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Adaptive Semi-Discrete Central-Upwind Schemes for
Nonconvex Hyperbolic Conservation Laws

Alexander Kurganov!, Guergana Petrova! and Bojan Popov?

Abstract

We discover that the choice of a piecewise polynomial reconstruction is crucial in comput-
ing solutions of nonconvex hyperbolic (systems of) conservation laws. Using semi-discrete
central-upwind schemes we illustrate that the obtained numerical approximations may fail
to converge to the unique entropy solution or the convergence may be so slow that achiev-
ing a proper resolution would require the use of (almost) impractically fine meshes. For
example, in the scalar case, all computed solutions seem to converge to solutions that are
entropy solutions for some entropy pairs. However, in most applications, one is interested in
capturing the unique (Kruzhkov) solution that satisfies the entropy condition for all convex
entropies.

We present a number of numerical examples that demonstrate the convergence of the
solutions, computed with the dissipative second-order minmod reconstruction, to the unique
entropy solution. At the same time, more compressive and/or higher-order reconstructions
may fail to resolve composite waves, typically present in solutions of nonconvex conservation
laws and thus may fail to recover the Kruzhkov solution.

In this paper, we propose a simple and computationally inexpensive adaptive strategy
that allows to simultaneously capture the unique entropy solution and to achieve a high
resolution of the computed solution. We use the dissipative minmod reconstruction near the
points where convexity changes and utilize a fifth-order weighted essentially non-oscillatory
(WENOS) reconstruction in the rest of the computational domain. Our numerical examples
(for one- and two-dimensional scalar and systems of conservation laws) demonstrate the
robustness, reliability, and non-oscillatory nature of the proposed adaptive method.

AMS subject classification: Primary 656M12; Secondary 35L65

Key Words: Hyperbolic systems of conservation laws, semi-discrete central-upwind schemes,
piecewise polynomial reconstructions, nonconvex flux.

1 Introduction

We consider initial-value problems (IVP) for hyperbolic (systems of) conservation laws in one
(1-D) and two (2-D) space dimensions:

u; + Vi - f(u) =0, (1.1)
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u(x,0) = uy(x), (1.2)

whose entropy solutions may admit composite waves. Such examples are scalar conservation laws
with nonconvex fluxes and systems of conservation laws, for which (at least) one of the structure
coefficients, defined in equation (2.7) in §2, changes sign. Further, we refer to all these cases as
nonconvex hyperbolic (systems of) conservation laws.

An important example of such system is the Euler equations of gas dynamics with a nonconvex
equation of state (EOS). In general, in this case, anomalous wave structure should be expected
near a phase transition, because the wave speed need not be monotonic along Hugoniot loci
and isentropes, and the usual construction of the wave curves for the Riemann problem must
be modified (see [28] and the references therein). Another important example of a nonconvex
system of conservation laws is the polymer system used to model polymer flooding processes
in enhanced oil recovery (see, e.g., [30]). The solution of the Riemann problem for these two
systems is known (see, for example, [2, 24, 25, 28, 36, 38, 39] and [11, 13], respectively). However,
designing a reliable and robust high-order numerical methods for general initial data remains a
challenging problem.

Many classical numerical schemes have been extended to solve nonconvex (systems of) con-
servation laws. We refer the reader to [1, 4, 5, 6, 10, 32, 37, 40] for several upwind Godunov-type
schemes based on both the exact and approximate Riemann problem solvers. A low dissipative
front tracking method for the polymer system was proposed in [9]. At the same time, note that
the “simplest” extensions of the Roe scheme typically cannot be applied in practice to nonconvex
systems of conservation laws. We would also like to point out that many of the aforementioned
schemes may require computationally expensive evaluation of integrals or a very careful estima-
tion of the CFL number, since otherwise the computed solution may converge to a weak solution
that is not the unique entropy solution (see, for example, [20]).

In this paper, we apply the Godunov-type semi-discrete central-upwind schemes from [15] to
numerically solve nonconvex hyperbolic (systems of) conservation laws. These schemes are an
attractive alternative to other existing methods because they are simple (no Riemann problem
solvers are employed), universal, efficient, and can be used as a “black-box solver”. They consist
of three steps: projection (averaging), a piecewise polynomial reconstruction, and evolution of
the reconstructed interpolant to the next time level according to the integral form of the conser-
vation law (obtained by integrating (1.1) over the control volume). Assuming the exact averaging
and evolution operators are used, the non-oscillatory nature of the computed solution is guar-
anteed provided the piecewise polynomial reconstruction is non-oscillatory, which is typically
achieved with the help of nonlinear limiters. When solving the nonconvex problem (1.1)—(1.2)
using the semi-discrete central-upwind schemes from [15], necessary adjustments, related to the
estimation of the local speeds of propagation, have to be made. Moreover, it turns out that the
choice of reconstruction is crucial for capturing of the unique entropy solution. One may expect
that, as in the convex case, the use of more compressive and/or higher-order reconstruction will
result in sharper resolution of the computed solution. However, this is not the case here, where
sharper reconstructions may lead to the convergence of the computed solutions toward a weak
solution, which satisfies the entropy condition for only some, but not all convex entropies. At the
same time, the use of more dissipative reconstructions typically results in computing the unique
entropy solution, but with relatively low resolution. For example, the implementation of the
dissipative minmod reconstruction (see, e.g., [19, 23, 29, 35]) seems to ensure the convergence
toward the unique entropy solution, while more compressible reconstructions based on the gen-
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eralized minmod [23, 29, 35] or superbee [23, 31, 35] limiters as well as the fifth-order essentially
non-oscillatory (WENO5) [3, 12, 27, 33, 34] reconstruction may lead to capturing another weak
solution (at least in the case when the mesh is of reasonably coarse size typically used in practical
computations).

In this paper, we introduce a simple scheme adaption strategy for solving nonconvex problems,
which utilizes the advantages of both the compressive/high-order and the dissipative reconstruc-
tions, namely, computing the entropy solution with high resolution. This is achieved by the
proposed adaptive semi-discrete central-upwind scheme. In the new scheme, the choice of re-
construction is based on the so far computed solution and switches adaptively from one type to
another at/near the points where the flux convexity changes.

The paper is organized as follows. In §2, we briefly describe the semi-discrete central-upwind
schemes. Several piecewise polynomial reconstructions and their impact on the computed so-
lutions are discussed in §3. Our scheme adaption strategy is presented in §4. The numerical
examples are shown in §5, where we test our method on 1-D and 2-D nonconvex conservation
laws, including scalar equations, the Euler equations of gas dynamics, and the polymer system.

2 Semi-Discrete Central-Upwind Schemes — an Overview

In this section, we briefly describe the semi-discrete central-upwind schemes, proposed in [15].
Here, we emphasize the details, needed for their implementation for nonconvex conservation laws.

For simplicity, we will focus on the 1-D case, where we consider a uniform spatial grid =, =
aAx, and assume that the computed cell averages of the solution at some time level ¢:

x .
it

1
u;(t) ~ Az u(x,t)dx,

i—

NI

are already available. Using these values, we reconstruct a (non-oscillatory) piecewise polynomial
interpolant (from now on, we will omit the time-dependence of all computed and reconstructed
quantities), > p;(x)x;(z), where x; is the characteristic function of [xj_%,ijr%] and p;(z) are
the corresponding polynomial pieces. For example, conservative linear pieces have the following
form:

p;(z) = u; + s;(x — ;). (2.1)
Piecewise polynomial reconstructions are, in general, discontinuous at the cell interfaces, xr =
T;, 1, and therefore their evolution is locally described by the solutions of generalized Riemann
profalems. The sizes of the corresponding Riemann fans are determined by the right- and left-
sided local speeds of propagation, {a]j.:Jr%}, which can be estimated by

of of
+ or - : of
a1 = wec(f}af(’uf ; {AN<8u (w)),O} ;1= weC(qufmll,uf ; {)\1 <8u (w)),O} . (2.2)
jts itg jts itg
of

Here, A\; < ... < Ay are the eigenvalues of the Jacobian 5, and C’(u]._+l,u;r+l) is the curve in
2 2

the phase space that connects the left and right values of the reconstruction at v =z, 1

w = pj(a:],r%), u;zr% = ij(ijr%). (2.3)
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The cell averages {u;} are then evolved in time according to the semi-discrete central-upwind

scheme:
d _ ) }L+%“)"E%—%“) (2.4)
_u - — .
dt ™’ Ax ’
where the numerical fluxes Hj 41 are:
+ - — + +
a” f(u ) —a  f(u ) a’ ,a;
2 PUYC) AR NN KRN A BAMEAS SRS A M A [t (2.5)
IT2 at | —a at , —a , L itz its
Jt3 Jt3 Jt3 J+3

Notice that a practical implementation of (2.4)—(2.5) requires the following:

(i) A stable, preferably a strong stability preserving (SSP), [7], solver for the ODE system (2.4).
In all numerical experiments presented below, we have used the third-order SSP Runge-Kutta
method. To guarantee that no wave interaction occurs during each time step, the CFL number
has been set to 0.5;

(ii) A choice of a piecewise polynomial reconstruction (see the discussion in §3). Notice that the
spatial order of the resulting scheme is determined by the order of the reconstruction;

(iii) A practical version of formula (2.2) for computing the one-sided local speeds of propagation.
It is well-known that in the convex case, they can be computed by

Ty = e (Gatu)) () 0}

s = o (R0, ) (R )0}

In the nonconvex case, however, this simple formula is incorrect if the flux convexity changes

near ui+1, and one has to use a more accurate estimate of a] i there.
2

(2.6)

In the scalar case, the speeds in (2.2) can be easily evaluated exactly:

a;:_l = 1ax {f,(u)> 0}, a_+l = 1n - {f/(u)> 0},
2 w€[u™y umax ] I3 w€ ™y u™n ]
Jtg ita Jtg ity
mln 3 - max
where u” jil mln{ujJr2 1} and u) i = max{u e J+1}

In the case of a system we follow the approach in [37] if the structure coeflicients,
KJZZVU)\Z"I'Z', izl,...,N, (27)

change sign near u* ! , (here r; is the i-th right eigenvector, corresponding to the i-th eigenvalue

Ai). The left and rlght local speeds are then estimated by

Gy = max{“(?& D) AN(S& )l HN’O}’

a1 = min{M(gi( ‘5)) A1<§£( 2)) Hi, 0 }

(2.8)
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Here, the notation is:

Hy = Ig%>§]H(AN( L), An(uf 1) KN KNG O),
H, = 0121[6111]71()\1( 41 ),Al(uﬁ%),ml—,/ﬁ;a),
where
+ + mid mid J %—i_ 2 .
Ry = vuAi(uj_i_Q) rz(u]+%), uj+% - #7 = ]-7N7 (29)

are the left and right structure coefficients at ., 1 +1 and H(a,b,a’,b';0) is the unique Hermite
cubic polynomial that satisfies the following mterpolatlon condltlons

H(a,b,a’,V;0) =a, H(a,b,ad' b';1)=0b, H'(a,b,a V;0)=0d', H'(a,b,a V;1)=1V.

Away from the regions where the convexity changes, the local speeds are computed by (2.6).

Remark. In the 2-D case, we use a higher-order version of the central-upwind scheme from
[15], where a fourth-order central-upwind numerical flux was obtained. Proceeding along the lines
of the numerical flux derivation in [15] and replacing Simpson’s rule with the 3-point Gaussian
quadrature in the evaluation of the spatial flux integrals, we arrive at the following semi-discrete
central-upwind scheme:

d HE L0 —Hy L, (0 HY () —HY ()

J+3.k J—3, Jk+3 Jik—5

S (t) = - ~ Ay : (2.10)

where the numerical fluxes are

+
at . i
z o Jtgk El E2 E3
W= )_5f(uj7k)+8f(uj7k)+5f(uj7k)}
Jt3.k Jj+3.k
a. -
]+§,k
- ——[BE ) + 8P ) + SR )|
18(&;_%7k _ aj+%7k) i ]+1 k ]+1 k ]+1 k
+ —
a. 1 a . 1 r
Jt+g.k j+35.k
e B i) + S - w) s - w2
Civie = Yplp)*
and
bt i
HY, )= o [sg(u) + Sg(ul}) + 5g(w))|
bj_,k-l-% I
TWOT b)) 5g(u ]k+1)+8g( ]k+l)+5g( ]’H—l)}
jikt+: Jk+57
btoobo .
e+ k1
+ (bi 2 — )_5(11?,2“ W)+ 8(ufh = ufR) +5(ufh,, —uf)| (2.12)

Jk+3 Jik+35
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Here, the Cartesian grid is assumed to be uniform with x, = aAz, yg = SAy; the point values
u’, i = 1,2,3 are the values of the polynomial piece over the cell [xj_%,xﬁ%] X [yk_%7yk+%]7
evaluated at the corresponding Gaussian nodes along the eastern edge (z = Tipl, Ypot <Y<

. 2
Y +%); the point values u%, 1 = 1,2,3 are the values of the polynomial piece over the same

cell evaluated at the corresponding Gaussian nodes along the northern edge (:Bj_% <x <,
Y = Y, 1); and the rest of the point values, u}’f’,j, ujsfk, 1 =1,2,3, are calculated at the Gaussian
nodes along the remaining two edges. Recall that the Gaussian nodes G;, ¢ = 1,2,3, on an
arbitrary segment AB with A = (a1, a2) and B = (b1, by) have the following coordinates: G =
(par+a_ag, oy by +a_by), Gy = ((a1+az2)/2, (b1 +b2)/2), and G5 = (_a; +aiag, by +aby),
where oy = 2(1£/3/5).

The local speeds of propagation in the x- and y-direction, ail’k and bjjfk L1
computed at the midpoint of each cell interface in a dimension—b;—dimension “manner according
to the above 1-D recipe.

respectively, are

If the point values in (2.11)—(2.12) are computed using an rth-order piecewise polynomial re-
construction, the resulting spatial order of the semi-discrete central-upwind scheme (2.10)—(2.12)
will be min(r, 6) due to the accuracy limitation of the Gaussian formula. When a second-order
piecewise linear reconstruction is utilized, the sixth-order fluxes (2.11)—(2.12) can be replaced by
their simpler second-order versions (see, e.g., [15, 17]).

3 Piecewise Polynomial Reconstructions

In this section, we discuss the effect of different piecewise polynomial reconstructions on the
numerical solution, computed by the central-upwind schemes. We will consider several second-
order reconstructions and the fifth-order WENObS reconstruction, each of which will be applied
to the conservative variables componentwise (therefore, all the variables used in this section
are scalar). In the nonconvex case, the choice of reconstruction is particularly important for
computing the unique entropy solution, especially when composite waves are present.

In general, in order to achieve high resolution, the piecewise polynomial reconstruction
should be of an appropriate order of accuracy and non-oscillatory. For second-order piece-
wise linear reconstructions (see (2.1)), the first requirement can be easily achieved by ensur-
ing s; = wu,(z;,t) + O(Az), while to satisfy the non-oscillatory property, the reconstruction
has to utilize a nonlinear limiter. A library of such reconstructions is available (see, e.g.,
(19, 20, 8, 23, 29, 31, 35]). In the numerical experiments, reported in §5, we have tested several
well-known limiters, such as the generalized minmod limiter ([8, 23, 29, 35]):

. a._a._l ’L_L l_ra'—l ’L_L l_ra.
sj:mmmod(e JAIJ : J*QMJ .0 J*M J), 0 el1,2], (3.1)

where the minmod function is defined by

min;{z;}, if z;, >0 Vj,
minmod(z1, 22, ...) := ¢ max;{z;}, if z; <0 Vj,
0, otherwise,
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and the superbee limiter (]20, 23, 31, 35]):

Uj — Uj—1

Az

Ujt1 = Uy (3.2)

max {0, min(2r, 1), min(r,2)}, r=———.
Uj — Uj—1

Sj =
Note that the generalized minmod limiter (3.1) with = 1 reduces to the standard (dissipative)
minmod limiter, which will be referred to as the MM1 limiter. The other limiting case (6 = 2)
corresponds to the most compressive minmod limiter, which from now on, will be denoted by
MM2. The superbee limiter will be denoted by SB.

In many cases, especially when smooth parts of the solution have a complicated structure,
it may be advantageous to use higher (than second) order reconstructions. We refer the reader
to [3, 16, 20, 21, 22, 26] for numerous examples of higher-order reconstructions. A very popular
family of such reconstructions is the so-called WENO reconstructions. They were first introduced
in [27] and later on have been extended to higher orders, multiple number of dimensions and
finite-difference setting (see, e.g., [3, 12, 33, 34] and the references therein). In our numerical
experiments, we have used the fifth-order finite-volume WENO5 reconstruction, applied com-
ponentwise and extended to the 2-D case in a dimension-by-dimension manner as described in
[33].

In practice, the reconstruction selection depends on the problem at hand. When the entropy
solution does not admit composite waves, the implementation of a compressive second-order
reconstruction or a higher-order one typically results in a high quality numerical solution, since
both smooth and discontinuous (shocks, contacts) parts of the solution are approximated more
accurately than by a more dissipative reconstruction, such as the MM1 one. However, the
situation is more complicated in the nonconvex case, in which a formation of composite waves
is possible. This problem is best understood in the case of a 1-D scalar equation, which is the
simplest conservation law whose solutions admit composite waves.

3.1 One-Dimensional Scalar Conservation Laws

Composite waves (see [20]) consist of a sequence of joined rarefactions and shocks. A generic
case is a shock adjacent to a rarefaction wave, in the computation of which the reconstruction
selection seems to be crucial. As we illustrate below, a numerical scheme that uses the generalized
minmod limiter (3.1) with # > 1 or even the more compressive superbee limiter may result in
capturing a numerical solution that converges to a weak solution, consisting of a shock, adjacent
to an artificial constant state, followed by a rarefaction wave. Moreover, the rarefaction may be
completely missing (see Figure 3.4), and the shock location and strength may be totally different
from the ones in the unique entropy solution.
We now consider a particular example of the 1-D scalar equation:

w4+ f(u), =0, (3.3)

with the C'' monotone increasing flux, whose convexity changes at u = 1/2:

u(l —u) 1
74 y u < 5,
flu) = (3.4)
1o, 1 .3 S 1
2 TR T e YE
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and subject to Riemann initial data. While the Kruzhkov entropy solution can be easily obtained
for any (nonconvex) smooth flux function (see, e.g., [18]), numerically solving equation (3.3) by
a high-order scheme may be quite a challenging problem.

We apply the central-upwind semi-discretization (2.2)—(2.5) to equation (3.3)—(3.4). Due to
the monotonicity of the flux (3.4), a , =0, and the central-upwind scheme (2.2)—(2.5) reduces
to a simple semi-discrete upwinding: ’

d f(u;r%)_f(u__%)
Euj(t) =— Ao : (3.5)
We first solve equation (3.3)—(3.4) subject to the initial condition:
0, r < 0.25,
u(w, 0) = { 1, 025<u. (3:6)

In Figure 3.1, we show the solutions computed at time ¢ = 1 on a uniform grid with Az =
1/1600 using the second-order upwind scheme (3.5),(2.1),(2.3) with compressive MM2 and SB
reconstructions. One can clearly see that in both cases, the captured solution is not the Kruzhkov
entropy solution, which consists of a shock, located at # = (v/6 — 1)/4, followed by a rarefaction
wave. Moreover, we have performed a numerical convergence study which clearly indicated that
both numerical approximations fail to converge to the entropy solution.

1r . . . . , 1r . . . . ,
0.8 1 0.8 1
EXACT —— EXACT ——
x_— MM2 x — SB  x
0.6 1 0.6 1
04r . 1 0.4
0.2 1 0.2
0 < ‘ ‘ ‘ ] 0 ‘ ‘ ‘ ‘ e
0.3 0.4 0.5 0.6 0.7 0.8 0.3 0.4 0.5 0.6 0.7 0.8

Figure 3.1: Solutions of (3.3)—(3.4),(3.6) computed with MM2 (left) and SB (right).

At the same time, we observe that the same method but with the dissipative MM1 reconstruc-
tion leads to the convergence of the computed solutions towards the unique entropy solution, see
Figure 3.2 (left) and Figure 3.2 (right), where a mesh refinement study is performed.

In this example, the evolution step is performed using the semi-discrete upwind scheme
(3.5),(2.1),(2.3) and the third-order SSP Runge-Kutta ODE solver. A natural question to ask is
whether the observed effect is due to the particular spatial discretization and time integration
used or it is a consequence of the implemented reconstruction. It turns out that if we start with
a compressive piecewise linear reconstruction at time ¢ = ¢t and evolve it exactly to the next
time level ¢t = t"*1 according to the integral formulation of (3.3):

tn+l tn+l

() = 1,07 — 5 / Fluta, g, 7)) dr - / fulz, 7)) dr| (3.7)
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1F — S _
0.6 ;
0.8 osl |
EXACT ——
0.4r MM1, DX=1/400 - ]
7l MM1, DX=1/800 -~
0.3F i MM1, DX=1/1600
0.4+ I8
0.2+
0.2+ il
0 : . . . 0 fei ;;",7 ‘ ‘ | |
0.3 0.4 0.5 0.6 0.7 0.8 0355 0.36 0.365 0.37 0.375 0.38 0.385

Figure 3.2: Solutions of (3.3)—(3.4),(3.6) computed with MM1 (left) and its convergence test (right,
zoom at the composite wave area).

the same behavior persists. Here, we only need to exactly compute the temporal integrals in
(3.7), which can be done analytically when At < 0.5Ax, since the formulae for both the flux
function and the exact solution are available (we have taken At = 0.5Az, but smaller time steps
lead to the same results).

Snapshots at times ¢ = 0.1, 0.2,...,1.0 of the exactly evolved solutions of the IVP (3.3)—
(3.4),(3.6) are presented in Figure 3.3, where the MM1 and MM2 reconstructions are used. In
the case of the MM2 reconstruction, the wrong shock location as well as the formation of an
artificial constant state between the shock and the rarefaction wave can be clearly seen, while
the MM1 solution accurately approximates the composite wave.

0.9

0.8

0.7

-

0.6
0.5
0.4} ‘
0.3 ‘

0.2

I
|
|
01 I
|
|

1 1 1
5 04 045 05 055 06 065 07 075

I
I
I
I
I
|
|
I
I
I
I
I
I
|
I
1 m
1 1
025 03 3

Figure 3.3: Exact evolution of the MM1 and MM2 reconstructions; Az = 1/2000.

o

Here, the implementation of the MM2 reconstruction (or another compressive reconstruction,
for example, the generalized minmod with any 6 > 1 or the SB one) leads to an initial overshoot
in a single cell — the last cell with a cell-average value less than 1. As time progresses, the
overshoot persists and, because of the error propagation, it spreads over neighboring cells. At
the same time, the moving shock cannot balance the effect of the overshoot, because (i) the
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overshoot speed is higher than the shock speed; and (ii) the large jumps from the shock feed the
overshoot and thus oppose its smearing by the rarefication process and the numerical diffusion.
As a result, an artificial constant state between the shock and rarefaction wave is formed. In the
case of a generalized minmod reconstruction, its value depends on the value of # and the size of
the initial shock.

The above problem seems to get resolved if we use the dissipative MM1 reconstruction. The
successful resolution of composite waves in this case is due to the fact that the smaller of the
jumps, @j4q — @; or 4; — Uj_1, is used to determine the corresponding slope s; in (2.1). The
calculation of the new local cell averages over/near the border between the shock and rarefaction
is mostly based on the information from the rarefaction part of the computed solution (where the
jumps are smaller), and thus the shock impact on the evaluation of these averages is substantially
reduced.

So far, the discussion has been restricted to second-order piecewise linear reconstructions
since in this case one can relatively easily understand the effects of different reconstructions
on the computed solutions. The situation gets much more complicated when a higher-order
(for example, the fifth-order WENOJ5) reconstruction is employed. In the scalar 1-D case, we
were unable to find an example, in which the WENOJH reconstruction leads to capturing a non-
Kruzhkov weak solution. However, our example of a 1-D system (§5.2) and the 2-D scalar
example (§5.3) clearly illustrate that the WENObS-based scheme may fail to resolve composite
waves, see Figures 5.4, 5.7, and 5.10, respectively.

We conclude this section with yet another numerical example, which illustrates that if a com-
pressive reconstruction is employed, a rarefaction part of the composite wave can be completely
missed, while the use of the dissipative MM1 reconstruction leads to capturing the unique en-
tropy solution. We compute the solution of the same equation (3.3)—(3.4) subject to the different

initial data:
1, x < 0.25,

u(w, 0) = { 0, 025<u. (3.8)
In Figure 3.4, we show the solutions computed at time ¢t = 2 on a uniform grid with Az =
1/1600 using the second-order upwind scheme (3.5),(2.1),(2.3) with compressive MM2 and SB
reconstructions. One can clearly see that in both cases, the captured solution is a simple shock
wave — not the Kruzhkov entropy solution, which consists of a shock, located at x = (2v/3—1) /4,
followed by a rarefaction wave. In Figure 3.5, we present the solution, computed by the same
method but with the dissipative MM1 reconstruction. As in the previous example, one can
observe the convergence of the numerical solutions towards the unique entropy solution.

4 Scheme Adaption Algorithm

It is a well-known fact that more compressive second-order and/or higher-order piecewise poly-
nomial reconstructions typically lead to a higher resolution than the one that can be achieved
with the help of the dissipative MM1 reconstruction. However, as it has been observed in the
previous section, the use of higher resolution reconstructions may be dangerous at the presence
of composite waves, while the use of the MM1 reconstruction seems to ensure the convergence
towards these waves.

We now describe a simple adaption strategy that will utilize the advantages of higher resolu-
tion reconstructions away from the composite waves, which, in turn, will be locally approximated
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1 . ‘ " EXACT —— | 1 . ‘ " EXACT —— |
MM2  x SB x
0.8} . 1 0.8}
0.6} 1 0.6
0.4 1 0.4+
02}t . 1 0.2}t
0.55 0.6 0.65 0.7 0.75 0.8 0.55 0.6 0.65 0.7 0.75 0.8

Figure 3.4: Solutions of (3.3)—(3.4),(3.8) computed with MM2 (left) and SB (right).

1 : ‘ " EXACT —— ] 1 T ‘ : air
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Figure 3.5: Solutions of (3.3)—(3.4),(3.8) computed with MM1 (left) and its convergence test (right,
zoom at the composite wave area).

using the MM1 reconstruction:

e Use the MMI1 reconstruction only in the transition zones — in a small number of cells
around points where the flux convexity changes (that is, where f” or one of the k;’s in (2.9)
changes sign).

e Use a higher resolution reconstruction otherwise.
Remarks.
1. In all numerical experiments presented below, we have used the finite-volume WENOb re-

construction — applied componentwise to the 1-D systems and in a dimension-by-dimension
manner in the 2-D case — as a higher resolution component of our adaptive algorithm.

2. Our extensive numerical experiments suggest that in order to ensure convergence to the
unique entropy solution, the number of cells where the MM1 reconstruction is used should
be relatively small and could be taken proportional to |In(Ax)| as the grid is refined.

5 Numerical Examples

In this section, we numerically solve nonconvex 1-D hyperbolic systems of conservation laws
and a 2-D scalar conservation law with nonconvex fluxes. We apply the semi-discrete central-
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upwind schemes described in §2 with different piecewise polynomial reconstructions including
the adaptive reconstruction proposed in §4.

5.1 Omne-Dimensional Euler Equations of Gas Dynamics

We consider the 1-D Euler equations of gas dynamics:

a|” ) )
PR e pu+p | =0, (5.1)
E T wE +p)

with the following nonconvex EOS (see [37]):

p=plpe)=((y=Dp+ flp)e, e=——zu’, y=14, (5.2)

where the function f is given by

2
f(p) = { Lo, S <p <2 (5.3)
0, otherwise,
and p, u, m = pu, p and E are the density, velocity, momentum, pressure, and total energy
respectively. It can be shown that system (5.1) with the EOS given by (5.2)—(5.3) is hyperbolic.
The computation of the numerical solution of (5.1)—(5.3), using the scheme (2.4)—(2.5),(2.3),
(2.8), combined with different piecewise polynomial reconstructions requires the calculation of
the one-sided local speeds of propagation, and therefore the computation of the corresponding
structure coefficients (2.9). Here, we have:

+
Iiit = (— - Cf) + (— - Cﬁcn) (umz‘d - sz‘d) - CE (dipd - umz’dcmz’d) )

(r*)? p* Prmid
+
£ _ m + 1 + + [ Emid + Pmid
Ry = (—W + Cp) + (p_i + Cm) (Umid + Cmid) + CE‘ (T + umidcmid> s
where ¢ is the sound speed:
P p2 ’
and BT
LR
Ronia == 9
for R being p, u, ¢, p or E. The corresponding partial derivatives are:
m 1 m?* — Ep 1 (0.80+2f(p))(f"(p)p — f(p))
m = ——T = T = —Fr - "
c 2p2 ) CE 2p ) Cp 2p3 + oT (f (p) + pg )
where

S OEAE f<p>p-1>2>%
Ep=1 —0.5m2p=2 '
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We solve the system (5.1)—(5.3) subject to the initial data (see [37]):
(p, pu)r, = (0.5,0.6998,1), (p, p,u)r = (0.5,0.6998, 1), (5.4)

using the MM1, MM2, SB, and the adaptive reconstruction, proposed in §4. To apply the
adaptive strategy from §4, we need to know where the structure coefficients change sign, which
in this case is the same as checking where p,., 7 = p~!, changes sign. In this example, p,, has two
isolated zeroes 7* = 1/p* = 0.862 and 7** = 1/p™ = 1.21. We perform the adaption the following
way. First, we mark all cell pairs with indexes j, j + 1, for which either (p; 11 — p*)(p; — p*) <0
or (pj+1 — p™)(p; — p**) < 0. Then we use the MM1 reconstruction in the marked cells and in
the cells located within K Az from them, while the WENOS5 reconstruction is used in the rest of
the computational domain.

We compare the density profiles of the numerical solutions, calculated at time ¢t = 1 on a
uniform grid with Az = 1/200 with the profile of a reference solution, obtained with the “reliable”
MM1 limiter and Az = 1/5000. The results are presented in Figures 5.1-5.3, where one can
clearly see that the composite waves are incorrectly resolved when a compressive piecewise linear
reconstruction (either MM2 or SB) is employed, while the central-upwind scheme based on the
dissipative MM1 reconstruction accurately captures their structure. Note that in this example,
the use of the higher-order WENObS reconstruction also leads to capturing the entropy solution
(see Figure 5.2 (right)). However, the obtained numerical approximation is quite oscillatory,
which, together with the failure of the WENOS5-based scheme to resolve composite waves in the
examples from §5.2 and §5.3, makes one doubt the reliability of a pure WENOS reconstruction.

The solutions, computed by our adaptive central-upwind scheme are shown in Figure 5.3.
When the adaption constant K = 1, the obtained solution is basically as well resolved as the
one obtained by the WENO5-based scheme, but it still has some oscillations, which are com-
pletely removed when a larger (K = 2) adaption constant is used. As expected, the adaptive
reconstruction offers a better overall resolution of the numerical solution and thus the adaptive
strategy is preferable.

density by MM2 density by SB
16— v — 16 ‘ .
1.4 ] 1.4
1.2 ’ ’ ] 1.2

—REFERENCE 08 —REFERENCE
© Ax=1/200 © Ax=1/200
-1 -05 0 05 1 -1 -0.5 0 05 1

Figure 5.1: Solutions of (5.1)—(5.4), computed with MM2 (left) and SB (right).
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density by MM1 density by WENOS5
1.6 ‘ — ‘ 1 1ef e ~ —
1.4 ] 1.4
1.2 ] 1.2

— REFERENCE

F 08 — REFERENCE
»_Ax=1/200 - Ax=1/200
-1 -05 0 05 1 -1 -05 0 05 1

Figure 5.2: Solutions of (5.1)—(5.4), computed with MM1 (left) and WENOS (right).

density by ADAPTIVE with K=1 density by ADAPTIVE with K=2

~7 1.6r
1.4

1.2

l,

—REFERENCE 0.8 — REFERENCE
« A x=1/200 « A x=1/200
-1 ~05 0 05 1 -1 05 0 05 1

Figure 5.3: Solutions of (5.1)—(5.4), computed adaptively with K =1 (left) and K = 2 (right).

5.2 The Polymer System

We consider the 1-D polymer system:

wlo ) din ] - o

where s is the water saturation, ¢ is the polymer concentration in the water, f(s,c) is the
fractional flow function of water, b(s,c) = sc+ a(c), and a(c) is the adsorption function. Here,
we take (consult, e.g., [9]):

52 c

(5,0 = &7 (0.5+¢)(1 —5)* ale) = 5(1+¢)

(5.6)

Notice that the system (5.5)—(5.6) can be rewritten in the nonconservative form:
u + A(u)u, =0,

where u = (s,¢)” and A(u) has eigenvalues A\, = f,(s,¢) and A\, = f(s,¢)(s+d'(c))~! with right
eigenvectors ry = (1,0)7, r. = (fu(s,¢), Ae — Ag)T for s € (0,1) and r. = (0,1)T for s = 0,1,
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respectively. The computation of the one-sided local speeds of propagation (2.8) requires the
calculation of the corresponding structure coefficients:

’i;t - fSS(S:tvCi)v

L IR () - )
(s* + ()P
(™ i+ i)™ = L2+ (¢4) = a"(5)f)
(% +d(c)P |

o

+

if S0 # 0,1, and

P Gt ) It Vi
C Fra@pP

K

for s,,,4 € {0,1}. Here, we have used the notation R™ := R(Smid, Cmia), Where spiq = (sT +
s7)/2 and cpig := (¢t +¢7)/2, and R* := R(s*, ) for R being f,, f. or f.
We consider the system (5.5)—(5.6) subject to the Riemann initial data taken from [14]:

0w ) = (0301) 5 S 0an &

The exact solution of this IVP is rather complicated and consists of both simple and composite
waves (see [13]).

We numerically solve the IVP (5.5)—(5.7) using the central-upwind scheme (2.4)-(2.6),(2.8)
with different piecewise polynomial reconstructions of the conserved variables s and b.

For adaption, we check at every grid cell whether a point where one of the structure coeffi-
cients: either

Rs = f887

or

[ d"f(s+d)B(fs(s+ad)—f), 0<s<],
"o T (s 4+ ) 2(fo(s +d) = d'f), s e {0,1},

changes sign is nearby. If this is the case, namely if the distance between the current grid point
and one of the aforementioned points is smaller than K Az, then the MM1 reconstruction is used,
otherwise the WENOS reconstruction is used.

In Figure 5.4, we plot the numerical solutions at time ¢ = 1, calculated using the MM1
reconstruction with Az = 1/250 and Az = 1/8000 (the latter one is used as a reference solution
in all other figures shown in this section).

In Figure 5.5, we compare the c-component of the numerical solutions, computed using
the MM1, MM2, SB, and WENO5 reconstructions on three different uniform meshes with
Az = 1/250, 1/500 and 1/1000. As one can clearly see in this figure, only the MM1 numerical
solution recovers the correct structure of the composite wave, while the MM2, SB and WENO5
reconstructions consistently fail to achieve this goal. Note that Az = 1/1000 is a reasonably
small mesh size that one usually uses in practical computations for such a problem (in the 2-D
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case, one would have to use even a coarser grid). To perform a numerical convergence study, we
have computed the solution with even smaller Ax. It turns out that the numerical approximation
obtained with the WENOb reconstruction seems to slowly converge to the reference solution, but
the values of Ax, required in order to be able to observe this convergence, are so small that this
positive result is not of a practical interest. On the other hand, the results shown in Figure
5.6 demonstrate that our adaptive strategy both achieves a very high resolution and accurately
captures the structure of the composite wave, and thus it is superior to both the lower resolution
MMI1 solution and the less reliable WENOS5 solution.

¢ by MM1 s by MM1
1 [—REFERENCE —REFERENCE
- Ax=1/250 0.8 | « Ax=1/250
0.8
0.7
0.6 0.6-
0.5
0.4-
0.4
0.2 0.3
0 ] 0.2r
0.5 1 15 2 05 1 15 2

Figure 5.4: Solutions of (5.5)—(5.7), computed with MM1; ¢ (left) and s-components (right).

Next, in Figures 5.7-5.8, we present the s-component of the computed solutions. While the
wave structure of the s-component is quite different from the one of the c-component, we observe
the same effect as before: the central-upwind scheme based on either MM2, SB or WENOS recon-
struction, fails to recover the reference solution even when a very fine mesh with Az = 1,/1000
is used. At the same time, the schemes based on the MMI1 and the adaptive reconstructions
perform well. However, as expected, the overall resolution achieved by the adaptive scheme is
higher than the one achieved my the more dissipative MM1 scheme.

5.3 Two-Dimensional Scalar Conservation Law

In this section, we numerically solve the 2-D scalar conservation law:
u + (sinu), + (cosu), =0, (5.8)
subject to the initial data:

dm 2 +y? <1,
u(z,y,0) = (5.9)

. .
T otherwise,

using the scheme (2.10)—(2.12) and the piecewise polynomial reconstructions, described in §3 and
84.

We have computed the solution at time ¢ = 1 on a uniform grid with Az = Ay = 1/100
using the MM1, MM2, SB, WENO5 and the adaptive reconstructions. For adaption, we mark
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Figure 5.5: Solutions (c-component) of (5.5)—(5.7), computed with MM1, MM2, SB, and WENO5.

the cells where the convexity of the flux changes, which occurs at v = kn/2, k € Z. In these
cells and in all cells located within K max(Az, Ay) from them, we use the MM1 reconstruction,
otherwise the WENOS reconstruction is employed.

We present our results in Figures 5.9-5.11, where we observe the same effects as in the 1-D
case. The central-upwind schemes based on the MM2, SB and WENObJ reconstructions fail to
resolve the composite wave structure, while the use of the MM1 or the adaptive reconstruction
leads to capturing the accurate solution. We would like to point out that the adaptive strategy
does not seem to be sensitive to the choice of the adaption constant K. We also show, see Figure
5.11 (right), the areas where the MM1 (white) and the WENO5 (black) reconstructions were
used. It can be clearly seen that the MM1 limiter is turned on only at/around transition areas.
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Figure 5.6: Solutions (c-component) of (5.5)—(5.7), computed adaptively with K = 2 (left) and its
mesh refinement study (right).
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