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Abstract—We consider optimal power allocation for wireless
video sensors (WVSs), including the image sensor subsystem in
the system analysis. By assigning a power-rate-distortion (P-R-D)
characteristic for the image sensor, we build a comprehensive
P-R-D optimization framework for WVSs. For a WVS node
operating under a power budget, we propose power allocation
among the image sensor, compression, and transmission modules,
in order to minimize the distortion of the video reconstructed at
the receiver. To demonstrate the proposed optimization method,
we establish a P-R-D model for an image sensor based upon a
pixel level sigma-delta ���� image sensor design that allows
investigation of the tradeoff between the bit depth of the captured
images and spatio-temporal characteristics of the video sequence
under the power constraint. The optimization results obtained in
this setting confirm that including the image sensor in the system
optimization procedure can improve the overall video quality
under power constraint and prolong the lifetime of the WVSs. In
particular, when the available power budget for a WVS node falls
below a threshold, adaptive sensing becomes necessary to ensure
that the node communicates useful information about the video
content while meeting its power budget.

Index Terms—Image sensors, power-rate-distortion (P-R-D),
resource management, sigma-delta ���� modulation, wireless
video.

I. INTRODUCTION

I
N typical video communication systems, one of the major

problems encountered in system optimization is the control

of the system performance under bandwidth constraints. To ana-

lyze the behavior of the system under bandwidth constraints, the

rate-distortion (R-D) theory is usually applied. The R-D charac-

teristics of a system are used to solve the problem of finding the

minimum number of bits to be transmitted to achieve a given

level of distortion.

A wireless video sensor network is a system that contains

spatially distributed wireless video sensors (WVSs). The func-

tion of the WVSs (sensor nodes) is to capture visual informa-

tion about the environment, to compress the sensed data and
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to transmit the compressed data through the wireless medium.

Three major modules of a WVS are therefore image sensing,

video compression, and wireless transmission.

However, wireless video sensors usually operate under lim-

ited power supply, where the available power plays an important

role in the resulting video quality as well as in the life-time of

the system. Therefore, the power allocation among the image

sensor, compression, and transmission modules in the sensor

nodes is an important aspect of system optimization. Since wire-

less networks are limited in both power and bandwidth, rate-

distortion analysis is an insufficient tool for optimal resource

allocation.

This problem of the deficiency of the R-D analysis for wire-

less video sensor networks has been addressed in [1]. It has

been suggested that for optimal resource allocation, classical

R-D analysis must be extended to include additional resource

constraints. A new, power-rate-distortion (P-R-D) analysis has

to be applied for power and bit allocation in wireless video sys-

tems, where the two different concepts, power consumption and

R-D analysis, must be merged together [1], [2].

In wireless local area networks (WLAN), which typically op-

erate in a 50–100 m communication range, a significant portion

of the total power of a WVS is consumed by the compression

and transmission modules [3]. To maximize video quality under

power and rate constraints, a P-R-D model for the video com-

pression module of a WVS is first developed in [3]. The opti-

mization framework based upon the P-R-D model of the video

encoder is further used in [2] to analyze the power tradeoff be-

tween the video encoding and wireless data transmission mod-

ules. However, simulation results from [4] indicate that in a

10–20 m communication range, the camera consumes almost

50% more power than wireless transmission. Still, the image

sensor subsystem of the WVS has not been included in the opti-

mization procedure. One of the main reasons for excluding the

imager from the system optimization is that it is not well under-

stood how to incorporate image sensor characteristics within the

existing video encoder optimization framework [4]. In addition,

the power-quality tradeoff of an image sensor depends strongly

upon the specific sensor design, which makes attempts to derive

general specifications rather difficult.

In a wireless personal area network (WPAN), communica-

tion is typically performed within a 10 m range. For the same

data rate as in WLAN, the power requirements for the transmis-

sion module can be significantly reduced, resulting in a situa-

tion where the image sensor has a higher impact on the overall

power consumption of a WVS. Therefore, resource allocation

in WVS for WPAN cannot be performed in an optimal way
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without considering the image sensor in the system analysis. If

the sensor is included in the power control, the power consump-

tion and rate of the sensor can be optimally set and reduced as

the power budget decreases. Lowering the power consumption

of the image sensor when the power budget decreases, can in-

crease overall video quality because more power can be allo-

cated to the compression and transmission modules.

In addition, power-sensitive multimedia applications, such

as 3 G phones, drive the market towards low power solutions

for video encoders. For low power performance, real-time

MPEG-4 encoders employ dedicated hardware accelerators

[7]. For example, according to results from [8], a hardware

optimized MPEG-4 encoder in 60 nm technology can deliver

high quality images (VGA at 30 fps) consuming less than 5

mW. Also, although the CMOS image sensor technology scales

at the same pace as the standard digital CMOS process, it is

lagging behind the standard digital CMOS process by several

technology nodes [9]. The reason for this lag is that the smaller

pixel size has a negative effect on both the electrical and optical

performance of the imager so that any further scaling of the

pixel size has proven rather challenging. In contrast to the

video encoders implemented in digital CMOS technologies,

conventional analog CMOS image sensors cannot take full

advantage of power reduction offered by current CMOS tech-

nology progress.

On the other hand, several emerging fully-digital CMOS

image sensor designs [10] based upon pixel-level sigma-delta

A/D conversion methods, denoted as imagers, with

low power feature and unique power quality tradeoff have

been reported [11]–[13]. The technology predominantly targets

surveillance imaging applications where high dynamic range,

good low-light response, and low power are in demand. In

addition, an oversampling technique exploited in the con-

version allows for a simple tradeoff between the frame rate and

the bit resolution [11], [12], and offers relatively simple power

control [13]. This controllability of the design enables the

imager to meet many application-specific needs. In particular,

a low power consumption and design controllability make the

imager suitable for WVS with adjustable parameters.

In this paper, we introduce a P-R-D concept for an image

sensor which then can be used to build a comprehensive P-R-D

framework for WVSs optimization. This approach allows us to

establish an optimal solution for the power allocation problem

for WVS containing an arbitrary image sensor with variable

output rates. We further consider image sensor design, for

which power, output bit rate, and video quality can be controlled

with oversampling. Based upon dependence of the power, rate,

and distortion with the oversampling, we derive a P-R-D model

of a imager. The sensor model is then used within developed

optimization framework to investigate the tradeoff between the

bit depth of the captured images and spatio-temporal character-

istics of the video sequence under power constraint.

The rest of the paper is organized as follows. The optimiza-

tion problem for WVS containing the image sensor with vari-

able output rate is consider in Section II. In Section III, an ana-

lytic P-R-D model for a imager is proposed and evaluated

with the experimental results from the imager designed in

our lab. Using developed optimization framework and model

Fig. 1. Wireless video sensor: power has to be optimally allocated among the
image sensor, compression, and transmission modules.

for the imager, P-R-D analysis for a WVS is carried out in

Section IV. Our work is summarized in Section V.

II. P-R-D OPTIMIZATION FRAMEWORK

In this section, the problem of optimal power allocation

among the image sensor, compression, and transmission mod-

ules in a WVS is analyzed. The P-R-D optimization framework

for the system is derived under the assumption that the image

sensor is capable of adjusting its output rate according to the

available power budget.

A simple model of a WVS is shown in Fig. 1. The model con-

sists of three modules: image sensor, video compression, and

transmission. In our framework, we assume that the relation-

ship between the power, rate, and distortion of each module is

well described. Power-rate-distortion functions are denoted as

, , and , for the sensor,

compression, and transmission, respectively. We also assume

that the total available power provided to a WVS and the target

bit rate are known and equal to and , respectively. The op-

timization problem can be stated as: How should power be

allocated among the image sensor, compression, and transmis-

sion modules to minimize the overall distortion introduced for a

given target rate ?

The most common measure for video quality is the

end-to-end mean squared error (MSE) between the original

and the received picture frames, referred here as the distortion

[2]. Distortion in each module can be defined as the mean

squared difference between the output and input frame of the

module. In [5], it is shown that compression and transmission

distortions are uncorrelated, so that the total distortion of the

two subsystems becomes the sum of the individual distor-

tions. Herein, we treat the overall distortion of a WVS as the

sum of the distortions over all three subsystems. In addition,

any dependence that might exist between the sensor and the

compression distortions are reflected in the dependence of the

compression module distortion on the sensor output rate.

We consider a special case where the image sensor output rate

can be represented as a function of the power consumption

(as in the case of the imager discussed in Section III),

so that the image sensor distortion depends only upon the

power . We also assume that the bit rates and are equal
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Fig. 2. DPS architecture: analog-to-digital conversion is performed at every
pixel location. Using the row decoder and the column multiplexer, pixel bits are
read out in a fashion similar to digital memory readout [10].

to the target bit rate (Fig. 1). Hence, for a given rate , all

three distortion functions can be described as a function of the

power allocated to the corresponding module. In addition, the

distortion that characterizes the compression module is also

a function of the input rate and, hence, depends upon the

image sensor power consumption.

The optimization problem can be mathematically formulated

as shown in (1)–(2) at the bottom of the page. The solution

to this problem provides the optimal power allocation for the

image sensor, compression, and transmission modules such

that overall distortion is minimized. In addition, for each power

level , the optimization procedure can be repeated to find

an optimum rate that will provide minimum distortion. If

the system is designed to support different target bit rates,

controlling the output rate of the WVS can lead to improved

video quality, as shown in [2].

The optimal solution can be found using the Lagrange mul-

tiplier method, which formulates the optimization problem as a

problem of finding the minimum of the unconstrained function

defined as

(3)

where is a new variable called the Lagrange multiplier. If we

assume that the distortion functions are differentiable functions,

Fig. 3. �� imager: the charge from each photodiode is read by a �� modu-
lator consisting of an integrator, a single bit comparator, and a single bit feed-
back digital-to-analog converter.

the necessary conditions for the solution to be optimal can be

calculated from the system of equations

(4)

(5)

From (4), it can be seen that, if the output rate of the sensor

is fixed, at the optimal solution , , , the tangents of

the distortion functions , , and must have the same

slope. However, if the output sensor rate can vary with the power

consumption, the solution for the power allocation problem for

which the distortion is minimized defines the bit depth of the

captured images.

III. P-R-D MODEL FOR IMAGE SENSOR

In this section, a P-R-D model for a specific image sensor is

derived. A digital pixel sensor (DPS) architecture is considered,

where analog-to-digital conversion is performed simultaneously

at every pixel location (Fig. 2). Due to a high degree of paral-

lelism, the requirement for conversion speed is relaxed, which

translates into low power consumption [10], an important fea-

ture for applications with limited power budget, such as WVSs.

A imager is a DPS architecture where the conversion

is performed at each pixel site. During the exposure time of the

imager, a modulator reads charge from the photodiode OSR

(oversampling ratio) number of times, and each value character-

izes with one bit (see Fig. 3). A decimation filter is then applied

to convert the oversampled single-bit stream to a multibit sample

at the frame rate.

The imager allows for relatively simple P-R-D modeling.

Power, rate, and distortion performance of the imager can be

controlled by changing the number of single-bit pixel values that

are read every second. In other words, the parameter OSR can

(1)

subject to (2)
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be used as a control parameter for the P-R-D modeling and re-

source allocation, while keeping other design parameters such

as power supply voltage fixed. A parametric analysis, denoted

as OSR-domain analysis, is applied to study resource tradeoffs

in the image sensor. Rate-oversampling (R-OSR), distor-

tion-oversampling (D-OSR), and power-oversampling (P-OSR)

functions can be derived for the imager. By eliminating the

parameter OSR from the models, a unique P-R-D relationship

can be established.

To characterize the distortion of the image sensor, we as-

sume that the sensor is equipped with ideal optics and that the

distortions come only from the imager electronics noise sources.

The noise sources and their dependence upon the control param-

eter OSR are discussed in Section III-A. The relevant character-

istics for the imager are derived in Section III-B. The ex-

perimental results are obtained in Section III-C to evaluate the

proposed model considering practical parameters.

A. Noise Model

The noise sources in image sensors can be divided into tem-

poral and spatial [9], [14]. Temporal noise varies in time but

is independent across the sensor array; spatial noise represents

variations among the pixel values under uniform illumination

[15].

The temporal noise sources in the image sensor are the major

limiting factor for image sensor performance, particularly under

low light conditions and in video applications [16]. Therefore,

we simplify the derivation of the noise model by neglecting the

spatial component of the noise. In this fashion, the noise model

and following P-R-D model can be derived considering the be-

havior of a single pixel only.

In Section II, it is shown that the optimal solution to the power

allocation problem depends upon the rate of change of the dis-

tortion function with respect to the power, or equivalently with

respect to our control parameter OSR. To emphasize the dy-

namic of the noise power with respect to the parameter OSR, we

classify the temporal noise sources into three categories: quan-

tization noise, pixel reset and thermal noise, and noise invariant

to the oversampling.

1) Quantization Noise: In order to simplify the calculation

of the quantization noise, we consider a linearized model of

the modulator. In addition, we assume that the decimation

filter is an ideal low pass filter. Quantization noise injected by a

1-b comparator is assumed to be a stationary zero-mean white

random process with uniform distribution and known variance

. The quantization noise power is given as ,

where is the maximum voltage swing of the quantizer pro-

portional to the power supply voltage. Also, we assume that the

quantization noise is independent from the input signal. Due to

the oversampling, quantization noise occupies OSR times larger

bandwidth than the input signal. In addition to the oversampling,

the modulator shapes the quantization noise toward high

frequencies with a high-pass filter , as illus-

trated in Fig. 4. A digital decimation filter is then used to re-

move the noise outside the signal band [17]. The quantization

Fig. 4. Oversampling and noise shaping of �� modulator: quantization noise
is shaped outside the signal band and then removed by a decimation filter. How-
ever, the termal noise is filtered out without shaping.

noise that remains within the signal band causes the signal dis-

tortion. The resulting in-band quantization noise power can be

calculated as

(6)

where the approximation is obtained from the Taylor series ex-

pansion for . In addition, since the output from the

modulator is decimated with a relatively long decimation

filter, it can be assumed that the resulting noise after the deci-

mation operation has a Gaussian distribution with power equal

to .

B. Pixel Reset and Thermal Noise

The thermal reset noise is injected into the photodetector each

time the photodetector is reset to some initial state after every

exposure [18] or it can be injected by resetting the transistor in

the feedback of the modulator [13]. In addition, the thermal

noise from the pixel transistors contributes to the overall thermal

noise. We assume that the overall thermal noise can be repre-

sented as a stationary zero-mean white Gaussian process with

variance . The thermal noise appears at the input of the

modulator and, as opposed to the quantization noise, it is not

shaped to a high frequency region (Fig. 4). Since the thermal

noise is not shaped, its power after the decimation operation is

reduced only by the oversampling ratio OSR, i.e.

(7)
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1) Noise Invariant to Oversampling: We consider the shot

noise to be a dominant noise source that does not depend upon

the control parameter OSR. The photodiode shot noise has

two independent components: photon shot noise caused by the

temporal variation in the photon-generated current due to the

random arrival nature of the incident photons, and dark current

related shot noise caused by the variations in the photodiode

dark current (i.e., variations in the current generated when no

illumination is present). Shot noise has a Poisson distribution

and its variance depends upon the light intensity, dark

current value, and exposure time [9], [15], [19]. For the fixed

exposure time and photon count, the shot noise power remains

unchanged regardless of the number of times charge is read

from the photodiode (i.e., the shot noise power is invariant to

the parameter OSR).

The quantization, thermal, and shot noise are assumed to be

independent; therefore, the total noise power is the sum of

the individual components, which is described by

(8)

where the parameters and quantify the fraction of the

thermal and shot noise power with respect to the quantiza-

tion noise power. The parameters and depend upon the

specific image sensor design and can be experimentally

determined. In addition, the parameter depends upon the

incident illumination since the photon shot noise depends upon

the incident photon count.

C. Image Sensor Characteristics

1) Rate and Distortion Characteristics: The noise model (8)

characterizes the distortion for the imager. However, it is

convenient to represent the model of (8) in terms of MSE in

order to have a representation that is identical to the represen-

tation for the compression and the transmission modules. Thus,

the distortion oversampling characteristic for the imager is

given by

(9)

where in , represents the maximum quantization

step size in MSE, e.g., for 8-b representation. The dis-

tortion defined by the parameter characterizes the asymptotic

performance of the imager with respect to the parameter

OSR. The shot noise sets the fundamental limit on the maximum

rate and defines the minimum achievable distortion .

The rate of the image sensor represents the average

number of bits to be allocated to each pixel to achieve a dis-

tortion of . To calculate the output sensor rate, we assume

that the pixel values can be characterized as zero mean random

Fig. 5. Rate-distortion characteristic for the sigma-delta ���� image sensor
based upon “Foreman” video sequence.

variables drawn from stationary and ergodic random process.

Let be the true photodetector value of a pixel defined

by the index in the th video frame, and be the value

at the output of the corresponding pixel. The average image

sensor distortion represents a mean squared error between

and , i.e.,

(10)

where the expected value of variable , , is cal-

culated by averaging values of across the sensor array

and across all video frames. We assume that the image sensor

distortion has a Gaussian distribution since it contains multiple

independent noises filtered by the decimation filter. We also as-

sume that the total distortion can be treated as uncorrelated with

the input signal. The image sensor bit depth is the number of

bits representing each pixel value regardless of the correlation

among the signal values that might exist from frame to frame

or from pixel to pixel (i.e., temporal and spatial redundancy).

In other words, the image sensor treats the images as if they

are generated from a stationary memory-less source. If we also

assume that the pixel values are independent and identically dis-

tributed Gaussian random variables [20], the R-D characteristic

for the sensor can be obtained in the form

(11)

where represents the variance of the video

sequence. As an example of the R-D characteristic for the image

sensor, we show the characteristic of the sensor that captures the

“Foreman” QCIF video sequence at 15 fps. Since the standard

video sequences are already quantized, we first relate to the

variance of the quantized test sequence using Sheppard’s

corrections [21]

(12)

However, since the test sequences have , we can as-

sume . We estimate MSE, and the R-D

characteristic is shown in Fig. 5.
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If we define the statistical parameter as , com-

bining (9) and (11) we obtain the relationship between the bit

rate and the control parameter OSR

(13)

2) Power-Quality Tradeoff: Power consumption of the im-

ager contains two components: static and dynamic. We assume

that the static power consumption can be neglected with respect

to the dynamic power. Since the dynamic power consumption

in CMOS circuits is observed to be a linear function of the sam-

pling frequency, the following relation can be obtained for the

power as a function of the OSR

(14)

where is the image sensor power consumption at the

maximum output rate , i.e., at the maximum oversam-

pling ratio . We can simplify the notation by denoting

as the normalized sensor power with respect to the max-

imum power consumption . Combining (9) and (14), we

obtain a P-D characteristic for the image sensor

(15)

The advantage of the imager in comparison with other

image sensor designs is that, by changing the OSR, it allows

adjustment to a desired power budget with controlled scaling

of the distortion. The noise sources that increase as the avail-

able power decreases are quantization and thermal noise. The

quantization noise is the major noise source that determines the

dynamics of the power allocation, and determines the distortion

at low power levels because of its cubic dependence upon the

power consumption.

The output rate of the sensor can be related to its power con-

sumption by combining (13) and (14)

(16)

Since the sensor rate can be expressed as a function of the

sensor power consumption, the power allocation problem can be

solved only considering the power allocation for each module,

as discussed in Section II. Equation (16) illustrates how sensor

rate is determined by the optimal solution to the power alloca-

tion problem . The available power budget determines the

bit depth of the captured images so that the overall system dis-

tortion is minimized.

D. Experimental Results From Image Sensor

To obtain performance parameter values from the im-

ager, we use the imager developed in our laboratory, which

is described in [13]. In this design, each photodiode performs

the integration function for modulation. A 1-b quantizer is

shared among pixels of the row, and a three transistor DAC is

used to feed back a fixed amount of charge to the photodiode

when the quantizer is triggered. The focal plane area of the im-

ager is 128 128 pixels with pixel pitch of 10 . The

imager has been fabricated in 0.35 CMOS technology with

a 3.3 V power supply.

1) Test Setup: The output bit stream from the imager is

decimated with an external FPGA. The single bit stream out-

puts from the modulators are read from the sensor through

the 8-pin port. A 256 12-b ROM is used to store filter coef-

ficients, and 1 K 23-b ROM stores control signals that are

output from the FPGA to the imager. The imager is equipped

with an S-mount 1.7 f micro lens. A VGA component on the

FPGA reads the 16 K 12-b frame buffer and outputs it to

the standard VGA monitor, enabling a real time display of the

images.

2) Results: First, the power consumption of the analog part

of the sensor is measured. At the frame rate of 30 fps and over-

sampling ratio of 256, the average power per pixel is estimated

to be 16 nW.

We further evaluate the parameters in the noise model (8).

For the 1-b quantizer, the quantization step size is equal to the

maximum voltage swing of the quantizer. The output voltage

swing is measured to be , which gives

. Pixel noise is measured under dark conditions, and

the noise power as a function of the oversampling ratio is shown

in Fig. 6(a). To illustrate the accuracy of the proposed model,

we sweep the OSR up to the values of 1500. Two curves that de-

scribe the noise model (8) are plotted for the model parameters

and . As predicted by the model, the

quantization noise is dominant at low OSR values and decays

much faster with increased OSR than the thermal noise compo-

nent. The thermal noise becomes dominant at high OSR values

and must be taken into account.

Since our sensor is optimized for the maximum of

256, the optimal value for parameter was chosen for this range

to better fit our model to the experimental results, as shown in

Fig. 6(b). The value of 1.7 is obtained by curve fitting,

which provides 5–6 dB improvement for over the case

when the thermal noise is not considered . The slight

deviation of the model from the experimental results for lower

OSR values is caused by the transistor flicker (low frequency)

noise not included in our model. On the other hand, when the

experiment is repeated under normal light conditions, the shot

noise level was below the quantization and thermal noise floor.

Therefore, we neglect parameter parameter in further analysis.

Sample images from the imager are captured for different

power levels and shown in the Fig. 7. The maximum power level

corresponds to an oversampling ratio of 256. The degradation

of the image quality becomes apparent at power levels that are

about ten times lower than the maximum power consumption.

This illustrates that the image sensor design has a very effi-

cient power-quality tradeoff and is suitable for control of WVS

performance under power constraint.

IV. P-R-D PERFORMANCE ANALYSIS

In this section, we consider concrete instantiation of the

P-R-D optimization framework for a WVS, using the P-R-D
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Fig. 6. Noise model for �� imager in dB scale: (a) ������ � ��		,(b)
������ � 
��. The parameter � accounts for the thermal noise for higher
oversampling values.

model of the imager. In Section IV-A, we describe

the P-R-D behavior of the individual modules of WVSs.

In Section IV-B, we present the results of the optimization

analysis.

A. System Description

In order to investigate the power allocation within WVSs, we

consider an example of a WVS network. We assume that WVSs

are deployed in a small area with a radius of 20 m. The max-

imum available power budget for the sensor node is 6 mW. Each

of the WVSs is supplied with the imager designed to cap-

ture grayscale images in QCIF (176 144) format at 15 fps.

When the system is first deployed, the image sensor is set to

capture images at 8-b resolution, i.e., . The video

sequence is then compressed to reduce the bandwidth require-

ments, and the compressed data is transmitted over the wireless

medium. We describe the individual modules:

1) Image Sensor: We assume that the power-quality

tradeoff of the image sensor is described by (15) and (16).

We chose the parameter values and to

Fig. 7. Images captured by the�� image sensor: images taken at 100%, 25%,
12.5%, and 6.25% of the maximum power consumption are shown in (a), (b),
(c), and (d) respectively.

quantify the influence of the sensor noise. Since the digital logic

of our system is implemented externally on the FPGA, the total

power consumption of the imager including all necessary pro-

cessing and control functionality integrated on a single die could

not be measured from the tested system and must be estimated.

In the design [12], it is shown that the decimation filters

fabricated in 0.18 ìm technology consume 560 nW per pixel at

and 50 fps. We assume the similar scenario for the

decimation stage of our imager. However, the power value must

be scaled to account for the technology difference, as well as

for the different oversampling value and frame rate. We assume

50% reduction in the power consumption with new technology

node [22], and we estimate the power consumption of the

imager to be about 53 nW per pixel, or .

2) Video Encoder: In the description of the optimization

framework (Section II), we have seen that the compression dis-

tortion is a function of the image sensor output rate. For each

input rate, there is an optimal design of the video encoder. Here,

we briefly describe the performance of the standard compres-

sion module optimally designed to encode 8-b input, when im-

ages with different bit depths are applied.

We perform an experiment where the standard QCIF video se-

quences at 15 fps are corrupted with a white Gaussian noise and

then passed through the standard MPEG-4 encoder. The com-

pression distortion as a function of image bit depth for dif-

ferent values of the parameter is shown in Fig. 8(a) for the

“Coastguard” video sequence. It can be seen that for a suffi-

ciently large bit depth (e.g., ), the compression distor-

tion exhibits very low dependence upon the input rate. We fur-

ther plot the compression distortion as a function of for dif-

ferent values of the parameter in Fig. 8(b). We can verify that
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Fig. 8. Compression distortion for the “Coastguard” video sequence: (a) as a
function of the image bit depth for different target rates, (b) as a function of the
target bit rate for different values of the image bit depth.

there is a very small difference between the distortion curves for

higher bit depth. Similar results are obtained for the other video

sequences.

Therefore, if the sensor provides a sufficiently large bit depth

of the images, the behavior of the compression module can be

approximated with the distortion characteristic of the compres-

sion module when . If the power scalable video-en-

coder described in [4] is used, the P-R-D model for the com-

pression module becomes

(17)

In (17), is the maximum power consumption allo-

cated to the compression module, is the variance of the en-

coded video, is the parameter that characterizes encoder ef-

ficiency, and is the parameter that characterizes dynamic

voltage scaling of the encoder, and we set as in [4].

In this paper, we restrict our attention to higher bit depths of

the images and low target rates where the compression distortion

dominates the sensor distortion. In these settings, any additional

attenuation of the sensor distortion in the compression module

is not critical for the model. Alternative more accurate models

that illustrate the effects of compression module can be readily

used without significantly affecting the optimization procedure.

In order to obtain power dissipation of the compression

module comparable to the power consumption of our imager,

we consider a video encoder designed in 0.13 ìm technology.

As a reference, we use Amphion’s MPEG-4 CS6701 coder

that consumes less than 15 mW in 0.18 ìm for compression of

color images [23]. If we assume 50% power reduction due to

technology scaling and similar reduction due to the fact that

we process grayscale images, we set the compression module

power to 3.5 mW.

3) Wireless Transmission: To describe the distortion caused

by the transmission module, we apply the analysis [5] for video

transmission. The analysis considers the distortions caused by

the loss of both intra and inter macroblocks. The transmission

distortion is related to the packet error probability and the

video characteristics given as

(18)

where

(19)

and is the average value of the frame difference over the

whole video scene, is the intra refreshing rate of the video

frames, is a constant that indicates the amount of information

discarded by the video coding algorithm, and is a constant that

indicates the motion randomness. The simulation results in [5]

verify this distortion model with a prediction error of less than

5%.

For the case of no retransmissions on packet errors, the packet

error rate is related to the packet size and the probability of

bit error as

(20)

The probability of bit error is determined by the modulation

used along with the transmission power. Several WPAN stan-

dards (IEEE 802.15) employ phase-shift-keying (PSK) modula-

tion techniques. In this paper, we assume a Rayleigh flat-fading

channel with BPSK modulation, since it is also a good approx-

imation of GFSK (and GMFK) used in IEEE 802.15.1 standard

(Bluetooth) up to 1 Mb/s [24]. The probability of bit error is then

(21)

where is the received energy per bit and is the noise

power spectral density. The received energy per bit is deter-

mined by the power used for transmission , transmission rate

, and the path loss model of the signals. Assuming free-space

path loss model, unity antenna gains and unity system loss

factor, the received energy per bit can be expressed as

(22)
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TABLE I
WIRELESS VIDEO SENSOR PARAMETERS

Fig. 9. Minimum distortion of the WVS as a function of the total power con-
sumtion and target bit rate.

where is the wavelength and is the distance between trans-

mitter and receiver in meters [25].

In this analysis, we neglect the nonstationary characteristics

of the video data and select average video sequence parameters

to reflect the typical behavior shown by the analysis in [2] and

[4]. The simulation parameters used are summarized in Table I.

B. Simulation Results

Using our P-R-D optimization framework, we analyze the de-

pendence of the minimum system distortion on the available

power budget. We apply a pattern search algorithm in MATLAB

to find the minimum of the objective function (1) under con-

straint (2). The optimization procedure is repeated for different

target rates. The dependence of the minimum total distortion on

the available power budget and target bit rate is shown in Fig. 9.

As seen in Fig. 9, the compression distortion dominates at lower

target rates; however, at higher target rate the received energy

per bit is reduced, which produces higher transmission distor-

tions. Hence, there is an optimal rate that minimizes the target

distortion. For maximum power consumption, the optimum rate

is found to be close to 96 kbps as shown in Fig. 10. In further

analysis, we assume that the target rate is fixed to 96 kbps.

Next, we consider the scenario where the image sensor is not

incorporated in the power control and a fixed amount of power is

Fig. 10. Optimum transmission rate at maximum power consumption.

Fig. 11. Minimum distortion of the WVS as a function of the total power con-
sumption. Two cases are illustrated, when the image sensor is included and ex-
cluded from the power control algorithm.

allocated to the image sensor . The optimization proce-

dure is applied only to the compression and transmission mod-

ules (objective function now has two variables, and ). Nu-

merical results from the optimization procedure are shown in

Fig. 11. When the image sensor is not incorporated in the power

control, the sensor will work at full capacity even at low power

levels. When the total power budget decreases below 50% of

the maximum value, there is not enough power for compression

and transmission operations and, hence, no information about

the video content is available (the distortion reaches the max-

imum value ). However, if the image sensor is included in

the optimal power allocation procedure (Figs. 9 and 11), the

control algorithm limits the distortion at low power values: at

, a WVS can still produce images. On the other

hand, when the image sensor is included in the optimization pro-

cedure, at low power values, less power can be used to achieve

the same level of distortion. Thus, the lifetime of the nodes can

be increased.

In Fig. 12, the power allocation among the individual modules

as a function of the total power budget is shown for both cases.
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Fig. 12. Distribution of power budget among the sensor, compression, and
trasmission modules: (a) sensor power fixed and (b) sensor included in the
power control.

Fig. 13. Adaptive sensing: bit depth of the images captured by the image sensor
as a function of the total power budget.

When the image sensor is included in the optimization, by as-

signing fewer bits to the images as the power budget decreases,

the power from the image sensor is redistributed in the compres-

sion module. Fig. 13 illustrates how the bit depth of the captured

images reduces as the available power budget decreases. By

assigning fewer bits to the images, the image sensor indi-

rectly increases the efficiency of the compression module. The

bit depth of the images is traded for improved compression of

the spatio-temporal characteristics of the video sequence. In

addition, since the ideal modulator doubles the power for

each additional 1.5 bit of resolution, a significant influence on

the system performance might be expected when the imager

is used for high resolution imaging.

V. CONCLUSION

In this paper, we consider optimal power allocation for wire-

less video sensors (WVSs) containing power and rate scalable

image sensor subsystem. We describe an image sensor with a

power-rate-distortion (P-R-D) characteristic and use it to build

a comprehensive P-R-D framework for WVSs optimization. We

derive a P-R-D model for a image sensor and demonstrate

how the image bit depth can be adjusted to maximize the overall

video quality of the WVS under power constraint. Results from

the P-R-D analysis of a WVS indicate that the proposed opti-

mization method can be exploited to prolong the lifetime of the

sensor nodes.

In the future work, the design and characterization of a video

encoder that exploits large range of the input image bit depth

can be investigated. Also, in order to quantify the tradeoff be-

tween the image bit depth and other video characteristics under

power constraint, a distortion error metric taking into account

the response of the human visual system should be examined

and compared to the mean square error distortion metric.
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