph with parameter α > 1
(i.e. where the likelihood of observing a node of degree d is
proportional to d−α), the ratio between the expected degree
of a node and the expected degree of a neighbor is O(n1−

1
α ).

Dramatic gaps between degrees of nodes and their friends
were observed empirically in various experiments in online
social networks [12]. In recent work, Lattanzi and Singer show
asymptotic gaps between the total coverage (total number of
disjoint neighbors) of random samples of nodes of logarithmic
size and the average coverage of their neighbors in generative
models of networks with power law degree distributions [13].

A. Adaptive Seeding

The above discussion implies that while an overwhelmingly
large majority of nodes will be ineffective for the purposes of
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Fig. 1. An illustration of the Adaptive Seeding model. All nodes in X
are accessible in the first stage and in the second stage each node in N (X)
becomes accessible with some independent probability when its neighbor in
X is seeded.

spreading information, there is a great deal of potential in
seeding their neighbors. A natural alternative to having the
entire budget invested in the sample is an adaptive two-stage
seeding process: in the first stage some budget is used to select
nodes from the sample to invite their neighbors to join the
accessible set, and in the second stage, after some neighbors
make themselves accessible to be seeded, the remaining budget
is used to select a set of influencers from the (hopefully larger)
accessible set. Intuitively, a good policy is one which makes
an initial investment that is likely to bring influential nodes to
become accessible.

A model for Adaptive Seeding. To formalize the notion
of adaptive seeding we propose the following model. In the
Adaptive Seeding model there is a network G = (V,E),
seeding budget k ∈ N, and an influence function f : 2V → R+

that quantifies the expected number of nodes in the network
that are influenced when a subset is seeded. In addition, there is
an arbitrary subset X ⊆ V which represents the sample which
is initially accessible to be seeded, and for each neighbor i of
the sample there is a parameter pi ∈ [0, 1] which represents
the probability that i becomes accessible (willing to become
an influencer in exchange for a unit of the budget) if one
of its neighbors in X is seeded1. An adaptive seeding policy
optimizes a two-stage process. In the first stage the policy
selects nodes in X into the seeding set S. In the second
stage, after S is selected, each node i which is a neighbor
of S becomes accessible to be seeded independently with
probability pi. The goal is to select a subset S ⊆ X of size
t ≤ k during the first stage s.t. the expected maximal influence
achievable in the second stage with the remaining budget k−t
is maximal, where the expectation is taken over all possible
realizations of neighbors of S.

1If i ∈ X∩N (X), where N (X) is the set of neighbors of X , then trivially
pi = 1. We therefore assume without loss of generality that X∩N (X) = ∅.

Key points about the model. Before we continue discussing
approaches for solving the problem, we highlight several key
points. First, when X = V we have the influence maxi-
mization problem as formulated by Kempe, Kleinberg, and
Tardos and thus our Adaptive Seeding model can be seen as a
generalization of their classic influence maximization model.
Second, we stress that the process through which nodes in
the second stage are recruited is not an influence process. The
influence function models a word-of-mouth process that occurs
without incentives – no seeding budget is further allocated.
The two stage seeding process models the likelihood that a
neighbor of X is willing to become an influencer if given a
unit of the budget. This can be seen as a bayesian utility model
with no externalities. Lastly, while it is tempting to consider
policies of more than two stages, empirical evidence leads
us to believe that the benefit in influence potential beyond
two stages is marginal, and furthermore we conjecture that
optimizing a multi-stage process will be computationally hard.

B. Techniques for Stochastic Optimization

We now turn to discussing stochastic optimization ap-
proaches for solving the adaptive seeding problem. As one
may expect, the difficulty of the problem largely depends on
the influence function we aim to optimize.

Sample Average Approximation. A common technique in
stochastic optimization is the Sample Average Approximation
(SAA) method [14]. The general idea is to sample scenarios
that may realize in the second stage, and find a solution which
is optimal with respect to the sampled data. In our setting,
a combinatorial analogue of the SAA approach can be used
when the influence function is simple (e.g. when the function
is additive). In such cases we can sample instances from
the product distribution over the set of neighbrors and aim
to optimize a particular objective function defined over the
sampled data. In some special cases, the objective function
is submodular, and the celebrated algorithm by Nemhauser et
al. [15] can be used to guarantee a (1−1/e−ε) approximation
for any ε > 0. Unfortunately however, the objective function is
submodular only for very special cases of influence functions.
For the well-studied models such as Indepdendant Cascade
and Linear Threshold, the objective function is not submodu-
lar and this technique becomes ineffective. We give a detailed
description and further discuss this approach in Section IV-A.

Non adaptive policies. In cases where the objective is
complex and adaptive policies cannot be easily found, an
alternative approach is to design non adaptive policies instead.
A non adaptive policy commits on the k nodes it will select
in the first and second stage before the scenarios are realized.
Non adaptive policies are weaker than adaptive ones since any
adaptive policy can simulate a non adaptive policy by ignoring
the information on the realizations of the scenario. While such
policies are often strictly weaker, it is usually much easier to



design non adaptive policies than adaptive ones. When the
ratio between the optimal adaptive policy and non adaptive
one (i.e. the adaptivity gap) is small, using a non adaptive
policy may serve as a reasonable approximation to the optimal
adaptive policy. In our case, at a first glance it seems as if non
adaptive policies are useless when it comes to problems like
the ones we study here: In Section IV-C we use a simple
example to show that no non adaptive policy can have a finite
approximate ratio, even for very simple influence functions.

Randomized-and-relaxed policies. Although non adaptive
policies seem hopeless, their relative simplicity is appealing.
We therefore explore an alternative concept which we call
randomized-and-relaxed non adaptive policies: A randomized-
and-relaxed non adaptive policy commits to a (possibly ran-
domized) solution for the second stage, a priori to the real-
ization of the scenarios. An optimal randomized-and-relaxed
non adaptive strategy selects nodes for the first and second
stage s.t. at most k nodes are used in expectation. Note that
by respecting the budget only in expectation, randomized-and-
relaxed non adaptive policies compensate for their a priori
commitment, and in particular cannot be simulated through
adaptive policies. These concepts are therefore somewhat or-
thogonal, and their additional strength makes randomized-and-
relaxed non adaptive policies useful for solving our problem.

C. The main result: adaptive policies for the Triggering model

As discussed above the algorithmic challenge arises in
attempting to optimize influence functions such as the ones
in the Independent Cascade and the Linear Threshold models.
These models, as well as others, can be generalized to a
broader class known as the Triggering model. In the following
section we discuss these models in further depth.

Our main result in this paper shows that any influence
function in the Triggering model can be adaptively seeded.
That is, we show that there is an algorithm which finds an
adaptive policy that is a constant factor approximation to the
optimal adaptive policy, for any influence function in this class.
The main idea is to design an algorithm which approximates
the optimal randomized-and-relaxed non adaptive policy and
show that its solution is actually a good approximation to the
optimal adaptive policy.

At a high level, we first construct a concave function and
formulate our problem as optimizing the concave function
under a mix of integral and fractional linear constraints and
show that solutions to this objective are an upper bound
on adaptive policies. We then present an algorithm which
mimics a gradient-ascent process, taking steps in the direction
of the densest contributions to the concave objective. Then,
somewhat surprisingly, we conclude by showing that our
algorithm in fact obtains a constant factor approximation to
the optimal adaptive policy.

D. Paper Organization

Following an overview of related work we provide pre-
liminaries in the following section. In Section III we present

the main details of the approximation algorithm for adaptive
seeding in the Triggering model. We discuss further details
in Section IV. Proofs and assisting lemmas omitted from this
version can be found in the full version of the paper.

E. Related Work

The problem of identifying influential users in a social
network was first posed by Domingos and Richardson in [16],
[17] and has been extensively studied since. In their seminal
work, Kempe, Kleinberg and Tardos formulate the influence
maximization problem which elegantly models the algorithmic
challenge of selecting individuals who will maximize adoption
through a word-of-mouth effect in a social network [1].
The Adaptive Seeding model we present can be seen as
a generalization of their model, and our result is for the
influence models formalized in their work. Since their work,
there has been ongoing research on characterizing various
influence models for the purpose of designing approximation
algorithms [4], [5], [9], [18], [19].

Asadpour et al. [20] and Golovin and Krause [21] study
a multi stage variant of the influence maximization problem
where seeds can be chosen sequentially. These models are
substantially different from Adaptive Seeding, as the entire
set of possible seeds is available at every stage and the
optimization is only over their influence. Hartline et al. [22]
and Haghpanah et al. [23] consider revenue maximization of
digital goods where the individual’s valuation of an item is a
function of its adoption by her neighbors. Adaptive Seeding
is similar in that seeding neighbors during the second stage
depends on having their neighbors seeded as well.

The adaptive seeding model is a stochastic optimization
framework (see [24] for a survey). Immorlica et al. [25] study
two-stage with recourse minimization problems for which the
feasibility constraints are stochastic, and the costs for resources
varies between stages. Similar problems and various other
techniques were studied by Ravi and Sinha [26], Gupta et
al. [27], Srinivasan [28], and Shmoys and Swamy [29], [30].
Our problem is different as it is a maximization problem, and
has different structure of constraints between the two stages.
Another class of stochastic optimization problems studied
are those of maximizing an objective under some budget
constraint. One example is the stochastic knapsack problem
which was first introduced by Kleinberg et al. [31]. Dean et
al. [32] studied it in an adaptive scenario, and define the notion
of Adaptivity Gap. They construct a non-adaptive policy that
achieves a constant fraction of the value of the best adaptive
policy. Similar ideas were used by Gupta et al. [33] for the
stochastic orienteering problem. For our problem a standard
non-adaptive policy does not provide good guarantees. We are
not aware of any literature that studies problems where the
decision in the first stage constrain the possible actions on the
second stage in addition to the constraint of the joint budget.

II. PRELIMINARIES

Adaptive Seeding is a two stage process where in the first
stage we are given an initial set of nodes X ⊆ V which can be



seeded, and in the second stage each neighbor of the seeded
nodes appears with some independent probability pj and can
be seeded. For any set of neighbors R we use pR to denote
its likelihood to be realized, i.e. pR =

∏
i∈R pi

∏
i/∈R(1− pi).

Given a budget k ∈ N, the goal of an adaptive policy is to
select a subset S ⊆ X of size t ≤ k in the first stage s.t.
the influence function f : 2V → R+ is maximized under the
remaining budget, in expectation over all possible realizations
of neighbors of S. To ease notation down the road, we assume
that the influence function is only affected by neighbors of X ,
i.e. ∀S ⊆ X, f(S) = 0. Minor adjustments to our proofs and
algorithms easily extend to the general case. Using N (Q) to
denote the set of neighbors of Q ⊆ X , for any S ⊆ X let
SR = argmax{f(T ) : T ⊆ R ∩ N (S), |S| + |T | ≤ k}. The
optimal adaptive seeding solution is:

S∗ := argmaxS⊆X
{∑

R

pR · f(SR)
}
.

Influence functions. The main result in this paper focuses
on maximizing influence as defined by the Triggering model
which is a generalization of the well-studied Independent
Cascade and Linear Threshold models formulated in [1].
In all cases, for a given set S, the value of the influence
function f(S) is the expected number of nodes influenced by
a stochastic process in the network when all nodes in S are
influenced initially. In Independent Cascade every edge in the
graph is associated with some probability, and an influenced
node has a single chance to influence its neighbor with the
probability associated with that edge. In the Linear Threshold
model every edge is associated with some weight in [0, 1],
every node has a threshold chosen uniformly at random in
[0, 1] and a node is influenced if the total edge weights of
its influenced neighbors exceeds its threshold. The Triggering
model is a generalization of these models where every node
v chooses independently a random triggering set according
to some distribution over subsets of its neighbors, and is
influenced if any of the nodes in its triggering set is influenced.
We assume that we are only given an efficient way to sample
realizations of the model and do not assume we have access
to a value oracle which given a set T returns its expected
influence. In Section IV-A we describe results for other models
such as the Voter model [19], [34].

Approximation. The Max-k-Cover problem can easily be
reduced to influence maximzation in the Triggering model,
and thus following the result by Feige [35], in this model it is
NP-hard to approximate the optimal adaptive seeding policy
within a factor better than 1−1/e assuming P 6= NP . We will
therefore aim for polynomial-time approximation algorithms
and allow for randomization. We say that an algorithm is an α-
approximation if w.h.p. the ratio between the optimal adaptive
policy and the policy returned by the algorithm is at most α.

Randomized-and-relaxed policies. The main technique we

use in this paper involves designing an algorithm which
approximates a randomized-and-relaxed non adaptive version
of the above problem. It is important to note that our results
do not directly use randomized-and-relaxed non adaptive so-
lutions, but rather this concept guides our approach. We say
that a policy is non adaptive if already in the first stage, before
the nodes in the second stage realize, the policy commits on
both S ⊆ X and Q ⊆ N (S) it will select. In Section IV-C we
show that the ratio between the expected value of the optimal
adaptive policy and the expected value of the optimal non
adaptive policy is unbounded. We therefore use randomized-
and-relaxed non adaptive policies which only commit to the
probability they will select each node that appears in the
second stage. Such a policy is a set S ⊆ X and a weight qi for
each i ∈ N (S) that describes the probability the algorithm will
select i if it realizes. The policy’s guarantee is to select at most
k nodes in expectation. The optimal randomized-and-relaxed
non adaptive policy is the following optimization problem:

max
∑
T⊆N (S)

(∏
i∈T piqi

∏
i/∈T (1− piqi)

)
f(T ) (1)

s.t. S ⊆ X (2)
|S|+

∑
i∈N (S) piqi ≤ k (3)

For brevity we will use F to denote solutions (S, q) that
respect (2) and (3) above with the extra property that q has non
zero values only on nodes in N (S). We call the ratio between
an optimal adaptive solution and an optimal randomized-and-
relaxed non adaptive one the adaptivity gap of the problem.

III. ADAPTIVE POLICIES FOR THE TRIGGERING MODEL

In this section we describe our technique for finding an
approximate adaptive policy. An overview of our approach
can be summarized as follows.

1) We begin by constructing a concave function which ap-
proximates the objective of the randomized-and-relaxed
non adaptive problem in the Triggering model. In gen-
eral, maximizing influence in the Triggering model
requires solving an NP-hard problem over exponentially
many graphs. The construction converts the objective to
a concave relaxation of a succinct coverage problem.

2) We next show that in our problem, the gap between the
optimal adaptive solution and the optimal randomized-
and-relaxed non adaptive solution is only a constant fac-
tor. This implies we can use such policies to approximate
an adaptive policy, at the cost of having solutions that
respect the budget in expectation.

3) Despite having a concave relaxation, producing good
approximations is challenging due to the integral and
fractional constraints of the optimization problem. Using
the above construction, we use a hill-climbing algo-
rithm which approximates the objective under these
constraints. At each iteration the algorithm takes a step
in the direction of the densest marginal contribution to
the concave objective. The main challenge is in de-
signing subroutines that find these densest contributions



with good guarantees in terms of value and time of
convergence.

4) In the final step we argue that in our problem any solu-
tion to the concave relaxation can in fact be converted
to an adaptive policy, with only a constant loss in the
approximation guarantee.

A. Polynomial concave representation of influence

We now describe a construction of a concave function which
approximates the objective of the randomized-and-relaxed non
adaptive problem in the Triggering model. We first construct
a concave function which approximates the objective though
may require exponential representation. We then reduce its
representation via sampling to be polynomial sized while
maintaining a good approximation with high probability.

A relaxation of the randomized-and-relaxed objective. We
begin by interpreting influence in the Triggering model as
follows. First notice that each realization of the triggering set
can be described as a graph, where there is an edge from u to
v if and only if u is in the triggering set of v. Next, consider a
family of graphs G, where the distribution over graphs is given
by the probability this graph is the result of a realization of
the Triggering model. Given a realized graph Gi, the number
of nodes a set influences is the number of nodes it can reach
in Gi. Therefore the influence of a set is the number of nodes
it can influence in expectation over all realizations in G. Using
fG(T ) to denote the number of nodes reachable from T ⊆ V
in a graph G we can write the influence function as:

f(T ) =
∑
Gi∈G

p(Gi)fGi(T )

To optimize the objective in our problem, we will be in-
terested in fractional relaxations. That is, for every realization
Gi we wish to evaluate the number of nodes in Gi covered in
expectation when selecting nodes with some probability. Let
Ci(u) be the set of all nodes that have a path to u in Gi. We
will use the multilinear relaxation of the coverage function in
Gi defined for every z ∈ [0, 1]n as:

f̂Gi(z) =
∑
T⊆V

∏
j∈T

zj
∏
j /∈T

(1− zj)fGi(T )

=
∑
u∈V

1−
∏

j∈Ci(u)

(1− zj)

Let F (q) =
∑
Gi∈G p(Gi)f̂Gi(p ◦ q), where p ◦ q is the vector

which is the element-wise multiplication of p and q. The
objective of equation (1) can be stated as maxF F (q). We
use the notation F (q|S) to mean the function that gets the
value of F (q) when (S, q) ∈ F and 0 otherwise.

Although f̂Gi(·) is not concave, it is well known that
it can be approximated by a concave function: For any
z ∈ [0, 1]n we have that LGi(z) ≥ fGi(z) ≥ (1− 1/e)LGi(z)

where LGi(z) =
∑
u∈V min

{
1,
∑
j∈Ci(u) zj

}
. Since concave

functions have many desirable properties, we will work with

the concave relaxation of F , L(q) =
∑
Gi
p(Gi)LGi(p ◦ q).

Our objective is to optimize L(·|·) over the set F where:

L(q|S) =
∑
Gi

p(Gi)
∑
u∈V

min
{

1,
∑

j∈Ci(u)∩N (S)

pjqj

}
.

Since there are potentially exponentially many elements in G
we will construct a sampled mean of L and show it provides
a good approximation of L. Let L̂(z) =

∑
Gi
p(Gi)LGi(z).

Let G1, . . . , GN be N i.i.d samples of G, and let
L̂N (z) = 1

N

∑N
i=1 LGi(z). To show L(·) can be approximated

efficiently we would like to show that for any z ∈ [0, 1]n the
absolute difference between the values of L̂(z) and L̂N (z) is
small with high probability.

Lemma 3.1. For all β, ε > 0, all n ∈ N and all
N ≥ O(1)n

2

ε2 [n ln(n
2

ε ) + ln( 1
β )],

Pr{ sup
x∈[0,1]n

(|L̂N (x)− L̂(x)|) ≥ ε} ≤ β.

To prove this lemma we need to show the function is
Lipschitz continuous and to bound the moment generating
function of a related random variable. We can then use a
uniform exponential convergence bound to get the result. We
defer details to the full version of the paper.

Efficient representation. Given the above, we can now
describe the construction of our objective function. For any
desired precision ε > 0, and any desired confidence β > 0
we first sample N = O(1)n

2

ε2 [n ln(n
2

ε ) + ln( 1
β )] graphs i.i.d

from G by following the distribution defined by the Triggering
model. Using these samples we will create the following
bipartite graph. Given the set X , for every v ∈ N (X) and
u ∈ V we will add a copy ui of u to the set U and edge
(v, ui) to its edge set E if and only if there is a path from v
to u in Gi, for all i ∈ 1, . . . , N . For every u ∈ U let C(u) be
the set of vertices that cover u in the bipartite graph. For a
given S ⊆ X we define our objective function to be:

L(q|S) =
1

N

∑
u∈U

min{1,
∑

i∈C(u)∩N (S)

piqi}

Corollary 3.2. For any ε > 0 , any β > 0, and all 0 ≤ α ≤ 1,
L(·|·) can be constructed in polynomial time such that an α-
approximation algorithm for L(·|·) is a (α−ε)-approximation
algorithm for L(·|·).

B. The adaptivity gap

We now prove a bound on the adaptivity gap which justifies
the use of an approximation to a randomized-and-relaxed pol-
icy. We use OPTA, OPTNA to denote the expected values of
the optimal adaptive and randomized-and-relaxed non adaptive
policies, respectively. We use OPTL to denote the optimal
solution for the L(·|·) function as defined above. Recall that
randomized-and-relaxed non adaptive policies compensate for
committing on nodes in advance by respecting the cardinality
constraint in expectation.



Lemma 3.3. OPTA ≤ OPTL ≤
(
e/(e− 1)

)
OPTNA.

Proof: We will prove that OPTA ≤ OPTL and since
(1− 1/e)L(q|S) ≤ F (q|S) ≤ L(q|S) for any (S, q) ∈ F
we know that OPTL ≤ (e/(e − 1))OPTNA. We will use
OPTL(·|S) to denote the optimal solution in L(·|·) when S is
selected in the first stage. We will consider the objective of
maximizing the expected number of nodes in the Triggering
model as coverage over an exponentially large universe U , as
we discussed above.2

Let S ⊆ X represent the set of k− t nodes selected by the
optimal adaptive policy in the first stage, and let R1, . . . , Rm
be all possible realizations of nodes in N (S). First, we
claim that the optimal adaptive policy can be interpreted as
a feasible solution in L(·|S). In the optimal adaptive policy,
in each realization there are t nodes which are allocated. Let
` = |N (S)|, and let {y1, . . . , y`} be the set of all nodes
in N (S). For each realization Ri we define the function
αi : N (S)→ [0, 1] as:

αi(yj) =

{
p(Ri) if yj is allocated in Ri

0 otherwise

where p(Ri) is the probability that a realization Ri occurs.
Now let α(yj) =

∑m
i=1 αi(yj), and let p(yj) be the probability

that yj is realized. Clearly, α(yj) ≤ p(yj) and therefore there
is some qj ≤ 1 s.t. we can write α(yj) = p(yj)qj . Since
the solution is feasible in each realization Ri we know that∑`
j=1 αi(yj) ≤ t · P (Ri). As all realizations sum to 1:

m∑
i=1

n∑
j=1

αi(yj) ≤ t ⇐⇒
n∑
j=1

m∑
i=1

αi(yj) ≤ t

⇐⇒
n∑
j=1

α(yj) ≤ t

⇐⇒
n∑
j=1

p(yj)qj ≤ t.

We can therefore consider (S, q) as a feasible solution to
L(·|S) that corresponds with the optimal adaptive policy. We
will next show that the value of this solution yields a higher
value in L(·|S) than the expected value of OPTA.

Let u be an element in the universe, and let C(u) be the
nodes that cover u. Fix an arbitrary ordering σ on the nodes
s.t. σ(y1) < σ(y2) < . . . < σ(y`). We say that u is owned by
yj ∈ C(u) in the realization Ri if yj is a member of the
optimal adaptive solution in that realization and there is no
node yr ∈ C(u) s.t. σ(yr) < σ(yj) which is also part of
the optimal adaptive solution in that realization. Similarly as
above, we define:

αui (yj) :=

{
p(Ri) if yj owns u in Ri

0 otherwise

2Note that for the sake of this proof we are not concerned about the size
of the input and recall that we have an efficient manner to approximate the
objective function within any desirable accuracy.

And we define αu(yj) :=
∑m
i=1 α

u
i (yj). Stated in these

terms we have that:

OPTA =
∑
u∈U

min{1,
∑
j∈C(u)

αu(yj)}

It is easy to see that for every u and every yj we have that
αu(yj) ≤ α(yj) which implies:

OPTA =
∑
u∈U

min{1,
∑
j∈C(u)

αu(yj)}

≤
∑
u∈U

min{1,
∑
j∈C(u)

p(yj)qj}

≤ OPTL(·|S)

Therefore, in expectation, the value of the optimal adaptive
solution is no greater than the value of its corresponding
solution in L(·|S), which is a lower bound on OPTL.

C. The non adaptive algorithm

Following the construction of Section III-A, finding a non
adaptive policy reduces to solving the optimization problem:3

max
F

L(q|S).

Recall that a feasible solution (S, q) ∈ F is a pair S ⊆ X
and a vector q, s.t. |S| +

∑
i∈N (S) piqi ≤ k and q has non

zero values only for elements in N (S). We now describe
the approximation algorithm for this optimization problem
and discuss its main components. The main procedure of
the algorithm finds the densest contribution to L(q|S) – the
node in X and allocation of a fraction of budget ξ on its
neighbors that will have the largest marginal contribution per
spend to L(q|S) – and seeds a node x ∈ X (i.e. adds x to S)
if it hadn’t already been seeded. We use x ∨ y to denote the
element-wise maximum operator on x, y ∈ [0, 1]n. Omitted
proofs and lemmas can be found in the full paper.

NONADAPTIVESEEDING
input: budget k
initalize: S = ∅, q = ~0
1. while |S|+

∑
i piqi ≤ k

k′ ←− k − (|S|+
∑
i piqi)

(x, q′)←− FINDDENSESTCONTRIBUTION(S, q, k′)
(S, q)←− (S ∪ {x}, q ∨ q′)

2. (S′, q′)←− arg maxx DENSE(x,~0, k)
3. If (L(q′|S′) > L(q|S)) then (S, q)←− (S′, q′)
return: (S, q)

For every (T, r) ∈ F the marginal density of (T, r) with
respect to (S, q) is the ratio between the marginal contribution
of adding (T, r) to (S, q) and its marginal cost. The algorithm
iteratively seeks for (x, r′) ∈ F with the largest marginal
density that can be added to the current solution. Before we

3We ignore the factor of 1
N

in L(q|S) throughout this section since it does
not affect the solution the algorithm obtains.



continue to describe the procedures for computing densities,
we justify this strategy using the following lemma.

Lemma 3.4. Let (S, q), (T, r) ∈ F . There exist (x, r′) ∈ F
such that the marginal density of (x, r′) with respect to (S, q)
is at least the marginal density of (T, r) with respect to (S, q).

Finding the densest contributions. Computing the densest
marginal contribution depends on whether or not the node
has already been seeded. For nodes which are not already
seeded by the algorithm there is an additional cost of 1 for
including the node in the solution, which is amortized over
the contribution of its neighbors. For such cases, we use the
procedure DENSE(x, q, ξ) to find the change to the vector q
of N (x) that adds the most value using a budget of ξ. The
procedure returns both the density value and the values of the
q′ variables. The DENSE procedure is simply an LP, and we
defer its formal description to the full version. The procedure
is summarized in the figure below:4

DENSESTUNSEEDED
input: x ∈ X \ S, current solution (S, q), budget t

for all i ∈ {0, 1, . . . , blog(1+δ)(t)c}
d(i), q̄(i)←− DENSE(x, q, (1 + δ)i)

j = argmaxjd(j)
return: q̄(j)

Lemma 3.5. For any 0 < δ < 1, and for all x ∈ X \ S,
the above algorithm is a (1 + δ)-approximation of the
densest marginal contribution that adds x. It runs in time
poly( log(k)

δ , n,N).

For nodes which are already seeded, the penalty for their
inclusion is already accounted for, and their marginal density
only depends on their neighbors. For any such node x ∈ X ,
the function L(·|x) is concave and similar to the continuous
greedy heuristic in [36] it can be shown that the maximal
marginal density can be found coordinate-wise. A concave
function g(·) is concave in every coordinate, and for any
concave function gi(·) defined over the interval [0, a], the
function gi(z)/z is always non-increasing in z and thus its
maximum is at z = 0. So, for general concave functions, this
won’t suffice since we seek marginal contributions that are
strictly positive. Note however that for the special case where
gi(·) is linear on the interval, gi(z)/z is constant and achieves
its maximum at a > 0. Fortunately, while our function is not
linear, it is piecewise linear. We denote ∆iL(ξ, q|S) to be the
marginal contribution to L in coordinate i when adding ξ given
a solution S, q:

∆iL(ξ, q|S) =
∑

u:i∈C(u)

min
{

1,
∑

j∈N (S)\{i}

pjqj + pi(qi + ξ)
}

−
∑

u:i∈C(u)

min
{

1,
∑

j∈N (S)

pjqj

}
4More precisely, DENSESTUNSEEDED also checks the point Dense(x, q, t).

The function ∆iL(·, q|S) is piecewise linear and strictly
positive when there exists some u : i ∈ C(u) for which
1 −

∑
i∈C(u) piqi > 0. For each i ∈ N (S) we can therefore

take the maximal ξ > 0 for which the function remains
linear, and have the desired property. In particular, using U−
to denote the set of all elements u in the universe for which
1−

∑
i∈C(u) piqi > 0 this is:

ξ∗i = min
u∈U−:i∈C(u)

{
(1−

∑
i∈C(u)

pjqj)/pi

}
We denote N̂ (x) = {j|j ∈ N (x), q(j) < 1} and

summarize the procedure below:

DENSESTSEEDED
input: x ∈ S, current solution (S, q), budget t
i = argmaxj∈N̂ (x)

∣∣{u ∈ U− | j ∈ C(u)}
∣∣

ξ∗i = minu∈U−:i∈C(u){(1−
∑
i∈C(u) pjqj)/pi}

q′i = qi + min
{
ξ∗i , 1− qi, t/pi

}
return: q′ = (q−i, q

′
i)

Lemma 3.6. For all x ∈ X , DENSESTSEEDED finds the
densest marginal contribution using x, and runs in time
poly(n,N). In addition, the number of calls to the procedure
is at most O(nN).

Approximation guarantee. Since we can find the densest
contributions within any desired approximation ratio, we can
analyze the approximation ratio in an analogous manner to
that of Nemhauser et. al [15]. The main component involves
comparing the density of each iteration’s contribution to the
density of the optimal solution. See full version for the proof.

Theorem 3.7. For any ε > 0, NONADAPTIVESEEDING is a
( 1−e−1

2−e−1 − ε)-approximation algorithm for maxF L(q|S), and
runs in poly(n,N, log(k)ε ) time.

Together with the adaptivity gap this implies the following.

Corollary 3.8. For any ε > 0 and any β > 0 there is an
algorithm that finds a randomized-and-relaxed non adaptive
policy with expected value

( (1−e−1)2

2−e−1 − ε
)
OPTA with proba-

bility 1− β in time poly(n, ln( 1
β ), log(k)ε ).

D. The main result

The approximation guarantee on the randomized-and-
relaxed policy is conditioned on respecting the budget con-
straint in expectation during the second stage. We now show
that any randomized-and-relaxed policy can also be interpreted
as an adaptive policy with an approximate value.

Lemma 3.9. For any randomized-and-relaxed policy
(S, q) ∈ F such that t = k − |S| > 1, there exist an adaptive
policy with value ≥

(
e−1
4e −

1
t

)
L(q|S).

Proof: We consider the adaptive policy that selects the
same set S in the first stage. Consider a random process which



selects each node j ∈ N (S) with probability qj/c, for some
constant c, into a set T̂ if it is realized, and define the set T
as:

T =

{
T̂ if |T̂ | ≤ t
∅ otherwise

The policy runs the proccess and chooses T as the set
on the second day. Thus, for every realization of nodes in
the second stage T is a feasible solution, and showing it
has a high expected value over all possible realizations will
conclude our proof. We denote the value of this strategy A(S).
We will consider the objective of maximizing the expected
number of nodes in the Triggering model as coverage over an
exponentially large universe U , as discussed above. We say
that a node u ∈ U is covered by R if C(u) ∩ R 6= ∅ and
denote this event as CRu . First observe that the probability that
u is covered in T̂ is:

Pr[CT̂u ] = 1−
∏

j∈C(u)∩N (S)

(1− pjqj
c

)

≥ 1

c

(
1− 1

e

)
min{1,

∑
j∈C(u)∩N (S)

pjqj}

We next bound the probability that u is covered in T
conditioned on u being covered in T̂ . Note that since there
may be several nodes covering u in T̂ , conditioning on u
being covered by T̂ increases the likelihood of all nodes
covering u to be in T̂ . To avoid this and work with mutually
exclusive events we define for some ordering of the elements
in CS(u) = C(u) ∩ N (S) the event Aj to be the event that
j ∈ T̂ and i /∈ T̂ for every {i ∈ CS(u)\{j} : i > j}. Since the
randomized and relaxed policy selects t nodes in expectation
and the probability of each node in N (S) to be selected by
the random process is pjqj/c, the expected cardinality of any
set is bounded by t/c. By Markov’s inequality we have that:

Pr
[
T = ∅

∣∣∣CT̂u , Aj] ≤ Pr
[
|T̂ \ {j}| ≥ t− 1

∣∣∣CT̂u , Aj]
≤ 1

t− 1

(
E[|T̂ \ {j}|

∣∣∣CT̂u , Aj ])
≤ t

c(t− 1)

We therefore have:

Pr[CTu ] = Pr
[
CTu
∣∣∣CT̂u ] · Pr

[
CT̂u
]

= Pr
[
T 6= ∅

∣∣∣CT̂u ] · Pr
[
CT̂u
]

= Pr
[
CT̂u
]( ∑

j∈CS(u)

Pr
[
T 6= ∅

∣∣∣CT̂u , Aj]Pr[CT̂u , Aj ])
≥Pr

[
CT̂u
]( ∑

j∈CS(u)

(
1− t

c(t− 1)

)
Pr[CT̂u , Aj ]

)
=
(c(t− 1)− t
c2(t− 1)

)(e− 1

e

)(
min{1,

∑
j∈CS(u)

pjqj}
)

The last step is justified by the fact all events Aj are
mutually exclusive and must cover the entire probability space
when u is covered by T̂ . It is easy to verify that if t > 1 the
optimal value of c is 2t

t−1 . Thus, by linearity of expectation:

A(S) =
∑
u∈U

Pr[CTu ] ≥
( t− 1

4t

)(e− 1

e

)(
min{1,

∑
j∈CS(u)

qj

)
≥
(e− 1

4e
− 1

t

)
L(q|S)

Theorem 3.10. For any ε > 0 and any β > 0 there is
an algorithm that finds an adaptive policy with expected
value

( (1−e−1)2

4(2−e−1) − ε
)
OPTA with probability 1 − β in time

poly(n,N, log(k)ε ).

Proof: The algorithm first optimizes L(·) as described
in Section III-C. Let (S, q) be the result of the algorithm,
ε1 = ε2 = ε3 = ε

3 , and let t = k− |S|. Assume that t > 1/ε3.
We can use the same adaptive policy as in the previous lemma.
We know that with probability at least 1− β:

A(S) ≥
(e− 1

4e
− ε3

)
L(q|S)

≥
(e− 1

4e
− ε3

)(1− e−1

2− e−1
− ε1 − ε2

)
OPTL

≥
((e− 1

4e

)(1− e−1

2− e−1
)
− ε1 − ε2 − ε3

)
OPTL

≥
((e− 1

4e

)(1− e−1

2− e−1
)
− ε
)
OPTA

where the first inequality is due to Lemma 3.9. The second
inequality is due to Theorem 3.7 which gives us the approx-
imation ratio for L(·) and Corollary 3.2 that tells us that we
get a similar approximation ratio for L(·). The last inequality
is due to the adaptivity gap shown in Lemma 3.3.

If t < 1/ε3 then we can iteratively remove from S the
c = 2d 1

ε3
e elements (and the elements of N (S) that are

covered only by these elements) that contribute the least to the
value of the solution. Let S′, q′ be the result of this procedure.
Notice that t′ ≥ 2/ε3. As we removed the elements with the
least value we know that L(q′|S′) ≥ (1 − c

|S| )L(q|S) and
A(S) ≥ ( e−14e −

ε3
2 )(1− c

|S| )L(q|S). It is easy to check that if
k > 2

ε3
d 1
ε3
e we get the same approximation ratio. Otherwise

we find an optimal adaptive policy by brute force search.

IV. SIMPLER APPROACHES

We conclude by briefly discussing a simple approach appli-
cable in special cases, and examples that justify our approach
for adaptive seeding in the Triggering model.

A. Additive and symmetric influence functions

In the introduction we discussed an analogue of Sample
Average Approximation (SAA) as a simple technique which
nearly obtains a 1 − 1/e approximation for adaptive seeding



in some special cases. For a network G = (V,E) given an
influence function f : 2V → R+ consider the following
function FH,t : 2X → R+ defined for a subgraph H and
parameter t ∈ N as:

FH,t(S) := max
T⊆N (S):|T |≤t

f(S ∪ T )

That is, the function is the maximal value that can be
obtained from of the set S and t elements from the neighbors
of S in H . Recall that a function F : 2X → R+ is submodular
if for all j ∈ X we have that F (S ∪ {j}) − F (S) ≥
F (T ∪ {j}) − F (T ),∀S ⊆ T . In cases when the influence
function is such that FH,t(·) is guaranteed to be a monotone
submodular function for all t ≤ k and all graphs H , we can
use the following simple technique to approximate the optimal
solution of the two stage problem. The two stage problem can
be stated as the following optimization problem:

max
{ ∑
H∈G

pHFH,t(S) : S ⊆ X, |S|+ t ≤ k
}

In the above formulation we use G denote the set of all
possible realizations and pH is the probability of the bipartite
graph H = (X ∪ R,EX,R) to realize where R ⊆ N (X)
and EX,R is the set of edges between X and R in the
network G = (V,E). For any fixed t ≤ k − 1 the func-
tion Ft(S) =

∑
H∈G pHFH,t(S) is a monotone submodular

function since it is a weighted sum of monotone submod-
ular functions. Such a function can be well approximated
via sampling polynomially many graphs, and the celebrated
greedy algorithm for submodular maximization by Nemhauser
et al. [15] guarantees to find a (1−1/e−ε)-approximation for
any ε > 0. We can therefore iterate over all t ∈ {0, . . . , k−1}
and return the solution S ⊆ X with the maximal value, and
thus obtain a (1 − 1/e − ε)-approximation for the two stage
problem.

We now briefly discuss two special cases of influence
functions for which FH,t(·) is monotone submodular.

Additive functions. We say that a function is additive when
f(S) =

∑
i∈S wi for some fixed wi, i ∈ [n]. The well

studied Voter model [34], for example, is an additive influence
function [19]. For such functions FH,t(·) as defined above is
monotone submodular. The intuition is easy. For any S ⊆ X
these functions take the highest valued nodes in N (S). Adding
a node i ∈ X to S introduces no more candidates to the top t
valued nodes than adding i to any S′ ⊂ S. Details and proof
are deferred to the full version.

Theorem 4.1. For any additive influence function f(·), the
function Ft(·) is monotone submodular.

Symmetric submodular functions. We say that a function
is symmetric submodular when f(T ) =

∑
i≤|T | ri where ri ∈

R+ is some fixed set that respects r1 ≥ r2 ≥ . . . ≥ rn. It is
easy to see that for this kind of influence function the function

N(X)

X

Fig. 2. An example of a graph where the two stage adaptive seeding is not
submodular when the influence function is a cover function. From left to right
the nodes in X are A,B,C,D as discussed below.

FH,t(·) is also submodular. The intuition here is even simpler.
As these are cardinality functions, it is clear that adding a
new element to a larger set introduces less new neighbors.
In addition the marginal contribution of each new neighbor
decreases as the number of neighbors grows. We defer the
exact details of the proof to the full version.

Theorem 4.2. For any Symmetric Submodular influence func-
tion f(·), the function Ft(·) is monotone submodular.

These functions can capture cases where the exact structure
of the network is not known, and thus the exact influence value
for each node is unknown. In such cases, it seems reasonable
to maximize the number of seeds assuming that additional
seeds have decreasing marginal contributions.

B. Ft is not submodular for Cover functions

As we now show the approach we describe above is
inapplicable to the Triggering model. We now show that Ft is
not monotone submodular when f is a Cover function, which
is a special case of the Triggering model. Recall that a function
f : 2V → R+ is a Cover function if there are some sets
T1, T2, . . . , T|V | of some universe and for every S ⊆ V we
have that f(S) = | ∪i∈S Ti|.

Consider the example in Figure 2, where all nodes in N (X)
realize with probability 1 if any of their parents is seeded.
Consider F2. It is easy to see that F2({A,C}) = 2 and also
F2({A,C,D}) = 2. On the other hand, F2({A,B,C}) = 2
and also F2({A,B,C,D}) = 3. This implies that adding D
to the larger set {A,B,C} increases the value of the function
by more than when adding it to the set {A,C}. This is a
contradiction to the assumption that F2 is submodular.

C. Unbounded adaptivity gap

We now show that we cannot hope to use non-relaxed non
adaptive policies to approximate an adaptive policy in adaptive
seeding. We show that the ratio between the expected payoff
of an adaptive policy and a non-relaxed non adaptive policy
can be unbounded (even for very simple influence functions).

Consider the instance in Figure 3. Let the budget be 2 and
the influence function be the number of seeded nodes inN (X)
(this is an additive function where each item’s value is 1). The
optimal adaptive policy here is trivial. It chooses the single
node in X , and in any realization where there is some node
in N (X) that realized it chooses any one of those nodes. The
expected payoff of this solution goes to (1−1/e) as n grows.



N(X)

X

. . .

Fig. 3. The unbounded adaptivity gap. When each node in N (X) appears
with probability 1/n the adaptivity gap is unbounded.

On the other hand, any non-relaxed non adaptive policy needs
to commit on a node in N (X) in advance. No matter which
node is chosen the expected value of this policy goes to 0 as
n grows, and thus the ratio between the two expected payoffs
goes to ∞ as n grows.
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