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Abstract. Intensity-based classification of MR images has proven prob-
lematic, even when advanced techniques are used. Intra-scan and inter-
scan intensity inhomogeneities are a common source of difficulty. While
reported methods have had some success in correcting intra-scan inhomo-
geneities, such methods require supervision for the individual scan. This
paper describes a new method called adaptive segmentation that uses
knowledge of tissue intensity properties and intensity inhomogeneities to
correct and segment MR images. Use of the EM algorithm leads to a
fully automatic method that allows for more accurate segmentation of
tissue types as well as better visualization of MRI data, that has proven
to be effective in a study that includes more than 1000 brain scans.

1 Introduction

Medical applications that use the morphologic contents of MRI frequently require
segmentation of the imaged volume into tissue types. Such tissue segmentation
is often achieved by applying statistical classification methods to the signal in-
tensities [1, 2], in conjunction with morphological image processing operations
[3, 4].

Conventional intensity-based classification of MR images has proven prob-
lematic, however, even when advanced techniques such as non-parametric, multi-
channel methods are used. Intra-scan intensity inhomogeneities due to RF coils
or acquisition sequences (e.g. susceptibility artifacts in gradient echo images) are
a common source of difficulty. In addition, the operating conditions and status of
the MR equipment frequently affect the observed intensities, causing significant
inter-scan intensity inhomogeneities that often necessitate manual training on a
per-scan basis. While reported methods [5, 6, 7, 8, 9, 10] have had some success
in correcting intra-scan inhomogeneities, such methods require supervision for
the individual scan.

This paper describes a new method called adaptive segmentation that uses
knowledge of tissue properties and intensity inhomogeneities to correct and seg-
ment MR images. Use of the expectation-maximization algorithm leads to a
method that allows for more accurate segmentation of tissue types as well as
better visualization of MRI data. Adaptive segmentation has proven to be an



effective fully-automatic means of segmenting brain tissue in a study including
more than 1000 brain scans.

2 Description of Method

2.1 Bias Field Estimator

We use a Bayesian approach to estimating the bias field that represents the gain
artifact in log-transformed MR intensity data. We first compute a logarithmic
transformation of the intensity data as follows,

Yi = g(Xi) = (ln([Xi]1), ln([Xi]2), . . . , ln([Xi]m))T , (1)

where Xi is the observed MRI signal intensity at the i-th voxel, and m is the
dimension of the MRI signal.

Similar to other statistical approaches to intensity-based segmentation of
MRI [3, 4], the distribution for observed values is modeled as a normal distribu-
tion (with the incorporation of an explicit bias field):

p(Yi | Γi, βi) = GψΓi
(Yi − µ(Γi)− βi) , (2)

where
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is the m-dimensional Gaussian distribution with variance ψΓi , and where

Yi is the observed log-transformed intensities at the ith voxel
Γi is the tissue class at the ith voxel
µ(x) is the mean intensity for tissue class x
ψx is the covariance matrix for tissue class x
βi is the bias field at the ith voxel.

Here Yi, µ(x), and βi are represented by m-dimensional column vectors, while
ψx is represented by an m-by-m matrix. Note that the bias field has a separate
value for each component of the log-intensity signal at each voxel.

A stationary prior (before the image data is seen) probability distribution on
tissue class is used, it is denoted p(Γi). If this probability is uniform over tissue
classes, our method devolves to a maximum-likelihood approach to the tissue
classification component. A spatially-varying prior probability density on brain
tissue class is described in [11]. Such a model might profitably be used within
this framework.

The entire bias field is denoted by β = (β0, β1, . . . , βn−1)T , where n is the
number of voxels of data. The bias field is modeled by a n-dimensional zero
mean Gaussian prior probability density. This model allows us to capture the
smoothness that is apparent in these inhomogeneities:

p(β) = Gψβ (β) ,where Gψβ (x) ≡ (2π)−
n
2 |ψβ |−

1
2 exp

(
−1

2
xTψ−1

β x

)
(3)



is the n-dimensional Gaussian distribution. The n × n covariance matrix for
the entire bias field is denoted ψβ . Although ψβ will be too large to manipulate
directly in practice, we will show below that tractable estimators result when
ψβ is chosen so that it is banded.

We assume that the bias field and the tissue classes are statistically inde-
pendent, this follows if the intensity inhomogeneities originate in the equipment.
Using the definition of conditional probability and computing a marginal over
tissue class leads to the conditional probability of intensity alone:

p(Yi | βi) =
∑
Γi

p(Yi, Γi | βi) =
∑
Γi

p(Yi | Γi, βi)p(Γi) . (4)

Thus, our modeling has led to a class-independent intensity distribution that is
a mixture of Gaussian populations (one population for each tissue class). Since
this model is a Gaussian mixture, rather than a purely Gaussian distribution,
the estimators that we derive below will be non-linear.

We assume statistical independence of the voxel intensities (in other words,
the noise in the MR signal is spatially white).

Bayes’ rule may then be used to obtain the posterior probability of the bias
field, given observed intensity data as follows, p(β | Y ) = p(Y |β)p(β)

p(Y ) , where p(Y )
is an unimportant normalizing constant.

Having obtained the posterior probability on the bias field, we now use the
maximum-a-posteriori (MAP) principle to formulate an estimate of the bias field
as the value of β having the largest posterior probability,

β̂ = arg max
β

p(β | Y ) . (5)

A necessary condition for a maximum of the posterior probability of β is that its
gradient with respect to β be zero. We use an equivalent zero-gradient condition
on the logarithm of the posterior probability,[

∂

∂[βi]k
ln p(β | Y )

]
β=β̂

= 0 ∀i,k , (6)

where [βi]k is the k-th component of the bias field at voxel i. Installing the
statistical modeling of (2-5) yields the following expression for the zero gradient
condition:  ∂

∂[βi]k

∑
j

ln p(Yj | βj) + ln p(β)


β=β̂

= 0 ∀i,k .

Equations 2 and 4, and the fact that only the i-th term of the sum depends on
βi leads to:[∑
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This expression may be written more compactly as∑
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β=β̂

= 0 ∀i,k , (7)

with the following definition of Wij , (which are called the weights),

Wij ≡

[
p(Γi)GψΓi

(Yi − µ(Γi)− βi)
]
Γi=tissue-class-j∑

Γi
p(Γi)GψΓi

(Yi − µ(Γi)− βi)
, (8)

where subscripts i and j refer to voxel index and tissue class respectively, and
defining µj ≡ µ(tissue-class-j) as the mean intensity of tissue class j. Equation
7 may be re-expressed as follows,[[

Ri
]
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with the following definitions for the mean residual, and the mean inverse co-
variance,

Ri ≡
∑
j

Wijψ
−1
j (Yi − µj) , ψ−1

ik ≡
{∑

jWijψ
−1
j if i = k

0 otherwise
. (10)

The mean residuals and mean inverse covariances defined above are averages
taken over the tissue classes, weighted according to Wij .

Equation 9 may be re-expressed in matrix notation as[
R− ψ−1β +

∇βp(β)
p(β)

]
β=β̂

= 0 .

After differentiating the last term, the zero-gradient condition for the bias field
estimator may be written concisely as

β̂ = HR , (11)

where the linear operator H is defined by

H ≡
[
ψ−1 + ψ−1

β

]−1

, (12)

that is, the bias field estimate is derived by applying the linear operator H
to the mean residual field, and H is determined by the mean covariance of the
tissue class intensities and the covariance of the bias field.

The bias field estimator of 11 has some resemblance to being a linear estima-
tor in Y of the bias field β. It is not a linear estimator, however, owing to the
fact that the Wij (the “weights”) that appear in the expression for R and H are
themselves non-linear functions of Y (8).

The result of the statistical modeling in this section has been to formulate
the problem of estimating the bias field as a non-linear optimization problem
embodied in (11).



2.2 EM Algorithm

We use the expectation-maximization (EM) algorithm to obtain bias field esti-
mates from the non-linear estimator of (11). The EM algorithm was originally
described in its general form by Dempster, Laird and Rubin [12]. It is often used
in estimation problems where some of the data are “missing.” In this application,
the missing data is knowledge of the tissue classes. (If they were known, then
estimating the bias field would be straightforward.)

In this application, the EM algorithm iteratively alternates evaluations of
the expressions appearing in (11) and (8).

In other words, (8) is used to estimate the weights given an estimated bias
field, then (11) is used to estimate the bias, given estimates of the weights.

As frequently occurs in application of the EM algorithm, the two compo-
nents of the iteration have simple interpretations. Equation (8) (the E-Step) is
equivalent to calculating the posterior tissue class probabilities (a good indica-
tor of tissue class) when the bias field is known. Equation (11) (the M-Step) is
equivalent to a MAP estimator of the bias field when the tissue probabilities W
are known.

The iteration may be started on either expression. Initial values for the
weights will be needed to start with (11), and initial values for the bias field
will be needed to start with (8).

It is shown in [12] that in many cases the EM algorithm enjoys pleasant
convergence properties – namely that iterations will never worsen the value of
the objective function. Provided that the bias estimates are bounded, our model
satisfies the necessary conditions for guaranteed convergence (although there is
no guarantee of convergence to the global minimum).

In principle, given µ(Γi), ψβ, and ψj , we could use the EM algorithm to
obtain the needed estimates. In practice, we cannot directly measure ψβ , and
thus we will seek other estimates of ψβ (in Sect. 2.3).

Although the covariance matrix ψβ that characterizes the prior on bias fields
is impractically large in general, tractable estimation algorithms may yet be
obtained.

ψβ may be chosen to be a banded matrix. If it is then factored out of H, the
bias estimation step (11) may be implemented as the solution of a banded linear
system (note that ψ−1 is diagonal).

2.3 Determination of the Linear Operator H

We have taken a Bayesian approach to estimating the bias field and tissue classes,
and a formal prior model on bias fields has been assumed. This approach has
allowed us to derive a version of the EM algorithm for this application. The op-
erator H is related to the prior on the bias field via ψ−1

β and to the measurement
noise via ψ−1 (12) . Ideally, H would be determined by estimating the covariance
ψβ , but given the size of this matrix, such an approach is impractical.

As pointed out above, H is the MAP estimator of the bias field when the tis-
sue probabilities are known, (the “complete-data” case with the EM algorithm).



As such, H is an optimal estimator (with respect to the Gaussian modeling), and
is also the optimal linear least squares estimator (LLSE) for arbitrary zero-mean
models of the bias field whose second-order statistics are characterized by ψβ .

A frequent problem that arises in filter design (the present complete-data case
included) is that of estimating a slowly-varying signal that has been contami-
nated with white noise. The optimal filter in such situations will be a low-pass
filter [13, Sect. 9.2].

In practice, it is difficult to obtain the optimal linear filter. H may be instead
chosen as a good engineering approximation of the optimal linear filter (this
approach is described in more detail below). In this case, (8) and (11) are still a
useful estimator for the missing data case, and the good convergence properties
of the EM algorithm still apply. This is the approach we have taken in our
implementations, where the filter was selected empirically.

While the low-pass filters H we have used in practice are not the optimal
filters for estimating these bias fields, they are reasonable choices, and may
correspond to reasonable subjective estimates of the unknown probability law
for bias fields, in the sense described by Friden [14, Chapt. 16]. In the end,
they are justified empirically by the good results obtained via their use. Because
ψβ is required to be positive definite, not all choices of low-pass filter H will
correspond to formally valid prior models on the bias field.

Computationally Efficient Filter. As argued above, the optimal H will be
a linear low-pass filter, when tissue class is constant. We have employed a par-
ticularly efficient filter that is characterized as follows

β̂i =
[FR]i

[Fψ−11]i
where 1 ≡ (1, 1, 1, . . . , 1)T (13)

The filter specified above is clearly linear in the mean residual, and it will be
a low-pass filter when the tissue class is constant, provided that F is a low-pass
filter. It has been designed to have unity DC gain – a spatially constant shift in Y
induces the same constant shift in β̂. If F is chosen to be a computationally effi-
cient low-pass filter, then the filter specified by (13) will also be computationally
efficient.

2.4 Equal Covariance Case

The formalism simplifies somewhat when the tissue classes have the same co-
variance. This case, for scalar data, was previously reported in [15], along with
scalar formulas for the weights. The bias estimator is then particularly simple
when the bias model is stationary. It is a shift-invariant linear low-pass filter
applied to the difference between the observed intensities and a prediction of the
signal that is based on the weights (which are a good estimator of tissue class).



2.5 Non-Parametric Extension

The method that was described in previous sections has two main components:
tissue classification and bias field estimation. Our approach in the extended
method has been to use the same basic iteration, and to replace the tissue clas-
sification component with the technique described in [16]. The classifier described
in [16] uses the Parzen Window representation for non-parametric probability
densities [17] that are derived from training data

The non-parametric tissue class conditional intensity models are derived from
training in the “natural” MR intensities. In view of our logarithmic transforma-
tion of the intensity data (1), we use the standard formula for transforming
probability densities.

In the expressions for the average residual (10) and average covariance (10)
we approximate with the empirical tissue class means and covariances from the
log transformed training data.

The resulting iterative algorithm is a simple generalization from the Gaussian
theory developed in the previous sections. Results obtained using the method
are described in Sect. 3.

3 Results

This section describes results recently obtained for segmenting MR images from
a large, longitudinal study of several dozen patients with multiple sclerosis (MS)
[18].

All of the MR images shown in this setion were obtained using a General
Electric Signa 1.5 Tesla clinical MR imager [19]. An anisotropic diffusion filter
developed by Gerig et al. [20] was used as a pre-processing step to reduce noise.

We used an implementation of the non-parametric extension that is described
in Sect. 2.5. This implementation is coded in the C programming language. It ac-
commodates 2 channel data (typically registered proton-density and T2-weighted
images), and multiple (more than two) tissue classes having un-equal covari-
ances. Because it can model the important intensities in the imagery (including
the background signal) it is able to correct and segment brain images without
the need for a previously generated ROI. It uses the computationally-efficient
filter described in Sect. 2.3, F is implemented as a moving average filter. Both
uniform and non-uniform distributions have been used for the prior on tissue
class.

In a typical case, the program was run until the estimates stabilized, typically
in 5 – 10 iterations, requiring approximately 2 seconds per iteration (per 2562

slice pair) on a Sun Microsystems Sparcstation 10 [21].
The method has been found to be substantially insensitive to parameter

settings. For a given type of acquisition, intensity variations across patients,
scans, and equipment changes have been accommodated in the estimated bias
fields without the need for manual intervention. In this sense, the method is fully
automatic for segmenting healthy brain tissue.



The data comprised registered proton-density and T2-weighted images for a
single multiple-sclerosis patient with multiple white matter lesions. These images
represented the same section from 20 scans over time after they were spatially
registered using the method described in [22, 23]. The same tissue class condi-
tional intensity models were used to segment all sections.

As expected, the results without intensity correction were dissapointing.
These results are equivalent to those which would be obtained using conventional
non-parametric intensity-based segmentation (which would more typically be
used with per-scan manual training). They showed many gross misclassifications
and demonstrated that conventional intensity-based segmentation is unfeasible
in this application, at least without per-scan training. Even with per-scan train-
ing, significant asymmetries remained in the results due to the spatial intensity
inhomogeneities present in the data.

Results using adaptive segmentation are shown in Fig. 1. Tissues are encoded
from black to white as follows: background, subcutaneous fat, gray matter, CSF,
lesions, white matter. Good stability and symmetry of the cortical gray matter
structures are apparent. Similar results have been obtained in processing 23
complete scans for each of 47 patients participating in the study mentioned
above, without the need for retraining or manually-generating regions-of-interest.
This has facilitated monitoring the evolution of specific white matter lesions
over time. Thus, fully automatic segmentation of clinical MRI data has been
demonstrated in more than 1000 complete scans, without the need for per-patient
or per-scan training or adjustments. The exams occurred over a 2.5 year period
that included a major MR equipment upgrade.

The algorithm embodies an interative solver for a non-linear optimization
problem, and like other local methods, there is no guarantee of convergence to
the global solution. We have found that in practical applications, such as the
one described here, the algorithm will reliably converge to a satisfactory solution
once the appropriate tissue model has been identified.

4 Discussion

The use of multi-channel statistical intensity classifiers was pioneered by Vannier
et al.[1]. The classification component of adaptive segmentation is similar to the
method described by Gerig et al. and Cline et al. [3, 4]. The classification com-
ponent of the non-parametric extended method is equivalent to that described
[16].

The bias field estimation component of adaptive segmentation method is
somewhat similar to homomorphic filtering (HMF) approaches that have been
reported. Lufkin et al. [5] and Axel et al. [6] describe approaches for controlling
the dynamic range of surface-coil MR images. Lim and Pfferbaum [7] use a
similar approach to filtering that handles the boundary in a novel way, and
apply intensity-based segmentation to the result.

When started on the “M Step”, and run for one cycle, adaptive segmentation
is equivalent to HMF followed by conventional intensity-based segmentation. We



Fig. 1. Adaptive segmentation results (without per-scan training)



have discovered, however, that more than one iteration are frequently needed to
converge to good results – indicating that adaptive segmentation is more power-
ful than HMF followed by intensity-based segmentation. The essential difference
is that adaptive segmentation utilizes evolving knowledge of the tissue type to
make increasingly accurate estimates of the gain field.

Dawant, Zijdenbos and Margolin describe methods for correcting intensities
for tissue classification [8]. In one variant, an operator selected points of a tissue
class are used to regress an intensity correction. In the other method, a pre-
liminary segmentation is used in determining an intensity correction, which is
then used for improved segmentation. This strategy is somewhat analogous to
starting adaptive segmentation on the “E step” and running it for one and a
half cycles. As in the previous case, our results demonstrate improvement with
additional iterations.

Aylward and Coggins describe a two-stage approach that first uses a band-
pass intensity corrector. Remaining inhomogeneities are handled by using super-
vised training to obtain spatially-varying statistics for classifying the corrected
MR data [10].

Several authors have reported methods based on the use of phantoms for
intensity calibration [6, 9]. This approach has the drawback that the geometric
relationship of the coils and the image data is not typically available with the
image data (especially with surface coils). Fiducial markers were used to address
this problem in [9]. In addition, the calibration approach can become complicated
because the response of tissue to varying amounts of RF excitation is significantly
non-linear (see [24, Equations 1-3 and 1-16]). In addition, phantom calibration
cannot account for possible gain inhomogeneities induced by the interaction of
anatomy and the RF coils.

5 Acknowledgments

We thank Maureen Ainsle, Mark Anderson, Ihan Chou, Gil Ettinger, Langham
Gleason, Charles Guttmann, Steve Hushek, Hiroto Hokama, Tina Kapur, San-
jeev Kulkarni, Robert McCArley, Martha Shenton, Simon Warfield and Cynthia
Wible for contributions to this paper.

References

1. M. Vannier, R. Butterfield, D. Jordan, W. Murphy, et al. Multi-Spectral Analysis
of Magnetic Resonance Images. Radiology, (154):221 – 224, 1985.

2. M. Kohn, N. Tanna, G. Herman, et al. Analysis of Brain and Cerebrospinal Fluid
Volumes with MR Imaging. Radiology, (178):115 – 122, 1991.

3. G. Gerig, W. Kuoni, R. Kikinis, and O. Kübler. Medical Imaging and Computer
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