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ABSTRACT To tackle the difficulties in the detection and removal of impulse noise faced by the existing

filters, and to further improve the denoising performance, we propose an adaptive sequentially weighted

median filter for image corrupted by impulse noise. In the proposed method, a noise detector employing the

3σ principle of normal distribution and the local intensity statistics, is proposed; and a sequentially weighted

median filter with a neighborhood of adaptive size, is proposed for noise removal, in which the weighted

operator is derived in reference to the spatial distances from central noisy pixel, i.e., theweighting coefficients

are sequentially inversely proportional to the spatial distances. The experimental results confirm that the

proposed method outperforms the existing filters, excelling in the capability of noise removal, structure and

edge information preservation.

INDEX TERMS Image denoising, median filter, noise detection, noise removal, sequentially weighted

median filter, 3σ principle.

I. INTRODUCTION

An image is often corrupted by impulse noise in the process

of acquisition and transmission; and there are two types

of impulse noise: fixed-valued impulse noise and random-

valued impulse noise [1]. Fixed-valued impulse noise is

also called salt and pepper noise, one most common noise

in images; it severely impacts the image processing and

analysis, such as image recognition, segmentation, and so

on. Therefore, effective removal of impulse noise is highly

needed. For removal of fixed-valued impulse noise, the mean

filter [2] and median filter [3] were originally proposed.

However, mean filter was found unable to preserve the struc-

ture and edge information of image, while median filter is

preferred because of its simple processing and good per-

formance. But thereafter, the traditional median filter was

found unable to obtain a thorough noise removal and structure

information preservation simultaneously, especially for high

density noise, because it processes all pixels regardless of

whether they are noisy or not, destroying the noise free pixels.

To address this problem, some researchers initially proposed
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switching median filters [4]–[7] that integrate the noise

removal processing with a noise detector so as to make the

removal processing imposed only on the detected noisy pixels

so that the performance ofmedian filter was improved consid-

erably. And in the wake of development of image processing,

analysis, and application, the better denoising performance

of filters is highly demanded; thus, various improved filters

integrated with various strategies were proposed. However,

the existing filters inevitably have inherent shortcomings,

and are not necessarily effective, especially for high density

noise: they either overly smooth the image, or are unable to

restore effectively the structure and edge information, so that

they still could not satisfy the high requirements of image

analysis and application. To tackle this problem and provide

high quality image for analysis and application, we proposed

an adaptive sequentially weighted median filter (ASWMF)

for image highly corrupted by impulse noise; the contri-

butions of the proposed ASWMF are briefly described as

follows.

(i) A noise detector employing the 3σ principle of normal

distribution and the local intensity statistics based on the

intensity distribution of natural image, taking full advantage

of intensity distribution features to discriminate accurately
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the noisy pixels from the noise free ones having the same

intensity.

(ii) A noise removal method employing sequentially

weighted median of neighborhood of adaptive size; the

weighted operator employed is derived in reference to the

spatial distances from central noisy pixel, in which the

weighting coefficients are sequentially inversely proportional

to the spatial distances, distinguishing accurately the various

contributions and impacts of neighbor pixels on the central

noisy pixel according to the distances.

The rest of this paper is organized by several parts as

follows. Section II states the related works, followed by the

proposed method detailed in section III; the experiments and

result analyses are conducted in section IV; and section V

concludes this paper.

II. RELATED WORKS

For improving the standard median filter, researchers pro-

posed switching median filters [4]–[7], which discriminate

the noisy pixels from the noise free ones prior to the noise

removal processing, so as to onlymake the detected noisy pix-

els undergo noise removal processing and keep the noise free

ones unchanged. Comparatively, the switching median filters

protect the original information of noise free pixels. However,

switching median filters are unable to handle various density

of noise. Considering this issue, adaptive switching median

filters [8]–[11] were proposed; they are robust for various

density of impulse noise. Wang et al. [10] proposed a novel

learning-based switchingmedian filter which detects noise by

a learning-based method, and by an iterative manner, takes

the median of noise free pixels surrounding noisy pixel as

the estimated intensity of noisy pixel. However, its improved

performance is achieved at the expense of computational

complexity. Erkan et al. [11] proposed a different applied

median filter (DAMF) to protect the thin lines and edges

of image, and avoid smearing image details while removing

noise; the DAMF employs the noise free pixels in a neighbor-

hood of adaptive size for noise removal, and uses previously

processed pixels to remove the residual noises.

In order to further improve the performance with various

strategies, decision based filters [12], [13] were proposed;

their robust strategies improve the noise detection accuracy

and the performance of noise removal. A modified decision

based unsymmetric trimmed median filter [12] proposed

a noise detector identifying impulse noise simply by the

extreme intensity; the detected noisy pixels are replaced

by the unsymmetric trimmed median of a neighborhood of

fixed size. A neighborhood decision based impulse noise

filter (NDBINF) in [13] employs a neighborhood decision

approach to protect the noise free pixels having extreme

intensity while detecting noise, and a first-order neighbor-

hood decision approach to restore the detected noisy pixels.

It is generally believed that mean filters are unable to

achieve good performance, for they go without the ability

of structure and edge information preservation; however,

the improved variants of mean filter may get remarkable

results, especially for high density noise, such as [14], [15].

In [15], the intensity estimation of noisy pixel is performed

by an adaptive weighted mean based on Euler distance; it is

claimed by the authors that this filter can achieve excellent

noise removal and good edge preservation. Apart from this,

mean filter integrated with median filter may achieve better

performance, such as [16]–[18]. In [18], the filter using pixel-

variation gain factors (PVGF) groups the neighbor pixels

having non-extreme intensity according to the intensity vari-

ation, and then, the distribution ratio and pixel variation level

of each group are employed to determine the gain factors;

thereafter, the value obtained by the gain factors multiplied

with the median of each group is taken as the estimated

intensity of noisy pixel.

As improved versions of switching median or mean filter,

weighted filters [19]–[24] remove impulse noise by taking

the weighted median or mean of neighbor noise free pix-

els with a weighted operator, differentiating the contribu-

tions and impacts of neighbor pixels on the central pixel by

weighted processing so as to achieve a better denoising result.

The adaptive dynamically weighted median filter (ADWMF)

[22] estimates the intensity of noisy pixel by employing

the weighted median of a neighborhood of adaptive size;

the weighted operator employed is derived from Gaussian

surface. The filter using radial basis functions interpolation

(RBFI) in [24] estimates the intensity of noisy pixel with

radial basis functions interpolation, and then, refines the

recovery image using a distance inversely weighted mean

filter.

In view of the wide application of fuzzy theory, it was

introduced into the image processing for improving the

denoising performance [25]–[28]. The SVM classification

based fuzzy filter (SVMFF) [25], aiming at performance

improvement irrespective of noise density, employs a support

vector machine classification for noise detection, along with

a histogram based fuzzy filtering for noise removal. Inspired

by the fuzzy switching median filters and the works on the

concept of information sets, a noise adaptive information

set based switching median filter (NAISM) is proposed in

[27]; the information sets are derived from fuzzy sets to

deal with the uncertainty, and by virtue of the switching

criterion and the local effective information surrounding the

noisy pixel, the best calculated value replaces the noisy pixel.

Generally, existing techniques strongly rely on exploiting

the neighbor information of noisy pixel for noise removal;

however, considering the diversity singularity and non-

stationary feature of image signal in local neighborhood,

the estimation result could easily diverge from the true value

and cause ugly visual effects in textures and edge regions.

These inspired some researchers to expect better denoising

performance by exploiting the nonlocal information during

the noise removal procedure. However, initially, the nonlo-

cal techniques were only for removal of additive Guassian

noise and random-valued impulse noise [29]; and subse-

quently, some researchers ingeniously proposed the improved

versions of nonlocal techniques for fixed-valued impulse
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noise removal.Wang et al. [30] proposed an iterative nonlocal

means filter (INLM); the concept of nonlocal means filter is

based on the fact that there exist lots of similar patches with

repeat patterns in natural image, and the central pixels of these

similar patches share the same intensity value distribution;

the central noisy pixel under processing is thus replaced by

the weighted mean of central pixels of all similar patterns.

In general, the nonlocal filters show high computational

complexity, and performance improvements for fixed-valued

impulse noise are not necessarily conspicuous.

Originally, the deep learning technique based filters

focused on Gaussian noise removal; thereafter, inspired

by the emerging deep learning theories, some researchers

attempted to use them for fixed-valued impulse noise, such

as [31], [32]. When the noise is additive Gaussian, the noisy

image value is still correlated to the original value, hence,

deep learning based filter can achieve a good performance

for Gaussian noise removal. However, unlike Gaussian noise,

impulse noise is not correlated with the original image data,

each pixel has a probability of being corrupted; thus, the deep

learning based filters are not fit for impulse noise removal,

also, by observing their experimental results in [31], [32],

their performances are not conspicuous.

III. PROPOSED METHOD

A. MODEL OF FIXED-VALUED IMPULSE NOISE

Generally, the fixed-valued impulse noise can be modeled by

its intensity and distribution. (i) Impulse noise takes extreme

intensity in the image intensity range; in an 8-bit gray image

whose intensity ranges from 0 to 255, the impulse noise takes

intensity 0 and 255. (ii) When corrupts an image, the impulse

noise distributes randomly and evenly with a certain proba-

bility, being independent from neighbor noise free pixels; the

noises with minimum intensity and the ones with maximum

intensity distribute with equal probability. Correspondingly,

the impulse noise can be mathematically modeled as

f (p) =









min d/2

max d/2

o 1 − d

(1)

Here, f (p) is the intensity of pixel p in corrupted image with

a noise density d , extreme values min and max denote the

intensity of noisy pixel, and o denotes the intensity of noise

free pixel.

B. NOISE DETECTION BY 3σ PRINCIPLE

AND LOCAL STATISTICS

1) FEATURES OF FIXED-VALUED IMPULSE NOISE

To reveal the features of impulse noise as well as the dis-

tinction between noisy pixel and noise free pixel, a sim-

ple experiment is carried out, and the results are shown

in FIGURE 1. FIGURE 1 shows a zoomed-in local part

of image Lenna, which locates at 135∼154 rows and

220∼239 columns, and its corrupted versions by 10%, 50%,

and 90% noises, respectively. By observing the corrupted

FIGURE 1. Zoomed-in local part of Lenna and its corrupted versions.
(a) A local part of original image Lenna; corrupted versions by (b) 10%
noises; (c) 50% noises; (d) 90% noises.

versions carefully, several important observations can be

obtained as follows.

(i)Fixed-valued impulse noise takes extreme intensity,

i.e., 0 and 255.

(ii)Noises with minimum intensity and noises with max-

imum intensity distribute randomly but local unevenly with

equal probability.

(iii)Local noise free pixels vary smoothly, and smooth

regions are separated by edges.

(iv)For noisy pixel, its intensity differs greatly from those

of neighbor noise free pixels surrounding it, it is thus in

isolation.

(v)There are often some noise blocks in highly corrupted

image.

2) NOISE DETECTOR BASED ON 3σ PRINCIPLE

AND LOCAL STATISTICS

For a natural image, it can be noted from its intensity his-

togram that generally, the intensities of pixels approximately

obey normal distribution, and so does the intensities of local

pixels. The local noise free pixels have high similarity, and are

highly correlated with each other, so that they approximately

obey local normal distribution. And the noisy pixels take

fixed extreme intensity, and their locations obey random dis-

tribution; thus, they are lonely, deviating considerably from

the neighbor noise free pixels.

Naturally, based on the intensity feature of impulse noise,

assuming all pixels having extreme intensity to be noisy,

may not be valid, as the noise free pixels having extreme

intensity are definitely taken as noisy pixels by this assump-

tion. To address this problem, we seek help from the normal

distribution.

Based on the just above analyses, we employ the 3σ

principle of normal distribution for further detection, with

the expectation that the noise detector has good ability to

discriminate noise free pixels from the noisy ones having the

same intensity value. As shown in FIGURE 2, denote by u the

mean of a set, and σ the standard deviation, if the individuals

X of the set obey normal distribution, then 68.26% individu-

als would locate in interval (u−σ , u+σ ), 95.44% individuals

locate in interval (u − 2σ , u + 2σ ), and 99.74% individuals

locate in interval (u− 3σ , u+ 3σ ); they can be defined by

P{µ − σ < X < µ + σ } = 68.26% (2)

P{µ − 2σ < X < µ + 2σ } = 95.44% (3)

P{µ − 3σ < X < µ + 3σ } = 99.74% (4)
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FIGURE 2. 3σ principle of normal distribution.

Note that one pixel with extreme intensity means high proba-

bility of being noisy, because of the extreme intensity feature

of impulse noise; but if it locates in the 1σ interval shown

in FIGURE 2 and formula (2), we take it as noise free, for

it shows high correlation with the neighbor pixels having

non-extreme intensity.

However, in a black or white region, noise detection by the

extreme intensity and the 3σ principle of normal distribution

fails; but fortunately, the features of black or white region can

be inferred and utilized for noise detection. For example, for

a black region, two important observations can be made as

follows.

(i) Originally, most or all the pixels in this black region take

minimum intensity.

(ii) When impulse noise corrupts this region, the noises

with minimum intensity disappear for they are assimilated,

only the noises with maximum intensity exist. Accordingly,

it is noteworthy that most of pixels in this corrupted region

are of minimum intensity.

Therefore, in a black image region, we employ local

intensity statistics for noise detection based on these two

observations, that is, if a pixel takes minimum intensity,

and the minimum intensity accounts for the majority in its

neighborhood, this pixel is labeled as noise free, otherwise as

noisy. The noise detection strategy can be similarly made for

a white region.

In addition, by reference to the literatures, and based on

the approximate local symmetry of the pixels in spatial dis-

tribution, we take square neighborhood, which is symmetrical

about the center, for noise detection and removal; we denote

by Np(k) the neighborhood of size k × k centered at pixel p.

Specifically, the proposed noise detector based on 3σ prin-

ciple and local intensity statistics is defined as follows.

(i) Take the pixels having extreme intensity as noise candi-

dates, because of the intensity feature of impulse noise.

(ii)For each noise candidate p, in Np(7), if more than two

non-extreme values are available, turn to (iii), or else, turn to

(iv).

(iii)Compute the mean u and standard deviation σ of the

non-extreme intensity in Np(7); if f (p) falls into interval (u-

σ , u+ σ ), label p as noise free, otherwise as noisy.

(iv)In Np(5), if f (p) = 0 and the number of intensity

0 (denoted by n0) accounts for the majority, here we set

n0 > T , label p as noise free, otherwise as noisy. This strategy

is similar for f (p) = 255.

FIGURE 3. PSNR of ASWMF with various T on BSD68 dataset corrupted
with various density of impulse noise.

For the optimal value of T , by using vast trial and error

methods, we conducted an experiment with ASWMF on

BSD68 dataset corrupted with 20% noises, 50% noises, and

80% noises, respectively, the result of which is shown in

FIGURE 3. The result shows how the denoising performance

depends on the noise detector with various values of T . Based

on the result, we prefer to take T = 20, which means the

following formula should be approximately satisfied

∂PSNR(T )

∂T

∣
∣
∣
∣
T=20

= 0 (5)

The performance of an impulse noise detector depends on

its capability to detect all the true positives effectively in

the presence of false positives as less as possible. And the

proposed noise detector is able to achieve this so that the edge

and structure information can thus be better preserved and

restored in the noise removal processing.

C. NOISE REMOVAL BY ADAPTIVE SEQUENTIALLY

WEIGHTED MEDIAN

In our method, only the noisy pixels undergo a noise removal

processing, and noise free pixels are left unchanged so as to

protect the original image information as much as possible;

in addition, for one noisy pixel, only the noise free pixels

surrounding itself are employed in its intensity estimation.

Besides, we employ a neighborhood of adaptive size for noise

removal processing, i.e., if no noise free pixels are available in

small neighborhood for noise removal processing, the neigh-

borhood is enlarged so as to contain noise free pixels.

In our noise removal processing, noise free pixels only on

the border of one neighborhood are employed. Take FIGURE

4 for an example. For the central noisy pixel p, initially, its

Np(3) neighborhood is employed, and thus, noise free pixels

only on the border ofNp(3) are employed; and if no noise free

pixels are available in the Np(3) for noise removal, the Np(5)

is employed, in this case, equally, noise free pixels only on

the border of Np(5) are employed, for no noise free pixels
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FIGURE 4. Neighborhood of adaptive size.

are available in the Np(3) which is also included in Np(5).

However, the noise free pixels on the border of one neigh-

borhood are not equidistant, and therefore, their contributions

and impacts on the central pixel are unequal so that directly

taking themedian of them as the estimated intensity of central

noisy pixel is partial and inadvisable. To differentiate the

contributions and impacts of neighbor noise free pixels on the

central pixel, the noise free pixels available on the border of

one neighborhood, are weighted by a weighted operator, and

then, the median of the weighted ones is taken as the intensity

of noisy pixel under consideration.

Our weighted operator is innovatively defined in

FIGURE 5, in which denoted byW (k) the weighted operator

of size k × k . Note that in W (k), the non-zero coefficients,

by which the corresponding pixels are duplicated so as to

control their probability of becoming the median, are sequen-

tially inversely proportional to their spatial distances from

central pixel, and are signed only to the noise free pixels

at the corresponding locations, representing accurately the

contributions and impacts of neighbor pixels on the cen-

tral pixel. In addition, it is noteworthy that the coefficients

assigned to noisy pixels are zero, for noisy pixels could

not participate in the intensity estimation of central noisy

pixel.

As mentioned above, if no noise free pixels are available,

the neighborhood is enlarged until at least one noise free

pixel is found or the neighborhood size has reached the

predefined maximum. At this point, if the neighborhood has

reached the maximum size, and still no noise free pixels are

available, the noisy pixel under consideration is replaced by

the median of all pixels in its neighborhood N (5), including

the pixels of previously processed, unprocessed, and noise

free. As to the maximum size of neighborhood employed for

noise removal, denote it by MaxN; it could not be too large,

for pixels at far distance show weak correlation and impact,

also, it could not be too small, for it shows no robustness for

high density noise. By conducting experiments on various

images and using trial and error method, we see that our

proposedmethodwithMaxN=9 andMaxN=11 shows almost

the same best denoising performance; thus, we prefer to take

9 as the optimal value of MaxN, because of computational

complexity.

In summary, the adaptive sequentially weighted median

filter is set forth as follows. Each detected noisy pixel p under-

goes the following adaptive weighted median processing.

(i) If noise free pixels are available on the border of Np(k)

(initially, k = 3 is taken) under consideration, turn to (ii), or

else, turn to (iii).

(ii) Conduct weighted processing on the noise free pixels

by the weighted operator W (k), and take the median of

weighted ones as the intensity of p, which can be formulated

as

f (p) = median(Np(k) ⋄W (k)) (6)

where the symbol ⋄ is the pixel-wise duplication operator; for

example, for a noise free pixel p with weighted coefficient n,

the weighted processing is defined by

f (p) ⋄ n =

n times
︷ ︸︸ ︷

f (p), f (p), f (p), · · ·, f (p) (7)

(iii) Enlarge the Np(k), i.e. set k = k+2; if k ≤MaxN, turn

to (i), or else, let p unprocessed.

(iv) After processing all the detected noisy pixels by (i) and

(ii), replace each unprocessed noisy pixel p with the median

of its Np(5) including the pixels of previously processed and

unprocessed.

The adaptive sequentially weighted median processing,

which differentiates accurately the contributions and impacts

of neighbor pixels on the central pixel with a sequentially

weighted operator, can achieves a better recovery result, and

can be capable of restoring the edge and structure information

very well.

IV. EXPERIMENTS

By running Matlab R2019a on a machine with Intel(R)

Core(TM) i7-7700 CPU at 3.60 GHZ, equipped with 8 GB

RAM, we conduct the experiments on datasets SET12,

BSD68, and medical images shown in FIGURE 6. The empir-

ical validation for the proposed ASWMF is conducted by

performing thorough comparative analyses with the state-

of-the-art filters proposed recently in literatures, which are

DAMF [11], NDBINF [13], PVGF [18], ADWMF [22], RBFI

[24], SVMFF [25], NAISM [27], and INLM [30], in terms of

noise detection accuracy, peak signal to noise ratio (PSNR),

structural similarity index (SSIM) [33], edge preservation

index (EPI) [34], image entropy H [35], visual perception,

and computational time. The PSNR, SSIM, EPI, and H are

defined by

PSNR = 10 × log10
m× n× 2552

m∑

i=1

n∑

j=1

(f (i, j) − g(i, j))2
(8)

SSIM =
(2uf ug + C1)(2σfg + C2)

(u2f + u2g + C1)(σ
2
f + σ 2

g + C2)
,

(

C1 = (K1L)
2,C2 = (K2L)

2
)

(9)
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FIGURE 5. Sequentially weighted operator W (k) of (a) size 3 × 3; (b) size 5 × 5; (c) size 7 × 7; (d) size 9 × 9.

FIGURE 6. Medical images. (a) Chest_Xray; (b) Abdomen_CT.

EPI =

m∑

i=1

n∑

j=1

(

fhp(i, j)−ufhp
)

×
(

ghp(i, j)−ughp
)

√
m∑

i=1

n∑

j=1

(

fhp(i, j)−ufhp
)2

×
m∑

i=1

n∑

j=1

(

ghp(i, j)−ughp
)2

(10)

H = −

255
∑

i=0

255
∑

j=0

Pij lnPij,





255
∑

i=0

255
∑

j=0

Pij = 1



 (11)

Here, f and g are the original image and recovery image,

respectively; m and n are the height and width of image,

respectively. Denoted by uf and σf the mean and standard

deviation of f , respectively, σfg the covariance of f and g.

The stabilizing constant C1 and C2 are calculated with the

dynamic range, L = 255, K1 and K2, by default K1 and K2

are selected as 0.01 and 0.03, respectively [33]. fhp and ghp
are respectively the high-pass filtering images of f and g

with Laplacian filter, with uf hp and ughp being their mean

values, respectively [34]. Pij reflects the comprehensive char-

acteristics of the intensity distribution of one pixel and its

surrounding pixels [35].

PSNRmeasures the similarity of original image and recov-

ery image; the higher the PSNR is, the better the noise

removal capability is. SSIM measures the structure infor-

mation preservation capability; higher SSIM signifies better

preservation capability. EPI measures the edge preservation

capability; the higher the EPI is, the better the edge preser-

vation capability is. Entropy H is a statistical measure of

randomness and variability that can be used to characterize

TABLE 1. Performance of the state-of-the-art filters and ASWMF in noise
detection on image Chest_Xray.

the texture of image; larger entropy implies coarser texture

and better texture preservation ability [36].

A. NOISE DETECTION PERFORMANCE OF FILTERS

Among DAMF, NAISM, PVGF, and RBFI, we only take

DAMF for evaluation, for they adopt the same noise detection

strategy, i.e., min-max noise detector. In terms of missing

detection rate (MDR) and false detection rate (FDR), the

detected results of all filters on image Chest_Xray are shown

in TABLE 1; and the MDR and FDR are given by

MDR = 100 ×

∑

p∈f

(Rr (p) = 1 ∧ Rd (p) = 0)

∑

p∈f

Rr (p)
(%) (12)

FDR = 100 ×

∑

p∈f

(Rr (p) = 0 ∧ Rd (p) = 1)

∑

p∈f

Rr (p)
(%) (13)

Here Rr denotes the matrix for indicating the true noises,

which indicate a pixel p as noise free with Rr(p) = 0 or

noisy with Rr(p) = 1; Rd denotes the matrix for indicating

the detected noises.

By comparing the statistics in TABLE 1, two points can

be concluded. (i) At various noise densities, some existing

filters have a very small number in MDR, show superiority

over the proposed ASWMF; however, they have a very large

number in FDR, such as DAMF and SVMFF. (ii) Although

the ASWMF shows no superiority in MDR, it achieves
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TABLE 2. PSNR and SSIM of the state-of-the-art filters and ASWMF on
image Lenna.

a far smaller number in FDR. These imply that ASWMF can

achieve better noise detection overall comparing to the other

filters at various noise densities.

B. PERFORMANCE OF FILTERS ON SET12 DATASET

Here, the PSNR, SSIM, and EPI of the recovery results of

the state-of-the-art filters and ASWMF on images Lenna,

Mandrill, Man, and Boat from SET12 dataset, which are cor-

rupted by various density of impulse noise, are tabulated; and

the best results are indicated in bold. Applying the proposed

ASWMF brings about a considerable increase in the PSNR,

SSIM and EPI compared with the state-of-the-art filters with

respect to various noise densities.

The results of all filters on image Lenna are tabulated as

TABLE 2. It can be inferred from numerical results that the

ASWMF gives a considerable improvement in noise removal

and structure information preservation at all noise densities;

in PSNR, the ASWMF consistently achieves superior results

to those of the other filters, and in SSIM, the superiority of

ASWMF to the other filters at high noise density is more sig-

nificant than that at low noise density. These can be attributed

to the intelligent use of the 3σ principle of normal distribution

and the local intensity statistics in noise detection, as well as

the sequentially weighted median processing.

The restored results of all filters for image Mandrill are

revealed in TABLE 3. From the PSNR and SSIM values

in TABLE 3, it can be easily grasped that the performance

of ASWMF is much better than those of the other compet-

ing state-of-the-art filters. ASWMF is the most successful

method than the others even at high noise density. It is

noteworthy that the superiority of ASWMF in SSIM over

the other filters grows, as the noise density increases. These

imply that the ASWMF is successfully devoted to improving

the noise detection, noise removal and structural information

preservation.

In terms of PSNR and EPI, the superior performance

of ASWMF to the other filters for image Man is demon-

strated in TABLE 4. Compared to the state-of-the-art filters,

TABLE 3. PSNR and SSIM of the state-of-the-art filters and ASWMF on
image Mandrill.

TABLE 4. PSNR and EPI of the state-of-the-art filters and ASWMF on
image Man.

the ASWMF gives more promising results; its higher

PSNR values imply better noise removal capability, and its

higher EPI values signify better edge preservation capability.

In PSNR, the superiority of ASWMF to the other filters

is almost approximate along various noise densities; and in

EPI, the superiority of ASWMF grows, as the noise density

increases. This is primarily due to the fact that ASWMF can

accurately discriminate the noisy pixels from the noise free

ones, and effectively estimate the intensity of noisy pixel,

thereby making it more able to restore the image from high

density noise.

In terms of PSNR and EPI, TABLE 5 shows the superior

results of ASWMF to those of the other filters for image

Boat. By observing carefully TABLE 5, we arrived at two

conclusions. (i) The ASWMF improve the performance of

the existing filters by removing noise thoroughly and ren-

dering the restored image free from blur effect, while the

edge information is well preserved. (ii) The superiority of

ASWMF to the other filters in EPI increases with the noise
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FIGURE 7. PSNR and EPI of the state-of-the-art filters and ASWMF on image chest_Xray. (a)PSNR; (b)EPI.

TABLE 5. PSNR and EPI of the state-of-the-art filters and ASWMF on
image boat.

density increases; thus, the edge information preserved by

ASWMF is remarkably better than those preserved through

the other filters. These imply that noise removal and edge

information preservation can be achieved more effectively by

ASWMF.

C. PERFORMANCE OF FILTERS ON MEDICAL IMAGES

Here, we investigate the performance of ASWMF on med-

ical images; and the superiority of ASWMF is revealed by

the results plotted in FIGURE 7 and 8. The PSNR and

EPI of the recovery results of the state-of-the-art filters

and ASWMF on image Chest_Xray with various density of

impulse noise, are plotted in FIGURE 7. From FIGURE 7,

it is noticed that compared to the other filters, substantial per-

formance improvements can be obtained through ASWMF;

the ASWMF outperforms the state-of-the-art filters in noise

removal thoroughly which is revealed by PSNR curves.

As to the edge information preservation, which is revealed

by EPI curves, the conclusion derived from EPI is similar

as that derived from PSNR; along various noise densities,

the ASWMF shows excellent performance in edge preser-

vation. The reason behind these improvements is that the

ASWMF can accurately discriminate the noisy pixels from

the noise free ones, so as to protect the noise free pixels,

and effectively remove the noise while preserving the edge

information.

FIGURE 8 clearly demonstrates that ASWMF gives

definite improvements in PSNR and SSIM over those of

the other filters for image Abdomen_CT. Compared to the

other filters, the ASWMF shows more promise for pro-

cessing medical images; in noise removal processing by

ASWMF, more structure information can be preserved and

better denoising performance can be achieved. Many pix-

els having extreme intensity are often available in medical

images; hence, the superiority of ASWMF over the other

filters in medical image processing highly depends on its

noise detector.

D. PERFORMANCE OF FILTERS ON BSD68 DATASET

We plot in FIGURE 9 and 10 the average PSNR, SSIM, EPI,

and entropy values of the state-of-the-art filters and ASWMF

on BSD68 dataset with various density of impulse noise,

visualizing their denoising performance.

As expected, the results in FIGURE 9 confirm the supe-

riority of ASWMF again, and are consistent with the results

reported above. Three important observations can be made

from FIGURE 9. (i) As the noise density increases, consis-

tently for all filters, the restoration quality degenerates, but

our method consistently gives the best performance. (ii) The

PSNR and SSIM curves of ASWMF are above those of the

other filters, keeping a gap with them along various noise

densities. (iii) Interestingly and apparently, the performance

gap between ASWMF and the other filters in SSIM grows

larger, as the noise density increases.
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FIGURE 8. PSNR and SSIM of the state-of-the-art filters and ASWMF on image Abdomen_CT. (a)PSNR; (b)SSIM.

FIGURE 9. Average PSNR and SSIM of the state-of-the-art filters and ASWMF on BSD68 dataset. (a)PSNR; (b)SSIM.

The results in FIGURE 10 confirm the better capability of

proposed ASWMF in edge preservation, and keeping the uni-

formity of image intensity distribution and the image textures.

It can be seen obviously that the EPI values of ASWMF are

larger than those of other filters along various noise densities,

showing better edge preservation capability; as to the entropy

of recovery image, the ASWMF outperforms the other filters

at almost all the noise densities, except that ASWMF lags

behind the DAMF at very high noise density, showing good

capability in keeping the variation of image intensity and the

image textures.

These can be attributed to that the ASWMF is designed in

such a way that it discriminates the noisy pixels accurately

from the noise free ones and estimates the intensity of noisy

pixel effectively.

E. VISUAL PERCEPTION OF RECOVERY RESULTS

Here, the images Barbara and Jetplane in SET12 are selected

as experimental images. Because the performance of a filter

at low noise density is often difficult to evaluate by visual

perception, we focus on evaluating it at high noise density.

Visual analyses on the capability of noise removal, structure

and edge information preservation of the proposed ASWMF

against the state-of-the-art filters in the recovery results for

image Barbara with 80% impulse noises and Jetplane with

90% impulse noises are made in FIGURE 11 and 12, respec-

tively. For a visually clear comparison, only a zoomed-in local

part of each recovery image is shown.

FIGURE 11 shows the improvements in visual appearance

given byASWMF against the state-of-the-art filters for image

Barbara; two numbers in the parentheses below each recov-

ery image are the corresponding PSNR and SSIM, respec-

tively. By observing FIGURE 11 carefully, three important

conclusions can be inferred. (i) The ASWMF gives a more

visually pleasant recovery image, and provides a signifi-

cant contribution towards preserving the structural infor-

mation. (ii) In the recovery images of the other filters,

either residual noises or obvious blur effects can be seen.
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FIGURE 10. Average EPI and entropy of the state-of-the-art filters and ASWMF on BSD68 dataset. (a)EPI; (b)Entropy.

FIGURE 11. Recovery results of image Barbara with 80% impulse noises.(a) Zoomed-in local part of Barbara with impulse noise;
Results of (b) DAMF; (c) NDBINF; (d) PVGF; (e) ADWMF; (f) RBFI; (g) SVMFF; (h) NAISM; (i) INLM; (j) ASWMF.

(iii)Again, the PSNR and SSIM values below the recovery

images confirm the superiority of ASWMF over the other fil-

ters. These mean that the ASWMF possesses better capability

of noise removal and structural information preservation than

the existing filters, and the image produced by the ASWMF

is visually sharper and more distinctive than those obtained

by the other filters.

The recovery images of all filters on image Jetplane with

90% impulse noises, are shown in FIGURE 12; two numbers

in the parentheses below each recovery image are the corre-

sponding PSNR and EPI, respectively. On careful observation

from FIGURE 12, the visual result of ASWMF is percep-

tually better than those of the other considered filters; the

recovery results confirm that our result is far superior to those

of the other filters, indicating that the ASWMF still produces

consistently higher quality image at such a high corruption

level with better capability of local features preservation. And

the corresponding PSNR and EPI are also consistent with the

conclusion derived by visual perception. The ASWMF still

works fairly well, even at a very high noise density; this is

due to the same reason as explained above.

Here, these inferences by visual perception are consistent

with the comments given above.

F. COMPUTATIONAL TIME

Denoted by n the pixel number of one image and Cx
a constant. Consider the complexity of each subprocess

in the proposed ASWMF: noise detection by extreme

intensity— O(n); detection by 3σ principle or local

intensity statistics— O(C1n), here C1 = 49 or C1 = 25;

search noise free pixels in neighborhood of adaptive

size— O(C2n); weighted processing for each noisy
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FIGURE 12. Recovery results of image Jetplane with 90% impulse noises. (a) Zoomed-in local part of Jetplane with impulse noise;
Results of (b) DAMF; (c) NDBINF; (d) PVGF; (e) ADWMF; (f) RBFI; (g) SVMFF; (h) NAISM; (i) INLM; (j) ASWMF.

TABLE 6. Average computational time (seconds) of each filter on six
selected images.

pixel— O(C3n); replace each noisy pixel with median—

O(C4n). Therefore, summing them together, the total com-

plexity of ASWMF is O((1+C1+C2+C3)n). Hence, it can

be concluded that the computational complexity of the pro-

posed ASWMF is acceptable. Further, we end this section

by considering the computational time of our ASWMF and

the state-of-the-art filters; they are performed on image

Lenna, Mandril, Man, Boat, Barbara, and Jetplane, and the

average computational time of each filter is tabulated as

TABLE 6.

A careful look at TABLE 6 and reference to the above

performance analyses reveal that some state-of-the-art filers

often provide such a good performance only at the cost of

computational time, such as INLM and RBFI. Among all

filters, no significant superiority in computational time is

shown by the proposed ASWMF; however, its running speed

is comparable to most of the state-of-the-art filters, and sur-

passes some other filters, such as ADWMF, INLM and RBFI.

V. CONCLUSION

In this paper, we proposed a new method ASWMF for image

restoration from impulse noise, consisting of a simple and

effective noise detector, and a noise removal technique capa-

ble of removing impulse noise thoroughly and preserving the

structure and edge information very well. The noise detector

in ASWMF takes full advantage of the 3σ principle of normal

distribution and the local intensity statistics; and the noise

removal technique in ASWMF gets support from the adaptive

sequentially weighted median processing. The 3σ principle

of normal distribution and local intensity statistics employed

in noise detection and the adaptive sequentially weighted

operator employed in noise removal are the remarkable con-

tributions of the proposed ASWMF; they jointly make the

denoising performance advanced considerably. With exten-

sive experimental results on various images with various

density of impulse noise, it is observed that quantitatively and

qualitatively, the proposed ASWMF performs superiorly to

the state-of-the-art filters in the presence of impulse noise.

In addition, no significant superiority in computational time

is shown by the proposed ASWMF; we will advance it in

the further work, making it applicable for real-time image

denoising.
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