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Abstract—Although simple and efficient, traditional fea-
ture-based texture segmentation methods usually suffer from
the intrinsical less inaccuracy, which is mainly caused by the
oversimplified assumption that each textured subimage used to
estimate a feature is homogeneous. To solve this problem, an
adaptive segmentation algorithm based on the coupled Markov
random field (CMRF) model is proposed in this paper. The CMRF
model has two mutually dependent components: one models the
observed image to estimate features, and the other models the
labeling to achieve segmentation. When calculating the feature of
each pixel, the homogeneity of the subimage is ensured by using
only the pixels currently labeled as the same pattern. With the
acquired features, the labeling is obtained through solving a max-
imum a posteriori problem. In our adaptive approach, the feature
set and the labeling are mutually dependent on each other, and
therefore are alternately optimized by using a simulated annealing
scheme. With the gradual improvement of features’ accuracy,
the labeling is able to locate the exact boundary of each texture
pattern adaptively. The proposed algorithm is compared with
a simple MRF model based method in segmentation of Brodatz
texture mosaics and real scene images. The satisfying experimental
results demonstrate that the proposed approach can differentiate
textured images more accurately.

Index Terms—Image segmentation, image texture analysis,
random field, simulated annealing.

I. INTRODUCTION

S
EGMENTATION of textured images has long been an im-

portant and challenging topic in the image processing so-

ciety. It aims to partition an image into several disjointed regions

that are homogeneous with regards to some texture measures,

so that subsequent higher level computer vision processing can

be performed. According to how much a priori knowledge is

involved, this problem can be divided into three subsets: super-

vised segmentation, semi-supervised segmentation, and unsu-

pervised segmentation [1]. In this paper, we consider only the
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so-called semi-supervised problem, where the number of tex-

ture patterns is known but the information about their properties

is not. During the past several decades, two types of algorithms

have emerged as solution to this problem: model-based segmen-

tation and feature-based segmentation.

In model-based algorithms, image segmentation is treated as

an incomplete data problem, where the gray level of each pixel

is known and the label, which designates the texture pattern the

pixel belongs to, is missing. To solve this problem, the hierar-

chical two-level model [2], [3] is most commonly used. Each

texture pattern in the observed image is modelled by a lower

level spatial distribution to capture its property. The desired la-

bels of all pixels are modelled by another higher level spatial dis-

tribution to characterize the blob-like region formation process

[2]. By Means of sampling from the posterior distribution of the

hierarchical model, simulated annealing may be used to esti-

mate a suboptimal solution, which yields either the maximum a

posteriori (MAP) [4]–[6] or the maximum posterior marginals

(MPM) [7]. As a matter of fact, various forms of the Markov

random field (MRF) [8] can be taken by the underlying com-

ponents of the hierarchical model. Many simplifications can be

adopted to make the posterior distribution computationally fea-

sible [9], and a lot of model optimization and parameter esti-

mation techniques can be applied to the model fitting [10]–[12].

Consequently, a variety of implementations have been presented

throughout the literature [13]–[16]. However, none of those ap-

proaches have proved to be able to converge to a global min-

imum. No robust segmentation can be guaranteed unless the

mechanism, which would allow an optimization process to es-

cape local minimums, could be delicately established. Another

disadvantage of those approaches is their complexity. Although

all model parameters and the labelling can be estimated simul-

taneously, the alternate sampling process usually makes those

approaches far more computationally intensive than their fea-

ture-based counterparts [1].

Feature-based segmentation algorithms can be briefly re-

garded as consisting of two successive processes: feature

extraction and feature clustering. For each pixel, a feature

vector is generated to indicate the gray-level statistics and

local texture content over a window centered on that pixel.

The range of features are diverse: model based statistics [17],

[18], local spatial statistics [19], and statistics derived from the

spatial-frequency domain [20]. Clustering algorithms which

are applied to the acquired features can also take many different

forms, such as statistical-based algorithms, neural network

based algorithms, and various fuzzy algorithms [21]. However,

traditional clustering methods may fail to fully utilize the

spatial information provided by the feature set.
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In recent years, a lot of novel feature-based methods have

been proposed, among which the algorithm developed by Deng

and Clausi [22], [23] is shown to be successful. Since it is based

on a simple MRF (SMRF) model, we call it the SMRF for con-

venience. The SMRF algorithm adopts the MAP-MRF frame-

work [4], [24] and thus achieves segmentation by minimizing

the weighted sum of two energy terms. One energy term is the

sum of the Gaussian energy related to each feature, and another

is the energy of the MRF characterizing the label distribution.

With the first term alone, it turns out to be the separation of

mixed data which results from several independent Gaussian

distributions. It is the second term that imposes the smoothing

and regularisation constraints on the segmentation result. Al-

though highly simple and efficient, this approach, like all fea-

ture-based algorithms, has the drawback of being intrinsically

less accurate, which is mainly attributed to the use of windows to

calculate features. The estimated feature is not valid unless the

texture in the estimation window is homogenous. It is usually

assumed that the homogeneity is satisfied, whereas it is not true

for boundary regions, where any estimation window may con-

tain more than one texture patterns. The inhomogeneous texture

will incur erroneous features, which may have a strong impact

on the accuracy of the final segmentation. Obviously, the inac-

curacy can only be avoided by using the pixels with the same

label in each estimation window. Unfortunately, we won’t know

the exact label of each pixel until the optimal segmentation is

obtained.

The primary contribution of this paper is to improve the

accuracy of feature-based algorithms by proposing an adaptive

segmentation of textured image. Our approach is based on the

coupled Markov random field (CMRF) model, which has two

mutually dependent components: a finite symmetric conditional

Markov (FSCM) model [8] characterizes the observed image

to obtain texture features [17], [18], and a multilevel Logistic

(MLL) model [2] depicts the desired labelling to achieve

MAP-MRF-based segmentation [4]–[6], [22], [23]. When

computing the feature set, labelling is regarded as known so

that, for each pixel, only the pixels with the same label inside

an estimation window are used to calculate a feature. During

segmentation, the obtained features are viewed as constant, and

therefore the labelling can be estimated by solving the MAP

problem, where features determine the likelihood probability

and the MLL model imposes the smoothing and regularisation

constraints. In our adaptive segmentation, the feature set and

the labelling are alternately optimized by a simulated annealing

scheme. By using the intermediate segmentation result, instead

of an assumption, the homogeneity of the subimage which

is used to estimate a feature is much improved. As a result,

features gradually get more accurate and, accordingly, the

boundary of each texture pattern in the labelling increasingly

approaches the true one. Finally, this novel approach has been

tested on mosaics of natural textures and the real scene images

as well.

II. COUPLED MARKOV RANDOM FIELD MODEL

The MRF theory can be traced back to the provocative work

of Bosanov [25] in the 1960s. It was initially developed to model

context dependent entities conveniently and consistently. Based

on the significant contribution made by research in 1970s and

1980s [4], [25], [26], it has become a mathematically sound and

computationally tractable tool in statistical image analysis. In

this paper, an image is described by a hierarchical MRF model,

which is detailed as follows.

An image is considered as a random field pair

defined on a rectangular lattice

, which is in-

dexed by the coordinate . The gray-scale values are

represented by , where

denotes a specific site and the random variable takes

integer values from the range [0, 255]. An observed image

is an instance of . Similarly, the labels are

denoted as , where the random variable

takes value from an finite set and is the

number of texture patterns appeared in the image. A labelling

, which symbolizes a possible segmentation, is

also called a configuration in the terminology of random field.

For the observed image , let an estimation window with size

center on each site . Within the window, all sites with the

label form a set , in which the subimage is assumed to be

a MRF and described by a FSCM model with an associated

second order neighborhood [8], shown as follows:

(1)

where is the set of

shift vectors corresponding to the second order neighborhood

system, is the set of correlation coefficients

associated with the set of translations from the central site ,

is a stationary Gaussian noise sequence with variance ,

and is the interior subset of .

The label field is also assumed to be a MRF and character-

ized by a second order multilevel logistic (MLL) model [2]. As

suggested by the Hammersley-Clifford theorem [26], the joint

distribution of all labels follows a Gibbs distribution

and takes the following form:

(2)

where is a normalizing constant or partition function of the

system, is a constant analogous to temperature, and is

the energy function.

Based on the FSCM model, a six-dimensional texture feature

vector is defined as

(3)

where is the mean of the subimage, is the estima-

tion of noise variance, and other four components are

the estimation of the correlation coefficients. An image can

then be represented by a multidimensional random field

; , an instance of which is called a

feature set . Traditionally, a feature vector

is estimated by using the subimage within a regular window
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without concerning the labels of those pixels. However, in our

hierarchical model, only the pixels with a specific label in the

estimation window are assumed to satisfy a FSCM model. That

means the feature set is a function of both the gray-level

image and the labelling , which can be expressed as

(4)

As suggested by the MAP-MRF framework, the optimal la-

belling under current feature set can be obtained by maxi-

mizing the posterior probability of conditioned on ,

indicated as follows:

(5)

where is the configuration space, i.e., the set of all pos-

sible segmentations. According to the Bayes rule [28], the above

equation can be further expressed as

(6)

where is the probability of feature set ,

is the prior probability of labeling , and is the

likelihood probability of obtaining the feature set on condition

of its neighborhood and label .

From (4) and (6), it is obvious that the feature set and the

labelling are mutually dependent in our CMRF model. As a re-

sult, segmentation of textured image can be formulated as the

following optimization problem:

(7)

where and represent the optimal feature set and labelling,

respectively.

III. ADAPTIVE SEGMENTATION

In tradition feature-based segmentation methods, features can

be computed first and segmentation is then performed. Unfor-

tunately, the feature set and the labelling in our CMRF model,

as shown in the previous section, mutually affect each other and

cannot be obtained independently. Therefore, finding the glob-

ally optimal solution of the optimization problem given by (7)

is computationally intractable. In this work, a step-wise opti-

mization scheme is adopted to achieve an adaptive segmenta-

tion, in which the feature set and the labelling are alternatively

updated. When calculating features, the labelling is assumed to

be known and fixed. While refining the labelling, the features

are assumed to be predetermined constants. Before describing

the optimization technique, the calculation of features and the

posterior probability is briefly described.

A. Feature Estimation

Although parameters of the FSCM model can be esti-

mated by different methods, the least-squares estimation pro-

posed by Manjunath and Chellappa [17], [18] is adopted here

because of its simplicity and consistency. Consequently, the fea-

ture vector of site is calculated as follows:

(8)

(9)

(10)

where is a column of gray-level

and is the parameter set. It should be

mentioned that, when applying to the FSCM model, the gray

level of each site should be subtracted by the local mean, since

, is expected to meet the stationary assump-

tion.

B. Posterior Probability

With a known feature set , the probability does not

vary with respect to any solution and can be eliminated.

Consequently, (6) can be simplified as

(11)

Similar to the SMRF algorithm [22], [23], two assumptions are

introduced to calculate above probabilities. One is that each

random variable in the feature field obeys an indepen-

dent Gaussian distribution with a different means vector and

a covariance matrixe , corresponding to the pattern site

belongs to. The other is that only pair-wised cliques in

the labelling field have non-zero potentials . Furthermore,

if , and if . The MAP problem

given by (11) can then be solved by minimizing the following

posterior energy:

(12)

where

(13)

is the Gaussian energy, is the dimension of features, and

is a weighting parameter balancing the contribution of the

feature-related energy and the labelling-related energy to the
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overall posterior energy. Slightly different from the SMRF al-

gorithm, we don’t assume that each component of the feature

be independent on others. Consequently, the term in

(12) is the energy of a multivariable Gaussian function.

C. Step-Wised Optimization

Generally, the energy function given by (12) is non-convex,

and thus the minimization is limited by any deterministic algo-

rithm. In our adaptive segmentation algorithm, the simulated an-

nealing scheme [29], together with the Metropolis sampler [4],

is adopted to achieve a step-wised optimization of the CMRF

model.

Initially, a guess of labeling is given and a feature set is es-

timated under the assumption that the texture in each estimation

window is homogeneous. In each iteration, labels are updated

in a raster scan order. For each site , a new labeling is cre-

ated by randomly choosing a new label for that site. That means

those two configurations are almost the same except and

. Therefore, their energy can be evaluated by comparing

only the following terms:

(14)

(15)

where and are the features corresponding to the

assumptions of and , respectively. If ,

the new labeling will substitute for the old one, i.e., .

Otherwise, the new labeling will be accepted with a proba-

bility

(16)

where is the temperature coefficient used in simulated an-

nealing scheme, and is the iteration number. Correspondingly,

the feature set will also be updated according to the new la-

belling. The revised feature set is almost the same to the old

one, except that the feature of site is given as follows:

(17)

The alternate updating of feature set and labelling will be

performed iteratively until a stopping criterion is reached. For

example, in our experiments, the optimization was terminated

when the number of iteration arrives at 200, or when the labeling

does not change any more.

During the optimization process, the mean vectors and

the covariance matrix of the feature set are used to

calculate the Gaussian energy . Theoretically, each

time when the labelling or feature set changes, those statistics

should be re-estimated through the maximum likelihood esti-

mation. However, for the sake of computational simplicity, the

re-estimation has not been performed until the labels and fea-

tures of all sites have been scanned once in our approach.

Another simplification is introduced to facilitate the calcu-

lation of the features and . Taking the estimation

of for example, where the label of site is assumed to

be , only those pixels with label in the estimation

window are charactered by the FSCM model. The number of

those pixels is denoted as . A large means the tex-

ture in the window is primarily homogeneous, and a small

will definitely lead to a high estimation error. Therefore, only if

falls in the range , the feature will be

re-estimated; otherwise, the original one will be used instead,

i.e., .

Finally, it should be pointed out that the labelling is very crit-

ical for feature re-estimation, for only those pixels whose labels

are the same will be described by a FSCM model and used to cal-

culate the feature. However, in the early stage of the optimiza-

tion, the labelling is far from optimal. Using such an inaccurate

labelling to re-estimate features, the estimation error implied in

the labelling will be transferred into the feature set and ampli-

fied through the iterative optimization steps. Therefore, feature

es-estimation and updating will not be performed in the first

iterations.

D. Parameter Setting

The proposed segmentation algorithm involves many param-

eters. Although some parameters can be estimated automati-

cally, others need to be derived empirically.

Parameter is the width of the square estimation window. To

improve the accuracy of the lease square estimation used in the

feature extraction, parameter should be as large as possible.

Taking account of the computational expense, we choose as

21. Another parameter related to is the range ,

which determines if re-estimation of a feature vector is needed.

To determine this parameter, the impact of small subimage to the

estimation accuracy should be investigated first. Three Brodatz

textures (D9, D55 and D84) [30] and two natural textures (rough

wall and sand) selected from the USC-SIPI Image Database [31]

are used as five image samples, on each of which feature esti-

mation has been performed 20 times by using different portion

of pixels in a 20 20 estimation window. To equalize the con-

tribution of different components, each dimension of those fea-

tures has been normalized by its maximum value. The relative

estimation error is defined as the Euclidean distance between

the obtained feature and the feature acquired by using the entire

window. For each texture, this experiment has been repeated ten

times at randomly selected locations, and the average errors are

depicted in Fig. 1. It is clear that the estimation is pretty ac-

curate when more than 80% of pixels are used, while this por-

tion drops below 40%, the error becomes relatively large. Taking

both accuracy and efficiency into consideration, we empirically

set be .

Parameter determines when the spatial information im-

plied in the labelling begins to be used in feature optimization.

Comparing with a small , which may introduce inaccuracy

to both the feature set and the labelling, a large appears to

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 25,2010 at 03:03:43 UTC from IEEE Xplore.  Restrictions apply. 



XIA et al.: ADAPTIVE SEGMENTATION OF TEXTURED IMAGES 3563

Fig. 1. Relationship between the average relative error of feature and the per-
centage of the subimage used in feature estimation.

be less harmful, though it will postpone the convergence of the

system. In this study, we empirically set .

The energy weight , which presents the tradeoff between

the fidelity of the observed texture and the smoothness of the

labelling, is very critical to the performance of this segmenta-

tion algorithm. It is expected to be relatively large in the early

stage of the optimization so that the difference between features

can play a dominant role, and considerably small in the late

stage to introduce the spatial constraint. In our experiments, the

following attenuation function used by the SMRF algorithm is

adopted to acquire the variable weighting parameter:

(18)

where the initial weight is set as 13.

Finally, the annealing temperature sequence plays a de-

cisive role in the convergence of the simulated annealing. In

each step, it determines the acceptable probability of high en-

ergy configuration. High temperature enables the optimization

scheme to jump out of some local minimums, whereas low tem-

perature ensures that the system will be frozen at certain low en-

ergy state. The optimal cooling scheme, which can assure a the-

oretical convergence, is computationally intractable [4]. Here,

we use following temperature sequence as a suboptimal one:

(19)

where the initial temperature is set as 3.

IV. EXPERIMENTAL RESULTS

In this section, we present the results of our CMRF model

based adaptive segmentation algorithm in three experiments. In

order to assess its advantage in segmentation accuracy, the pro-

posed approach is compared with the SMRF algorithm. With the

purpose of making a fair comparison, two modifications have

been made to the SMRF algorithm. First, the MRF model pa-

rameters mentioned in the previous section is adopted as fea-

tures. Furthermore, the multivariable Gaussian distribution is

used to compute the energy function, for the independence of

each feature component can not be guaranteed. In our imple-

mentation of the SMRF algorithm, other parameters all take the

suggested values given in [22]. As a result, the major difference

between those two approaches is that the SMRF algorithm re-

gards the feature set as known and unchangeable. Therefore, the

following experiments mainly demonstrate the improvement of

segmentation accuracy caused by adaptive process.

The first two comparative experiments have been performed

on two sets of natural texture mosaics MII and MIV [32], which

are generated by using 12 natural textures randomly chosen

from the Brodatz album [30]. Those textures, together with their

indexes and brief descriptions, are shown in Fig. 2. The first ex-

periment tests the fundamental ability of our approach to distin-

guish two different texture patterns. Combining each of those

12 textures with every other, the set MII consists of

, each of which is a mosaic of two textures with a

size of 256 256 and a dynamic range of 256 gray levels. The

Top row of Fig. 3 shows five example test cases (MII1 to MII5).

The bottom row illustrates the results obtained by applying the

proposed approach and the middle row gives the results of the

SMRF algorithm. Table I compares the error percentage of the

incorrectly classified pixels of the results given by Fig. 3. The

edge of different regions in the original images is highlighted

and those two texture patterns are indicated by black and white

regions, respectively, in all results. It can be concluded from

these results that, for such two class problem, our approach can

achieve a successful segmentation with a higher accuracy, ex-

cept for those sharp corners of texture regions, where the desired

pattern cannot dominate the estimation window.

To demonstrate the advantage of the proposed algorithm in

differentiating textures of more than two classes, the second ex-

periment has been carried out on mosaics of four textures. Se-

lecting four patterns from those 12 prototypes and combining

them, the set MIV comprises . Five test

cases, together with their corresponding segmentation results,

are presented in Fig. 4. Similar to Fig. 3, the border of each tex-

ture region is drawn with white color in the original images and

all segmentation results are shown by using arbitrarily selected

gray level to highlight different regions. The segmentation er-

rors of those five cases are given in Table II. It is apparent that

our approach can achieve more accurate segmentation, espe-

cially in locating the edge of different patterns. Table III presents

the average performance of the SMRF method and the proposed

one on both databases. Although more mis-segmentation hap-

pened when dealing with four-class mosaics, the average error

of our approach is less than half of that of the SMRF method.

Meanwhile, it is shown in Table III that the standard deviation

(Std) of segmentation errors of our method is smaller than that

of the SMRF method, which means that our approach is more

stable.

As mentioned before, the labeling optimization is dominated

by the texture features in the early stage. When the energy

weight is large, the effect of the prior energy can almost be

ignored and the problem is somehow equal to the classification

of mixed Gaussian patterns by using maximum likelihood

estimation. In this case, the initial guess of labeling may have

a strong impact on the final convergence. If the modes of

all patterns are well separated, as in the first experiment, a
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Fig. 2. Twelve natural textures from Brodatz album. The index and a brief description are shown under each texture.

Fig. 3. Five test cases of mosaics of two textures (MII1 – MII5) and their seg-
mentations by applying (middle row) the SMRF method and (bottom row) the
proposed method.

TABLE I
ERROR PERCENTAGE OF MISCLASSIFIED PIXELS ON IMAGE MII1–MII5

randomly selected initial labeling may lead to an acceptable

result. Otherwise, a better initialization is needed. With the

increasing of patterns in the image, it becomes tremendously

difficult to distinguish the features of each texture in the second

experiment. To obtain a reasonable initialization, one sixteenth

of the original features are clustered by the well-known Fuzzy

C-Mean (FCM) algorithm [33]. Half labels are initialized

according to the clustering results to increase the probability

of correct convergence, and the other labels are randomly

initialized to avoid a local minimum. Regardless of this, there

are still 57 failed test cases (11.5%) in set MIV, which explains

why the average segmentation error over the entire set is much

higher than that of the given samples.

Fig. 4. Five test cases of mosaics of four textures (MIV1–MIV5) and their seg-
mentations by applying (middle row) the SMRF method and (bottom row) the
proposed method.

TABLE II
ERROR PERCENTAGE OF MISCLASSIFIED PIXELS ON IMAGE MIV1–MIV5

TABLE III
AVERAGE ERROR PERCENTAGE OF MISCLASSIFIED PIXELS

Next, we apply the presented comparative experiment to a

number of natural images. The segmentations for a picture of

sea and beach, a grassland scene, a perspective of buildings,

and a portrait of a lizard are shown in Fig. 5. The original im-

ages are given in the first row, and the results obtained by the

SMRF method and the proposed algorithm are shown in the
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Fig. 5. Four real scene images and their segmentations by applying (middle
row) the SMRF method and (bottom row) the proposed method.

TABLE IV
AVERAGE TIME COST OF TWO SEGMENTATION METHODS

middle and bottom row, respectively. The segmentation of tex-

tures in those images is evaluated subjectively. For a better com-

parison of those results, the border of each segmented region is

directly drawn and overlaid on the original images. Compared

with the results of the SMRF method, the segmented regions of

our approach appear to agree better with the regions we would

perceived as distinct, if we try not to make use of semantics

like “sky,” “beach,” “clouds,” “buildings,” “grass,” “trees,” etc.

Although some under segmentation occurs when applying our

algorithm to the test samples shown in the right two columns

of Fig. 5, over segmentation appears more severe in the corre-

sponding results of the SMRF method. The proposed segmenta-

tion algorithm, on the whole, can detect boundaries of different

textured regions more exactly in all four test cases. This conclu-

sion is completely in accordance to the results reported in the

previous experiments.

Although more accurate, the proposed approach has higher

computational complexity than conventional approaches be-

cause of the re-estimation of some features in the segmentation

process. During the optimization, the edge of different regions

moves gradually and slowly. Compared with the size of esti-

mation window, the changing edge in each step is unapparent.

Therefore, it is not necessary to calculate the feature of a given

site in every iteration. In our implementation, once the feature

of a site is updated, it will not be recalculated in the next

iterations. This means a lot of computation has been saved.

Table IV gives the average time cost of both methods in the

first two experiments (Intel Pentium III 871-MHz processor

and 512-M memory). It is revealed that the complexity of our

approach is only slightly higher than that of the SMRF method.

V. CONCLUSION

In this work, an adaptive algorithm based on the coupled MRF

model is proposed to achieve accurate segmentation of textured

images. By using the intermediate segmentation result, the ac-

curacy of feature extraction is much improved. With the refined

feature set, the segmentation result also gets better. Comparative

experiments have proved the success of the proposed approach.

In the proposed CMRF model, the features of each pattern

are assumed to satisfy a Gaussian distribution. This assumption

usually simplifies the expression of likelihood probability. How-

ever, it may be a major cause of this algorithm’s failure on some

images, where the Gaussian distribution may not be an appro-

priate choice. This problem will be further investigated in fu-

ture. Furthermore, although this work focuses on MRF-based

features, the proposed idea of simultaneously refining features

and labels may provide some inspiration to other feature-based

texture segmentation approaches. In fact, the feature used in this

paper has its limitation to model textures with strong edges/di-

rectionality or large-scale primitives. Additional future work is

to explore different texture features to segment various images.
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