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Adaptive Segmentation of Document Images 

Don Sylwester, Concordia University, Nebraska, svl @seward.cune.edu 
Sharad Seth, University of Nebraska, Lincoln, seth@cse.unl.edu 

Abstract 

A single-parameter text-line extraction algorithm is 
described along with an efJicient technique for  estimating 
the optimal value for  the parameter for  individual images 
without need for  ground truth. The algorithm is based on 
three simple tree operations, cut, glue and jlip. An XY- 
tree representing the segmentation is incrementally 
transformed to reflect a change in the parameter while 
intrinsic measures of the cost of the transformation are 
used to detect when specific tree operations would cause 
an error if they were performed, allowing these errors to 
be avoided. The algorithm correctly identified 98.8% of 
the area of the ground truth bounding boxes and 
committed no column bridging errors on a set of 97 test 
images selected from a variety of technical journals. 

1. Introduction 

Accurate identification of text lines is a critical 
component of the physical layout analysis step in 
document image analysis. This step follows the scanning 
of the page image into a two-dimensional array of pixels 
and is typically preceded by binarization, deskewing, and 
noise removal. The output from the physical layout 
analysis is fed to OCR to recover the text and then to 
logical layout analysis to identify the logical components 
of the page, including paragraphs, headings, titles, and 
non-text blocks [6]. 

Our objective is to capture the columnar structure of 
the page image in an XY-tree [IO] in which the leaf nodes 
are the text lines found on that page. Our algorithm 
retains the key simplifying idea of our earlier work [ 151 - 
the use of a single primary parameter to control the 
segmentation decisions - but extends it many significant 
ways. The single-pass of the earlier algorithm has been 
replaced by a deliberate over-segmentation of the page 
image using a low parameter value, followed by an 
aggressive horizontal merging of segments, using a 
sequence of higher parameter values that are chosen 
independent of the page image. The application of the 
parameter to a specific instance of the merging of two 
fragments is governed by intrinsic measures of the effect 

of this merge, allowing us to effect maximal merging of 
line fragments while avoiding bridging of columns. We 
have developed several mechanisms that leverage the use 
of a single parameter to provide near ground-truth quality 
line location on individual images without comparison 
with ground truth. This may be contrasted with the 
training required by other algorithms (e.g. [ l ,  8, 121) to 
set the parameters. 

Notably, only the initial “cutting” of the page image 
using the low parameter value works at the pixel level. 
Subsequent steps of merging are carried out at or above 
the level of characters hence are computationally quite 
efficient. It is therefore feasible to experiment with many 
different parameter values in order to determine an 
optimal one. 

The effectiveness of our algorithm is demonstrated 
on page images from UW-111 database [14] and others [ 5 ] ,  
all of which come from technical journals. However, the 
algorithm does not make any specific assumptions about 
this domain therefore it should apply equally well to 
pages that are primarily text and can be segmented into an 
XY-tree. This is verified by our limited experiments with 
telephone book white pages. 

A rich variety of page segmentation algorithms have 
been proposed in the literature. A detailed review of 
these algorithms is not possible here because of limitation 
of space. The interested reader may refer to the several 
excellent tutorials and surveys [2,11,13]. All algorithms 
use one or more parameters that are determined by 
training. A recent paper discusses an automatic way of 
choosing the parameters by posing this as a multivariate 
non-smooth function optimization problem [9]. 

The rest of the paper is organized as follows. During 
the segmentation, the XY-tree is dynamically modified. 
The tree modifications can be captured in terms of three 
basic operations that are discussed in Section 2. The 
availability of ground truth for benchmarks makes it 
possible to accurately measure and report the performance 
of page segmentation algorithms. The specific error 
measures we use are described in Section 3. The next two 
sections comprise the main contributions of this paper. 
Our base algorithm, without adaptation, is described in 
Section 4 and evaluated by setting the parameter values 
by training. In Section 5, we discuss the adaptation 
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mechanisms that allow parameter estimation without 
training. In the concluding Section 6 we indicate possible 
future extensions of this research. 

2. XY-Tree and Tree Transformations 

An XY-tree is formed by successive horizontal and 
vertical cuts through white space in the page image 
identified through the use of horizontal and vertical 
profiles [3,10]. A complete cut of a page image would 
have the non-cuttable gray blocks, typically letter forms, 
as leaf nodes. Nodes formed by horizontal cuts are 
(horizontal) slice nodes; those formed by vertical cuts are 
(vertical) column nodes. Our convention always has a 
slice node at the root and slice nodes as leaf nodes. 
The fundamental operations performed on the tree are cut, 
and glue. Cut and glue are inverse operations as shown in 
Figure 1. Note that our algorithm examines all possible 
cuts available in the page image and it performs gluing of 
horizontally adjacent leaf nodes governed by the 
application of the gap width-to-height threshold described 
later. Once glued together leaf nodes are not then cut by 
subsequent processing. 

e+ ==cm * J 2 p l E l  
glue 

Figure 1 : Cut and glue operations 

The cut operations can be used to segment any block 
of a given XY-tree. Similarly, the glue operations can join 
two adjacent blocks to create a larger block. Theorem 1 
establishes the fundamental character of the cut and glue 
operations for the XY-trees of a page image. 

Theorem 1: Any XY-tree whose leaf node(s) cover 
the pixels in a page image can be transformed to any other 
XY-tree on the same set of pixels by a sequence of cut 
and glue operations. 

Proof: It is always possible to reduce the original 
XY-tree to a degenerate tree with just the single root node 
by a sequence of glue operations; from there any other 
XY-tree can be obtained by a sequence of cut operations. 

For the work described here it has been sufficient to 
implement only horizontal gluing since individual text 
lines rarely exhibit internal, horizontal cuts. Subsequent 
work will focus on vertical gluing as a means to reduce 
errors and extend the range of applicability of the 
algorithm. In our current approach we deliberately over- 
segment the page image and then only glue horizontally 
to build the desired XY-tree. The two blocks to be glued 
must be separated by a vertical cut in the original XY-tree 
and gluing should remove this cut hence only glue 
operations are required to build the final tree. There are 
three cases that can arise during gluing, as shown in 
Figure 2. 

010 011 
Figure 2: Three cases of horizontally gluing two 

blocks 

In the first case, the two blocks can simply be joined 
to create a larger leaf node. The second case requires 
performing a flip operation as shown in Figure 3. The 
third case requires performing two flip operations. 

n n a n i n  
E l 0  - I -  010 

Figure 3:f l ip  operation 

The flip operation requires identifying the common 
ancestor of the two blocks to be glued and reorienting it, 
that is, changing its direction of cut (e.g. from vertical to 
horizontal). Reorientation of a single block can be carried 
out on the XY-tree by an efficient algorithm [4]. It should 
be noted, however, that an attempted reorientation of a 
block might not always succeed because of the absence of 
a transverse cut. Even when a transverse cut is found, it 
may require a sequence of flip operations, which could 
similarly fail. The flip can be regarded as another 
fundamental local operation on the XY-tree. 

Theorem 2: Consider the set of all XY-trees defined 
on the same set of leaf nodes. Any tree in the set can be 
transformed to any other tree in the set by a series of flip 
operations. 

Proof Consider all the junctions of horizontal and 
vertical cuts in a given XY-tree in the set. Each junction 
can be in one of two orientations: its higher-level cut is 
either horizontal or vertical. Therefore, the corresponding 
junctions in two XY-trees in the set can either be the same 
or opposite. Therefore, one can be obtained from the other 
by flipping the junctions that are not the same. Note that 
in this case the existence of the second XY-tree 
guarantees that the necessary flip operations are all 
feasible. 

3. Error Measure 

To evaluate the performance of our algorithm we 
compare the set of detected bounding boxes, D, the leaves 
of the XY-tree, with a set of ground-truth bounding 
boxes, G, following a similar approach to that of Liang, 
eta1 [7], limiting our reporting to the percentage of the 
area of the set G that is covered by the set D (Table 1). 
Note that mis-detection cannot occur here since our 
algorithm currently accounts for all pixels, and that since 
our G only includes text lines we ignore false alarms. 
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Table 1. Definition of error measures, from [LPH97] 

Correct 
detection 

One box in G is covered by one box in D 

detection hox in D 

I More than one box in G is covered by one I hox in D 
1 False alarm 1 A box in D does not overlaD anv box in G 1 
I spurious I All other cases 

A merging detection includes both a merging of text 
lines in the same column (vertical) as well as merging 
between text lines in adjacent columns (horizontal). For 
our algorithm a vertical merge is caused by a lack of a cut 
in the profile between the two text lines, generally due to 
skew or ascenderldescender overlap. A horizontal merge 
corresponds to bridging between columns. This is an 
under-segmentation error since a vertical cut at the 
location of the column gap was not retained in the XY- 
tree. A splitting detection corresponds to over- 
segmentation or fragmentation of a single text line since 
additional vertical cuts have been made that do  not 
correspond with column gaps. 

Column bridging errors are difficult to repair since 
they bring together portions of two columns which 
subsequent processing would have to re-cut. 
Fragmentation emors are relatively easy to correct since 
their location in the XY-tree continues to reflect their 
location in the text line. 

4. Base Algorithm 

Our goal is to capture the columnar structure of a 
page image in an XY-tree in which the leaf nodes are the 
text lines found on the page. Our interest in an adaptive 
algorithm led to the selection of an approach driven by a 
single primary parameter, the gap-width-to-height- 
threshold. This resolution independent parameter is the 
ratio of the width of the horizontal gap between two 
blocks to the height of the gap, measured as the minimum 
height of the two neighboring blocks. This parameter 
reflects a nearly universal convention in physical page 
layout, that the widths of gaps between text-lines in 
columns are generally larger than the gaps between words 
and between characters. If the measure of a gap is below 
this threshold we attempt to glue these two blocks into a 
single new block, otherwise we consider it to be a column 
gap. Note that only gaps between exactly two 
horizontally adjacent blocks that share a mutual vertical 
overlap are considered for gluing. See Figure 4. 

The RXYC algorithm constructs an XY-tree by 
recursively cutting the initial page with successive 
horizontal and vertical cuts through white space in the 
pixel image, down to the non-cuttable gray block level, 

and then performs only flip and horizontal glue operations 
as we build toward the final tree. As various parts of the 
tree are constructed we aggressively glue horizontally 
adjacent leaf nodes guided by our threshold parameter. If 
two leaf nodes should be glued together and are direct 
siblings in the tree then we glue them immediately. If 
they are not direct siblings, we attempt a series of tree 
transformations, flips, to find a tree where they are 
siblings, if possible, and then glue them in that tree. 

keneral or.  . . I hY 
- I  width 

- I. . . large transteq p-1 - 
Figure 4. Glueable (upper) and non-glueable (lower) 

gaps. 

Note that if two leaf nodes are glued together, the 
height of the new leaf node may increase over its two 
predecessors, possibly affecting the measure of the gaps 
on either end. Our aggressive strategy is to reexamine 
gaps for potential gluing whenever they are encountered 
in the process and to reexamine the final tree 
exhaustively, applying sequences of flips as necessary to 
perform all possible glue operations. There is a potential 
for order dependence in this strategy, although it does not 
appear to be common. 

RXYC algorithm: Phase ( I )  Cut the initial pixel 
block horizontally into slices. Cut each slice in turn 
vertically into sub-blocks. Recursively process each 
sub-block with RXYC to form an XY-tree. Merge 
the XY-trees from each sub-block horizontally using 
flips and glues, to form an XY-tree for the entire 
slice. Merge the XY-trees for each slice vertically to 
produce the result XY-tree. Phase ( 2 )  Once the XY- 
tree has been produced for the initial block, 
representing the entire page image, exhaustively 
reexamine the tree to perform all possible remaining 
glue operations. 

As the value of the gap-width-to-height-threshold 
increases the fragmentation errors decrease and at some 
point column bridging errors begin to occur. In an ideal 
document there would be a range of threshold values for 
which there are no fragment or bridging errors: the 
segmentation is correct. In real documents we do tolerate 
occasional fragmentation errors in order to avoid bridging 
errors. Typically, these occur in left and right justified 
lines containing word gaps that exceed a column gap. 

Table 2 reports the performance of RXYC on images 
from four document classes, using threshold values 
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Image N 
Set 

1 Vert I Horiz 
IBM I 17 I 99.5% 1 0.5% I 0.0% I 0.0% 

Correct Split Merge 
Detection Detection Detection 

I 5 I 98.8% I 0.1% I 0.0% I 0.0% 
PAMI I 17 191.5% I 8.1% I 0.1% I 0.2% 

The current algorithm requires cuts to be visible in 
the profiles and is therefore sensitive to skew and 
ascendeddescender overlap, for example, as well as ruled 
boxes surrounding text areas. We believe that an 
adaptation of the algorithm, including implementation of 
vertical gluing, would allow cutting at arbitrary locations, 
but the algorithm will continue to require deskewed 
images or at least knowledge of a (uniform) skew angle. 

Also in Phase (2), small artifacts, notably punctuation 
marks such as periods, commas and dashes (and some 
noise), are recognized by their small dimensions relative 
to nearby gray blocks and are glued to them if the 
separation is small compared to the size of that block, 

5. Adaptation 

The optimal value in our base algorithm for the gap- 
width-to-height threshold for a specific page image is just 
below the onset of column bridging. An adaptive 
algorithm must recognize the moment at which the initial 
column bridging occurs for that image. We have 
identified several measures that can be used to classify 
gluing operations as either local (leaf nodes within text 
lines are being glued) or global (leaf nodes are being 
glued between columns). A simple adaptive extension of 
the base algorithm might increase the value of the 

parameter until the change in the tree would be global, 
and then stop. 

When two leaf nodes are glued together a (possibly 
null) sequence of flip operations is required to make the 
two leaf nodes direct siblings, enabling the glue operation. 
The flip operations required in this sequence are confined 
to the two adjacent subtrees containing the two leaf nodes 
and rooted at the nearest common ancestor. We use the 
area associated with these two smbtrees, normalized to the 
size of the median gray block, as a measure of the size of 
the change. If the two leaf nodes are direct siblings of 
each other, then the affected area of the tree is the area of 
the bounding box that encloses the two nodes, a relatively 
small area. If the two leaf nodes are in adjacent columns, 
then a flip will occur in the orientation of a vertical cut 
beneath the common ancestor. The area of this node 
includes the relatively large area of the two columns 

A separate measure of the size of the change is the 
change in the maximum width of any leaf node, 
normalized to the width of the median gray block, 
contained within the affected area as the gluing is done. 
The initial bridging error typically doubles the maximum 
width of a leaf node within the affected area. 

Our current experiments couple these two measures 
to determine when a global change has occurred and the 
threshold has been increased too far. If the minimum area 
and width of the two subtrees each exceed a threshold, 
400 and 15 in the results reported here, then a global 
change in the tree is likely and gluing is not done. 

Since our algorithm is driven by a single parameter a 
simple search can be performed to locate the optimal 
threshold value. We have developed an efficient 
approach to this search. If we produce the complete XY- 
tree corresponding to a particular value of the threshold, 
say 2.3, we can then produce the tree for an incremental 
value, say 2.4, by simply performing an exhaustive glue at 
this new threshold value. This operation occurs at the tree 
node level rather than at the pixel level, and can be done 
quite efficiently. Our search procedure begins by 
generating the XY-tree for a low threshold value, 
typically 1.0, and then successively re-glues it at 
incrementally higher threshold values until a column 
bridge occurs, as evidenced hy these measures of local 
and global effects. 
This extension allows the base algorithm to adapt its 
selection of the appropriate threshold to a specific page 
image, but the lack of a strict hierarchy in the widths of 
character, word and column gaps means there can still be 
some fragmentation. Since we can, in fact, identify the 
specific gaps that would cause column bridging if they 
were glued it is possible to increase the value of the 
parameter past the onset of column bridging and avoid 
those glue operations, but continue to do  glue operations 
that correspond to fragmentation. It is this approach that 
forms our current adaptive algorithm, ARXYC. 
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ARXYC Algorithm: Given an image-independent 
series of threshold values, apply Phase (1) of RXYC 
with the initial (lowest) value of the threshold. 
Apply Phase ( 2 )  of RXYC repeatedly for succeeding 
values of the threshold. 

We have applied this algorithm to 97 page images, with 
results shown in Table 3. For this set of images, selected 
from a variety of journals, it is sufficient to first cut the 
page at a low value of the parameter, in this case 1 .O, and 
then to successively glue the XY-tree at increments of 1 .O 
up to 5.0. Performance is comparable to algorithms with 
multiple primary parameters and which require training. 

Table 3. Performance of ARXYC for four document 
sets: Percentage of ground truth area covered by output 
leaf nodes. N is the number of images in each set. 

I Image I N 1 Correct I Split 1 Merge I 
Detection 1 Detection I Detectipn 1 I Set I I Vert Horiz 

6. Conclusion 

Considering that page layouts are not governed by 
strict rules, we find it  remarkable that a segmentation 
algorithm based on just one primary parameter should 
perform as well on a variety of documents. Remarkably, 
also, although the parameter definition was motivated by 
observing how text lines are constructed, experimental 
results show it  to perform well also in segmenting non- 
text regions from text regions. 

Our experiments on IBM and PAMI with the base 
RXYC algorithm indicate that a fixed parameter value for 
each class of documents can segment all pages without 
column bridging and with minimal line fragmentation. 
More complex cases of errors do not occur. A single 
fixed parameter value does not work as well across the 
varied layouts represented in our UW image classes. 

The adaptive algorithm, ARXYC, performs well 
across all 97 page images in our test sets with the same 
series of threshold values applied to all images, with no 
column bridging. 

The most interesting extension of this algorithm is to 
incorporate non-white-space cutting by extending the glue 
operation to the vertical dimension. Treatment of 
punctuation marks should also be formalized. 
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