
Adaptive Service Management in Mobile Cloud
Computing by Means of Supervised and Reinforcement
Learning

Piotr Nawrocki1 • Bartlomiej Sniezynski1

Received: 19 February 2016 / Revised: 4 February 2017 / Accepted: 19 February 2017 /

Published online: 24 February 2017

� The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract Since the concept of merging the capabilities of mobile devices and cloud

computing is becoming increasingly popular, an important question is how to

optimally schedule services/tasks between the device and the cloud. The main

objective of this article is to investigate the possibilities for using machine learning

on mobile devices in order to manage the execution of services within the frame-

work of Mobile Cloud Computing. In this study, an agent-based architecture with

learning possibilities is proposed to solve this problem. Two learning strategies are

considered: supervised and reinforcement learning. The solution proposed lever-

ages, among other things, knowledge about mobile device resources, network

connection possibilities and device power consumption, as a result of which a

decision is made with regard to the place where the task in question is to be

executed. By employing machine learning techniques, the agent working on a

mobile device gains experience in determining the optimal place for the execution

of a given type of task. The research conducted allowed for the verification of the

solution proposed in the domain of multimedia file conversion and demonstrated its

usefulness in reducing the time required for task execution. Using the experience

The research presented in this paper was supported by the Polish Ministry of Science and Higher

Education under AGH University of Science and Technology Grant 11.11.230.124. We thank

Małgorzata Pła _zek, Jakub Czy _zewski and Michał Janiec for assistance with implementation and testing.

Neither the entire paper nor any part of its content has been published or has been accepted for

publication elsewhere. It has not been submitted to any other journal.

& Piotr Nawrocki

piotr.nawrocki@agh.edu.pl

Bartlomiej Sniezynski

bartlomiej.sniezynski@agh.edu.pl

1 Department of Computer Science, Faculty of Computer Science, Electronics and

Telecommunications, AGH University of Science and Technology, al. A. Mickiewicza 30,

30-059 Kraków, Poland

123

J Netw Syst Manage (2018) 26:1–22

https://doi.org/10.1007/s10922-017-9405-4

http://orcid.org/0000-0003-4512-9337
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-017-9405-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-017-9405-4&domain=pdf
https://doi.org/10.1007/s10922-017-9405-4

gathered as a result of subsequent series of tests, the agent became more efficient in

assigning the task of multimedia file conversion to either the mobile device or cloud

computing resources.

Keywords Machine learning � Optimization � Handheld device � Internet-based

computing

1 Introduction and motivation

In recent years, an increase in the importance of mobile devices in computer

systems has become apparent [1]. The development of mobile phones, which at first

were only meant for voice communication, has taken a turn in the direction of multi-

function devices known as smartphones, which combine the functionalities of both

phones and computers and additionally incorporate various sensors. Alongside

hardware development, software began to develop as well; more and more programs

started to leverage the resources of mobile devices, and especially the Central

Processing Unit (CPU), memory and battery. When it comes to CPU and memory

capabilities, mobile devices have become more like computers; however, there still

are some characteristics that differentiate them, e.g. relatively small screens (even in

tablets), battery power supply and communication modules that rely solely on the

wireless technology.

The main objective of the studies described in this paper was to design an

adaptive service management solution that would make it possible to optimize the

cost of execution of services on mobile devices. The cost corresponds to the QoE

(Quality of Experience) parameter and may take into account battery life, service

execution time or user satisfaction. The adaptation (optimization) process should be

performed online on the mobile device to take into account the heterogeneity of

mobile systems and fluctuating conditions. We demonstrate that this can be done by

applying agent-based solutions with learning capabilities in the Mobile Cloud

Computing (MCC) environment. As a result of the research conducted, an agent-

based model has been proposed that was used in the development of the case study

environment related to multimedia file processing.

We have investigated the possibilities for optimizing the operation of services on

mobile devices using the concept of cloud computing. We have noticed that it is

possible to optimize the utilization of resources by moving selected tasks performed

within the framework of individual services to the cloud. In order to accomplish

this, we have decided to apply the MCC paradigm, which allows services to be

performed in the cloud, and introduces agents that can decide under what

circumstances, and which tasks should be executed in the cloud instead of on the

mobile device. In decisions about migrating particular services (or parts thereof), the

agents may use information about the condition of the device (memory, CPU,

network interface card) and its sensors (light and location sensors, and the

accelerometer) as well as the current time (hour, time of day, day of week, holidays)

and potential costs (data transmission charges). In the meantime, they gather

experience and autonomously learn how to make decisions on service migration

2 J Netw Syst Manage (2018) 26:1–22

123

using machine learning. Thanks to the use of agents and the MCC concept, it is

possible to optimize the performance of services on mobile devices, especially with

respect to energy consumption, data transmission charges and execution time. The

learning process is executed by the agent online, which makes it possible to use the

agents’ specific experience and adapt to changing conditions.

This paper is structured as follows: Section 2 contains a description of related

work, Sect. 3 is concerned with employing the learning agent in the process of

adapting the service selection strategy on mobile devices, Sect. 4 presents the case

study, Sect. 5 describes the performance evaluation and Sect. 6 contains the

conclusion.

2 Related Work

Along with the development of cloud computing [2] and mobile systems, research

into the implementation of this concept in the mobile device environment began. In

[3], the authors present an overview of the background, techniques and research

areas for offloading computation to the cloud, which enables energy savings [4] and

improves performance on mobile devices. In this way, the MCC paradigm [5],

which enables the migration of individual services (tasks [6], data) from mobile

devices to the cloud [7], emerged. On the basis of the general MCC concept, open

(e.g. Open Mobster, Clonecloud [8]) and commercial (e.g. Perfecto Mobile)

implementations of the solution have been developed. MCC is further developed [9]

using two approaches—Mobile Computational Offloading (MCO) [10] and Cloud

Assisted Mobile Augmentation (CMA) [11]. MCO defines the concept of

dynamically offloading computation from mobile applications to the cloud

infrastructure and CMA is a mobile augmentation model that employs the cloud

to increase, enhance, and optimize the computing capabilities of mobile devices.

Many sample scenarios and applications using mobile devices and cloud

computing have been described in literature [12]. In [13], the authors present typical

MCC applications, such as:

– mobile commerce [14], comprising applications in the areas of finance,

advertising, and shopping;

– mobile learning [15, 16], primarily concerning e-learning, accommodating

mobile device hardware limitations;

– mobile healthcare, allowing easy and effective access to the patient’s medical

records [17] or enabling the monitoring of the patient’s condition while at home

[18];

– mobile gaming, enabling the user to play while simultaneously sending certain

game tasks that require the most computing resources (such as the graphic

rendering process) to the cloud [19].

Apart from the examples mentioned above, an increasing number of applications

related to social networks [20] and using mobile device sensors [21] use the MCC

paradigm.

J Netw Syst Manage (2018) 26:1–22 3

123

The MCC paradigm yields many benefits [13], especially for mobile devices.

One of the most vital advantages is enhancing battery life without the necessity of

replacing mobile device hardware and software. The possibility of migrating

complex services/tasks to the cloud results in decreased energy consumption by the

CPU and, as a result, increased battery use efficiency. Another important advantage

is improved reliability. Saving data in the cloud reduces the risk of data loss and

allows additional functionalities, such as copyrighted digital content and virus

scanning.

Nonetheless, all MCC scenarios and applications must accommodate the

limitations resulting from the nature of mobile systems, which necessarily rely on

the wireless transmission technology. Apart from possible problems related to

wireless network communications (low bandwidth or data loss), other important

challenges for MCC are notification methods [22] and security. Providing the proper

level of data security [23] is a key aspect of MCC, especially in the context of

e-health [24] or finance and banking applications.

The possibilities of employing the MCC paradigm in order to optimize services

on mobile devices for numerous applications and scenarios [5, 25] have been

discussed in literature. In [26, 27], the authors present the possibility of using this

paradigm in image processing for an application that reads text (e.g. descriptions of

exhibits in South Korean museums [27]) and translates it to the language of choice

using optical character recognition (OCR). If it is not possible to translate the text on

the mobile device, the task is shifted to the cloud where the text is translated and the

result is sent back to the user. Another example described in [12] is a service for

managing multimedia files which can be collected from numerous mobile devices

and combined into a single file presenting the image from different angles and

perspectives. In the ‘‘Lost child’’ scenario, the author describes a situation where a

child is missing and it is possible to collect and send records (or photos) from

different users’ mobile devices to the cloud and to gather comprehensive

information on the missing person.

Other interesting approaches in the area of MCC are Mobile Assistance Using

Infrastructure (MAUI) [28] and ThinkAir [29]. The MAUI system enables energy-

aware offloading of mobile code. Developers can annotate which methods of the

mobile application can be offloaded to the cloud. Once a method is called and a

remote server is available, MAUI uses the optimization framework to decide

whether the method should be offloaded depending on three factors: energy

consumption, execution characteristics (time and resources) and network charac-

teristics (including bandwidth, latency and packet loss). The ThinkAir is an

universal Android framework for code offloading for mobile devices. This

framework allows running some parts of the application’s logic (methods) in a

remote cloud-based service. It can be used by existing applications, with a minimal

set of changes required from the developer and no modifications are needed in the

Dalvik virtual machine. The decision whether to offload a method or not depends on

profiling information and historical invocations of the method in question. The

profiler (decision module) may be configured to minimize execution time, power

consumption, cost or all variables at the same time.

4 J Netw Syst Manage (2018) 26:1–22

123

A concept that extends today’s cloud computing infrastructure is the cloudlet

[30, 31]. It is a cloud-like structure located near to the edge devices it serves. The

main purpose of the cloudlet is supporting resource-intensive and interactive mobile

applications by providing powerful computing resources to mobile devices with

lower latency. The concept of cloudlet is also known as mobile edge computing,

Follow-Me Cloud, and mobile micro-cloud [32].

A significant area of research is how efficiently the cloud can handle requests

from a mobile application when cloud resources are limited. In [33], the authors

propose a novel MCC adaptive resource allocation model using a semi-Markov

decision process (SMDP) to manage resource requests. The model proposed

achieves higher system performance and lower service blocking probability

compared to classical solutions that are based on greedy resource allocation

algorithms.

An important aspects of service adaptation are possibility of reconfiguration

[34, 35] and providing an efficient mechanism—a repository—that allows searching

for services in a distributed environment [36]. The services found should have a

Service Level Agreement (SLA) parameter that specifies the conditions for their use

[37].

As of yet, there have not been many studies of MCC and the use of agents that

learn autonomously and online in the process of optimizing the service selection

strategy on mobile devices. A similar topic concerning the optimization of the

mobile environment using MCC is investigated in [38]. In the paper, the authors

employ genetic algorithms in the optimization process; however, they do not e.g.

consider energy aspects (mobile device battery life), focusing solely on computing

complexity and requirements concerning the memory allocated to particular

services. In another paper [39], the authors propose a learning agent for a service-

oriented, context-aware recommender system using mobile devices.

There are several other studies of multi-agent system applications in mobile

computing [40, 41]. A problem similar to the one considered here is presented in

[42], where an agent-based system for MCC optimization is investigated. The main

component of the system is the Execution Manager, which is a service on a mobile

device that is responsible for deciding where to execute application components. In

order to make this decision, a cost model is used, in which execution times are

collected offline by the application profiler (in our solution we leverage online

learning). Learning on a mobile device is used in [43], where an agent performing

behavioral detection is discussed that samples selected system metrics (e.g. CPU

usage, network communication, active processes, battery level) and detects

anomalies using classification methods.

Autonomous reasoning about resources and tasks by agents is discussed in [44].

The domain knowledge is represented using an ontology but no learning is used.

The application of machine learning algorithms in agent-based systems has been

broadly discussed in literature. Valuable studies in this area are [45, 46]. In most

cases, reinforcement learning or evolutionary computations are applied for the

purpose of agent adaptation (see surveys [46, 47]).

In contrast to evolutionary computation where a population of agents is

necessary, reinforcement learning [48] is particularly interesting because it enables

J Netw Syst Manage (2018) 26:1–22 5

123

autonomous online learning. The learning agent model assumes that the agent

interacts with the environment in discrete steps by observing the environment,

choosing the appropriate action and executing it. Next, the agent receives a reward

r 2 R. The reward is high if its actions are appropriate, and low if they are

inappropriate. The agent has to learn which action should be executed in a given

state. The formal model of learning is based on a Markov process. An interesting

example of reinforcement learning application in mobile devices is [49] where

media streaming is adapted.

There are also works where supervised learning has been applied to agent-based

systems [50, 51] like in this paper. Using this method, a single agent can also learn a

strategy autonomously and online [52]. This makes it possible to accelerate the

learning process compared to reinforcement learning, especially if the state space is

large [53, 54].

All the examples described assume that the user has decided to send the task or

data from his or her mobile device to the cloud in order to perform a particular

operation. However, we assume that, in contrast to the aforementioned examples,

the mobile device also has the option to perform the service in question but it might

prove more cost-effective to send the task/data to the cloud, perform the operations

required and return the results to the device. This assumption makes it possible to

optimize the operation of mobile devices on the basis of various criteria such as

energy consumption, the data transferred (and the related charges) and execution

time. At the same time, the authors have conducted research into the use of agents

and the supervised learning process in connection with deciding under what

circumstances and which services (tasks, data) should be sent to, and executed in,

the cloud.

3 Agent-Based Adaptive Service Management on a Mobile Device

An important question related to MCC is the optimization of the service selection

strategy on mobile devices. Increasingly often, it is possible to perform complex

services (tasks) on mobile devices (thanks to, e.g., their greater processing power

and memory size), but this increases energy consumption at the same time

(shortening battery life). This is why, apart from cases where mobile devices have to

send services (tasks) to the cloud, the MCC paradigm should take into consideration

situations in which services (tasks) may either be migrated to the cloud to preserve

the resources of the mobile device or may be executed locally. The decision on this

migration may be made by the user, e.g. where he or she is not satisfied with the

performance of a service or the outcome. However, the process may also be

automated and online adaptation by applying machine learning is possible. This

allows the service management strategy to be adapted to the characteristics of a

specific mobile device. Therefore a solution that uses agents that are able to monitor

the environment and, on that basis, to make decisions about the place where a

service (task) is to be executed, has been proposed.

6 J Netw Syst Manage (2018) 26:1–22

123

3.1 Assumptions

An agent operating on a mobile device in the MCC paradigm monitors the

environment and collects information on:

– the task to be executed in the service in question, including its type, key

arguments, estimated data input/output size, estimated execution time, the cost

of performing the computation and the time when the result is needed;

– the cost of performing the service in the cloud affecting the assessment of the

cost-effectiveness of the service;

– the location of the device (domestic/roaming) indicates whether the mobile

device uses the data transmission service from local mobile operators (lower

costs), or must use roaming service abroad (higher transmission costs).

– possible device connection modes (Wi-Fi, 2G/3G/4G) and connection quality

affecting the network throughput between the mobile device and the cloud. The

type of connection can also affect the power consumption of the mobile device;

– battery status specifies how long the mobile device can operate and how long the

service can be performed on this device;

– the current time and date (including day of week, holidays, etc.) affect the ability

to take advantage of better rates related to data transmission or to transmit/

receive data during periods when the telecommunication operators’ infrastruc-

ture is less busy;

– readings of sensors such as the accelerometer, light sensor, etc. for determining

the status of the mobile device (device movement, ambient lighting, etc.).

These data are called a Task Allocation Problem (Problem for short). The agent

has to find a solution for the Problems: it makes decisions when and where to

perform the service (locally or in the cloud). After completing the task, the agent

assesses its decision, considering one or more criteria such as:

– mobile device power consumption;

– the time spent waiting for the result;

– the user’s satisfaction (the user could override the agent’s decision, which means

that he or she does not agree with it);

– costs (e.g. charges related to data transfer or using cloud resources).

The agent gathers experience and updates its strategy, applying some learning

algorithm. Simultaneously, the agent may generate:

– models of the user’s behavior that enable it to assess the impact of factors such

as his or her location/connection accessibility/ability to charge the device;

– models of estimated outcomes of performing a service locally/in the cloud

(energy consumption, time).

These models may be used to improve the estimates of decision consequences.

J Netw Syst Manage (2018) 26:1–22 7

123

The internal structure of the agent should reflect its learning abilities. The

architecture of the agent is presented in Fig. 1; the agent consists of four main

modules:

– Processing Module which is responsible for basic agent activities such as

processing the percepts, storing training data, executing the learning process and

leveraging the knowledge learned;

– Learning Module which is responsible for executing the learning algorithms and

providing answers for problems using the knowledge learned;

– Training Data (D) which provides storage for the examples (experience) used in

learning;

– Generated Knowledge (K) which provides storage for the knowledge learned

(models).

These components interact in the following way: the Processing Module receives

Percepts from the environment (parameters listed in the previous subsection),

processes them and executes Actions. If the knowledge learned is needed during

processing, it formulates a Problem representation (xO) by describing observations

with available attributes and sends it to the Learning Module, which generates an

Answer for the Problem using K. The Processing Module also decides what data

should be stored in D storage. When required (e.g. periodically or when D contains

many new examples), it calls the Learning Module to execute the learning algorithm

that generates new knowledge from D. The knowledge learned is stored in the

K base.

Currently, all examples are stored in D. However, it is also possible to remove

examples that are too old. Such an approach would resolve potential storage issues.

3.2 Task Allocation Q-Learning Agent

Let us define the Task Allocation Q-Learning Agent (AgQ) as a tuple:

Fig. 1 The service management agent architecture reflecting its learning abilities

8 J Netw Syst Manage (2018) 26:1–22

123

AgQ ¼ ðT ; S;A;QÞ; ð1Þ

where T is a set of attributes used to describe computational tasks that the agent is

able to allocate; S is a set of attributes describing environment states representing a

context in which the agent has to make the decision (e.g. current battery state, type

of internet connection, position, time and date). A is a set of actions to represent

local and cloud execution A ¼ fl; cg. Q is a quality function that is used to select an

action for a task in a given context.

There are many reinforcement learning algorithms. We have chosen Q-Learning

[55] for our works but other algorithms could also be used. The algorithm of the

agent is as follows:

1. The agent observes the task and the environment state and describes it with

attributes O ¼ T [S ¼ fo1; o2; . . .ong which yields

xO ¼ ðo1ðxÞ; o2ðxÞ; . . .; onðxÞÞ 2 XO: ð2Þ

2. To select an action to execute a 2 A, the agent uses quality function

Q : XO � A ! R. Two strategies are tested in experiments:

highest – action a 2 A for which the quality QðxO; aÞ has a maximum

value is selected with 1 � � probability, and the other action with

� probability (it is �-greedy exploration [48], which allows a local

minimum to be avoided during learning);

proportional —the action is selected with a probability proportional to its

Q value. This is not a typical strategy in reinforcement learning.

It was used because a similar approach is applied in the case of

the supervised learning agent (see below).

3. The agent observes the results of task execution: if it was successful (sometimes

there may be e.g. a communication error), execution time, result quality, etc.

4. The agent calculates the reward r 2 R.

5. The agent observes and describes the next task and state x0O.

6. It updates the Q function:

QðxO; aÞ :¼ QðxO; aÞ þ aðcmax
act

Qðx0O; actÞ þ r � QðxO; aÞÞ; ð3Þ

where a 2 ð0; 1Þ is the learning rate and c 2 ½0; 1� is a discount factor

representing the importance of future rewards.

7. Goto 2.

In the experiments, we used c=0. Therefore, step 5 may be omitted. Q may have a

tabular representation or may be represented by some approximator. We have

applied the latter approach with the use of neural networks (see [56]). There are two

of them: Ql;Qc corresponding to both actions. As a result, network Qa approximates

QðxO; aÞ.

J Netw Syst Manage (2018) 26:1–22 9

123

3.3 Task Allocation Supervised Learning Agent

This type of agent is described in a more detailed way because it is a novel approach

to agent learning. Let us define the Task Allocation Supervised Learning Agent

(AgSL) as a tuple:

AgSL ¼ ðT ; S;R;K;D;AÞ; ð4Þ

where T and S are sets of attributes defined above, R is a set of attributes describing

the results of task execution (like in step 3 of the reinforcement learning agent). K is

generated knowledge, D is training data, and A is a set of actions (defined above).

K is knowledge generated by some supervised learning algorithm(s) from the

agent’s experience represented by D. This knowledge is used to choose the action.

The agent observes the task and the state and its processing module describes

them with attributes O ¼ T [S, which yields xO, i.e. a description of the Problem as

described in (2). The translation of observations from x to xO depends on the exact

domain in which the system is applied. In the experiments described below, we have

only discretized numerical values using the equal frequency method, which splits

the attribute’s domain into intervals that contain equal numbers of examples.

However, more advanced preprocessing (e.g. feature selection) may be required in

more complex domains. In the next step, the agent using the knowledge stored in K

solves the Problem by selecting a 2 A, which has the minimum predicted cost. If

K is empty, a is randomized.

For instance, K may be a decision tree used to predict the execution time of the

task locally and in the cloud. If the Internet connection is slow and the task is

executed in the cloud, the execution time will be long. If it is executed locally, it

will be faster. K can be learned from D, which consists of examples of local and

cloud task execution for various Internet connection types.

The agent’s action a is then executed and the task is run locally or in the cloud.

The agent observes execution results, which are described by R ¼ fr1; r2; . . .rmg
attributes (e.g. whether execution was successful esðx; aÞ, battery consumption

b(x, a), calculation time t(x, a), payments p(x, a) representing costs of cloud

services and user’s dissatisfaction d(x, a), which may be measured by observing if

the user overrode the agent’s decision). Therefore, the set of all attributes used to

describe percepts is a sum of O and R:

Attr ¼ O [R: ð5Þ

The agent stores these results together with xO and action a in D. Therefore the

complete example x description stored in D has the form

xAttr[A ¼ ðo1ðxÞ; o2ðxÞ; . . .onðxÞ; r1ðx; aÞ; r2ðx; aÞ; . . .rmðx; aÞ; aÞ: ð6Þ

The models to predict R values are constructed using supervised machine learning

algorithms and stored in K. These models influence the choice of the action taken.

Using predictions of ri 2 R, the agent may rate its decisions a 2 A for the

observed task and context xO by calculating predicted costs e(x, a):

10 J Netw Syst Manage (2018) 26:1–22

123

eðx; aÞ ¼
Xm

i¼1

wririðx; dÞ; ð7Þ

where wri are weights of the result ri. Currently the weights are set by hand.

However, some adaptation algorithm can also be used to tune them. The agent

should select the action for which the cost is predicted to be the lowest. If the weight

of computation time is much higher than the other weights, the fastest execution

location should be selected. If the weight of payments is much higher than the

others, the cheapest location should be selected, even if it takes more time.

The weighted sum is only one of the methods for generating non-dominated

solutions for Multiple-criteria decision-making. Other methods of choosing the

action are also possible (from a simple ordering of criteria to complex non-

dominated solution finders [57], Lexical Evaluation Function [58] or Analytic

Hierarchy Process (AHP) [59]). However, the weighted sum affords the flexibility to

simultaneously take several criteria into account, while still being easy to explain to

the user. It may be implemented as a set of sliders corresponding to individual

criteria.

As mentioned above, it may happen that for some types of tasks, execution on a

mobile phone or in the cloud fails (e.g. because of insufficient memory). To deal

with that, an additional classifier can be used: Kes : O [A ! fyes; nog predicting if

the calculation will be successful. If for some action the prediction is no, the other

action is selected.

The use of the ‘‘user satisfaction’’ criterion allows for the assessment of user

experience and makes it possible to account for it in the learning algorithm. As it

has been mentioned above, the user may set the weight of this criterion in the

calculation. If wd ¼ 0, the decision of the agent does not take user experience into

consideration and is based on other criteria related to computation efficiency

aspects.

The agent’s algorithm, which is executed in the Processing Module, is presented

in Fig. 2. At the beginning, K and D are empty. Next, if there is no learned

knowledge, the action is randomized. If there is some knowledge, the Problem

variable is a description of the observations (xO). Next, the Learning Module is used

to select the best action for the Problem according to the current knowledge. Results

are observed and example (xAttr[A) is stored in D. After processing a given number

of tasks, the Learning module is called to generate a new knowledge from D. This

knowledge is stored in K.

The form of the knowledge stored in K depends on the learning algorithm

utilized. It may have an explicit form, e.g. rules, a decision tree or a Bayesian model

in the case of supervised learning. It may also be stored in a lower-level form such

as parameters representing a linear regression model, an action-value function or a

neural network approximator of such a function if reinforcement learning is applied.

It is also possible to store more than one model in K.

J Netw Syst Manage (2018) 26:1–22 11

123

4 Mobile Multimedia Processing System

In order to verify the possibility of using agents to optimize service management in

MCC, the authors developed a Mobile Multimedia Processing System that enables

the processing of multimedia files. Varying demands on computational power for

different tasks and the necessity to transfer various amounts of data in case of

processing in the cloud make this case a representative domain for testing the

solution proposed.

The system developed consists of two components: the learning agent (which

works within a mobile application) and the multimedia data conversion service

(which operates on the mobile device and in the cloud). A detailed description of the

learning agent was presented in the previous section. In the solution developed, the

multimedia data conversion service runs locally on the mobile device or remotely in

the cloud in exactly the same way (using the same libraries). This enables a

comparison of the effectiveness of the conversion service in two environments. In

further studies, it will be possible to diversify the conversion service in such a way

that it utilizes different libraries optimized either for mobile devices or the cloud

environment. In such a situation, it will be necessary to distinguish between

different components: the conversion service on the mobile device and the

conversion service in the cloud.

During tests, multimedia files were converted using the cloud or directly on the

mobile device (Google Nexus 5 with Android 5.0). At application runtime, data

concerning conversion efficiency were collected with regard to different conditions:

the size of the file, the codec used, task type and where the conversion took place.

Based on that data, the mobile application (learning agent) selected the conversion

1 begin
2 Generated Knowledge:= ∅;
3 Training Data:= ∅;
4 while agent is alive do
5 if Generated Knowledge = ∅ then
6 a:= random action
7 end
8 else
9 Problem := description of the current (observed) state;

10 a:= action determined for Problem by model(s) stored in
Generated Knowledge

11 end
12 execute a;
13 observe execution results;
14 store example in the Training Data;
15 if it is learning time (e.g. every 100 steps) then
16 learn from Training Data;
17 store knowledge in Generated Knowledge;
18 end
19 end
20 end

Fig. 2 Learning agent algorithm making it possible to generate the strategy for the agent using online
supervised learning based on the agent’s experience

12 J Netw Syst Manage (2018) 26:1–22

123

type and place that would offer better expected efficiency. Figure 3 shows the

component diagram of the solution developed.

The mobile application was developed for the Android operating system. In order

to implement the functionality used in the tests conducted, the authors picked the

Google Cloud Endpoints solution. This is a technology enabling easy communi-

cation between mobile and web apps with a backend operating in the Google App

Engine cloud. The solution involves both client libraries and server ones, which are

available for the Java, Python, PHP and Go languages. Since the test mobile

application was developed for the Android operating system, the authors decided to

use Java both for the client on the mobile device and for the backend operating in

the cloud.

Two tasks were related to the conversion of multimedia files. For this purpose,

the jcodec library was used. It can operate both on a mobile device with the Android

operating system and in the Google App Engine cloud. This enabled the comparison

of conversion times on the mobile device and in the cloud when the same

mechanism was used for encoding multimedia files. The jcodec library was used to

implement the following conversion types:

– from the H.264 Advanced Video Coding (AVC) format (MP4 container) to the

Apple ProRes 422 format (Proxy) (MP4 container);

– from the H.264 AVC format (MP4 container) to a series of Portable Network

Graphics (PNG) images (where every 5th, 15th or 25th frame was encoded).

The third type of task was the conversion from a PNG image into a Portable Doc-

ument Format (PDF) document. It was implemented using the pdfJet library on a

mobile device and in the cloud.

The Android operating system version of the Weka library [60] (WekaforAn-

droid) was used to implement learning algorithms and the application of learned

knowledge.

Fig. 3 Component diagram of the Mobile Multimedia Processing System

J Netw Syst Manage (2018) 26:1–22 13

123

In the domain considered, the proposed solution may be specified in detail as

follows. The task type is described by three attributes: typecodec; typepdf ; typeframe.

The first two are binary (with domains of f0; 1g), the third domain is N and a value

greater than zero represents the number of frames to skip during frame selection.

Only one of these attributes may have a value greater than zero and this represents

the corresponding type of task. The last attribute length represents file size and has a

[0,1) domain. length ¼ fl
flþ1

, where fl is the file size in MB. State attributes S consist

of four attributes: the binary attribute charging representing charger connection,

connection representing internet connection type (a value of 0 represents no

connection, 0.5 represents a GSM connection, and 1 represents Wi-Fi), battery

representing battery level (with a [0,1] domain) and time representing the minute of

the day (time ¼ min
24�60

, where min is the current minute of the day). As a result

O ¼ ftypecodec; typepdf ; typeframe; length; connection; time, batteryg. Results are

described by the es Boolean attribute showing whether the execution was successful

or not, b representing battery usage and the numeric t attribute representing

calculation time in seconds. Therefore R ¼ fes; b; tg.

In the supervised learning approach, two models are built. The first one is Kes – a

Naı̈ve Bayes classifier, which allows to predict the es category from O [A

attributes. The second one is Kt – a linear regression model which is used to predict t

from O [A. As a result, K ¼ ðKes;KtÞ.
Currently, the agent takes into account only t(a) in Eq. (7): wb ¼ wd ¼ 0, wt ¼ 1.

Hence, the action is selected in the following way: first, Kes is used to determine if

for the task observed, to and state s calculations will be successful locally: succl ¼
Kesðto; s; lÞ and using the cloud: succc ¼ Kesðto; s; cÞ. Next, computation time is

predicted for both resources: tl ¼ Ktðto; s; lÞ, tc ¼ Ktðto; s; cÞ. If succl is true and

succc is false, local calculation a ¼ l is selected. Conversely, if succc is true and

succl is false, cloud execution a ¼ c is selected. If both predictions are false, the

action is randomized with a uniform probability distribution. If both predictions are

true, the action is randomized with the probability of action a inversely proportional

to calculation time: pðaÞ ¼ 1 � ta
tlþtc

. The reward r of the reinforcement learning

agent corresponds to negative costs (see Eq. 7).

5 Performance Evaluation

Each experiment consists of a series of rounds. In each round, an identical task

package is executed. Each task package is a combination of selected task parameters

and system state values. This means that each test package involves measuring the

codec conversion time for ten multimedia files (sizes from 60 kB to 650 kB) and

two PNG to PDF conversions for two files (sizes 8 and 14 kB). These tasks are

executed for two network connection types (Wi-Fi/3G). This yields 24 tasks per

package.

During the series of measurements conducted, information was collected on

conversion time and its result (task execution success or failure). The experiment

was carried out using a mobile device—LG Nexus 5. This mobile device has the

14 J Netw Syst Manage (2018) 26:1–22

123

following specifications: SoC—Qualcomm Snapdragon 800, CPU—2.26 GHz

quad-core Krait 400, Graphics Processing Unit (GPU)—Adreno 330, 450 MHz,

memory—2 GB of LPDDR3-1600 RAM and storage—16 GB.

In the case of reinforcement learning, the Q function is reinitialized before the

first round and the function is updated after each task execution.

In the case of supervised learning, examples (xO[R[A) are stored in D after each

task execution. When the full task package has been executed, the agent initiates the

learning process and builds the Kes classifier using Naı̈ve Bayes and Kt using linear

regression, which are used in the next round to process tasks. During round n, the

agent uses for learning the examples collected in rounds 1...n� 1. The learning

process is presented in Fig. 4. When the series is completed, D and K are cleared and

the next series is executed to collect statistical data.

For each round, the task package execution time is measured. By execution time

we mean elapsed (wallclock) time. If task execution results in failure, task execution

time is set to the maximum successful execution time observed. In all experiments,

ten rounds were executed and repeated ten times to collect statistical data.

In the first experiment, supervised learning was used. The results of those tests

are shown in Table 1.

The result achieved demonstrated that the employment of supervised machine

learning in multimedia and PNG to PDF file conversion tests caused a significant

reduction in the time required for the execution of such tasks. The time required for

the execution of the task in the tenth round of tests was significantly shorter than in

the first one (when machine learning was not employed), however slightly longer

than during the fourth round of tests. The difference between the first and tenth

rounds is statistically significant using the Student’s t-test (the p-value is less than

0.0001).

The second and third experiments were carried out under the same conditions but

using a reinforcement learning algorithm. In the second experiment, the action is

selected according to the highest profit strategy. The results of that experiment are

shown in Table 2.

Fig. 4 Process of task allocation learning in the consecutive rounds

J Netw Syst Manage (2018) 26:1–22 15

123

In the third experiment, the action is selected according to the proportional

strategy. The results of the third experiment are shown in Table 3.

As can be seen in Tables 1, 2, and 3, the employment of machine learning in

making the decision as to the place where the task should be carried out (mobile

device/cloud) significantly increases the execution speed of the tasks requested. The

examined mean task execution time in subsequent rounds of tests using the

knowledge gained as a result of machine learning shows a downward trend. The

time decrease is statistically significant in both cases. The p value for the second

experiment is less than 0.0001 and for the third experiment it equals 0.0009.

A comparison of the results of all three experiments is presented in Fig. 5.

Supervised learning with the regression model was learning quickly, outperforming

reinforcement learning in the second and third rounds. However, supervised

learning finally yielded slightly better results. This difference is not statistically

Table 1 Test results for supervised learning

Round 1 2 3 4 5 6 7 8 9 10

Minimum execution time (s) 472 203 149 134 184 219 181 211 186 206

Maximum execution time (s) 781 516 493 423 410 412 411 405 390 337

Average execution time (s) 573 392 326 298 305 323 273 314 306 262

Standard deviation (s) 100 87 95 89 77 59 68 74 70 57

The first and the last average results are given in bold to highlight performance improvement which is

result of learning

Table 2 Test results for reinforcement learning and Q-learning algorithm (solution with the highest

estimated profit)

Round 1 2 3 4 5 6 7 8 9 10

Minimum execution time (s) 410 361 152 121 118 135 159 139 124 144

Maximum execution time (s) 828 793 731 476 489 482 458 407 382 484

Average execution time (s) 612 548 370 281 267 290 299 275 273 265

Standard deviation (s) 158 124 182 108 106 105 106 104 102 104

The first and the last average results are given in bold to highlight performance improvement which is

result of learning

Table 3 Test results for reinforcement learning and Q-learning algorithm (solution proportional to the

estimated profit)

Round 1 2 3 4 5 6 7 8 9 10

Minimum execution time (s) 380 285 264 358 177 179 290 238 224 221

Maximum execution time (s) 795 692 632 620 586 523 588 536 567 512

Average execution time (s) 603 495 425 476 417 404 413 424 399 394

Standard deviation (s) 136 137 103 92 124 103 102 99 109 97

The first and the last average results are given in bold to highlight performance improvement which is

result of learning

16 J Netw Syst Manage (2018) 26:1–22

123

significant using the Student’s t test (the p value equals 0.9371). Reinforcement

learning using the proportional strategy yielded the worst results. The difference

between both reinforcement learning approaches is statistically significant using the

Student’s t test (the p value equals 0.0102). The reason is that the exploration rate in

the proportional case is too high.

One can observe that the standard deviation of execution times only decreases in

the beginning. There are two reasons for that. The first is exploration, which results

in non-optimal action execution. The second one are random delays observed when

the task is executed in the cloud. We used standard free-of-charge Google cloud

services. Google has cloud centers in USA, Asia and Europe (where the experiments

were run). We had no influence on cloud load balancing or resource location.

However, in our opinion, the adoption of such an approach results in a real-world

scenario.

For a more valid comparison, we need at least 30 rounds in each group. We can

create such groups using existing data. The first group consists of initial rounds

taken from all experiments (10 from supervised and 10 from every reinforcement

learning experiment), which gives 30 rounds in total. The second group consists of

30 last rounds (8–10) from every experiment. As a result, we can assume a normal

distribution (because of the Central Limit Theorem) and apply the t-Student test. For

each learning algorithm, the average from group 1 is significantly higher than

average from group 2 (p value is less than 0.0001).

In addition, energy consumption measurements (using PowerTutor [61]) were

conducted during supervised learning tests. Those measurements made it possible to

validate the use of metrics other than execution time and demonstrated that the

employment of supervised machine learning in multimedia and PNG to PDF file

conversion tests also caused a significant reduction (of about 42%) in the battery

usage required for the execution of such tasks (Table 4). The Student’s t test

confirmed that the difference is statistically significant (the p value equals 0.0042).

We also measured energy consumption during the learning process and established

Fig. 5 Comparison of the results of various machine learning algorithms applied in adaptive service
management

J Netw Syst Manage (2018) 26:1–22 17

123

that supervised machine learning algorithm consumed less than 0.1% of battery

capacity for learning.

In order to compare the solution developed with others, we have analyzed most

of the environments currently available such as Adaptive Code Offloading for

Mobile Cloud Applications, AIOLOS, AlfredO, CACTSE, COMET, COSMOS,

Cuckoo, Elijah, EMCO, IC-Cloud, MALMOS, MAUI, Mirroring Mobile Device,

Mobile Cloud Execution Framework, Mobility Prediction based on Machine

Learning, MOCHA, Replicated Application Framework, ThinkAir and VMCC. We

have taken into account a variety of properties such as the optimization of execution

times, the optimization of energy consumption, the use of virtual machines and the

existence of a decision-making process. Most of these environments are not

commercial solutions but rather ones developed at universities and tested with

respect to the optimization of service execution times. Many of these solutions have

now been abandoned and only a few (AIOLOS, CACTSE, Cuckoo, EMCO, IC-

Cloud, MAUI and ThinkAir) take into account energy-saving aspects in addition to

time optimization. In addition, only two of the environments analyzed (MALMOS

and IC-Cloud) utilize machine learning algorithms in order to determine the optimal

location for executing the service. We have tried to compare these two

environments to our solution but both are no longer being developed and it was

not possible to run them.

During our tests, we were able to compile examples related to two environments

(AIOLOS and Cuckoo) but only managed to run the latter (Cuckoo) in an old

version of Eclipse. In further work, we plan to add machine learning mechanisms to

the decision module in Cuckoo and compare this environment with the solution

developed.

6 Conclusions

In this paper, we investigated the possibilities for adaptive service management

enabling the optimization of service execution in an MCC environment. We

developed an agent-based architecture that uses supervised learning and is designed

for MCC, which is a novel solution. The experiments related to the optimization of

video file processing services have demonstrated that the main objective of our

studies has been achieved and the cost of service execution on mobile devices has

been optimized. The learning agent solution proposed for selecting services in the

Table 4 Test results of energy consumption for supervised learning

Round 1 2 3 4 5 6 7

Energy (J) 120 82 89 96 54 78 69

Standard deviation (J) 44 22 21 22 10 20 22

The first and the last average results are given in bold to highlight performance improvement which is

result of learning

18 J Netw Syst Manage (2018) 26:1–22

123

MCC environment has been able to optimize the location where tasks are to be

executed.

The results demonstrate a significant decrease in the time required for the

execution of conversion services owing to the automatic selection (using machine

learning methods) of the location (mobile device/cloud) where the task is to be

performed. The learning algorithm was executed by the learning agent

autonomously and online on the mobile device using the agent’s own experience

from the past. Both supervised and reinforcement learning methods appear to be

appropriate for this application. However, reinforcement learning is much simpler

and therefore computationally less expensive. As a result, in conditions similar to

the ones in experiments, reinforcement learning seems to be a better choice.

Nevertheless, if the state space is larger, i.e. we have more attributes describing

tasks or context (or they have larger domains), supervised learning yields

improvements faster than reinforcement learning [62]. Knowledge learned may be

also represented in a human readable form, if an appropriate learning algorithm is

used (e.g. C4.5). It enables the verification of the knowledge learned by human

experts, which can be important during the development of the system.

Further research in this area could involve similar studies for different types of

services using machine learning techniques, taking into account CPU usage during

task execution and a wide range of sensors installed in mobile devices such as

Global Positioning System (GPS) modules, accelerometers and light sensors. In the

future, we plan to perform tests of energy consumption for reinforcement learning

and the Q-learning algorithm. We also plan to apply other learning algorithms

(especially with symbolic knowledge representation), investigate whether the

exchange of learned knowledge between agents will prove beneficial and compare

the performance of the solution developed with others. We also plan to add learning

rate adaptation the to reinforcement learning algorithm to deal with rapid changes of

conditions in the cellular network.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were

made.

References

1. Roberts, J., Incorporated, M.: Mobile Tech Report 2014: Technology news from 2013 and predic-

tions and insights about 2014. Mindwarm Incorporated (2014)

2. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT

platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput.

Syst. 25(6), 599–616 (2009)

3. Kumar, K., Liu, J., Lu, Y.H., Bhargava, B.: A survey of computation offloading for mobile systems.

Mob. Netw. Appl. 18(1), 129–140 (2013)

4. Hlavacs, H., Hummel, K.A., Weidlich, R., Houyou, A.M., Meer, H.D.: Modelling energy efficiency

in distributed home environments. Int. J. Commun. Netw. Distrib. Syst. 4(2), 161–182 (2010)

5. Fernando, N., Loke, S.W., Rahayu, W.: Mobile cloud computing: a survey. Future Gener. Comput.

Syst. 29(1), 84–106 (2013)

J Netw Syst Manage (2018) 26:1–22 19

123

http://creativecommons.org/licenses/by/4.0/

6. Ma, R., Wang, C.L.: Lightweight application-level task migration for mobile cloud computing. In:

Advanced Information Networking and Applications (AINA), 2012 IEEE 26th International Con-

ference on. (March 2012) pp. 550–557

7. Nawrocki, P., Sobon, M.: Public cloud computing for software as a service platforms. Comput. Sci.

15(1), 89–103 (2014)

8. Chun, B.G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: Elastic Execution Between Mobile

Device and Cloud. In: Proceedings of the Sixth Conference on Computer Systems. EuroSys ’11, New

York, NY, USA, ACM (2011) pp. 301–314

9. Khanna, A.: Sarishma: Mobile Cloud Computing: Principles and Paradigms. I K International

Publishing House, New Delhi (2015)

10. Juntunen, A., Kemppainen, M., Luukkainen, S.: Mobile Computation Offloading—Factors Affecting

Technology Evolution. In: International Conference on Mobile Business, ICMB 2012, Delft, The

Netherlands, June 21–22, 2012. (2012) pp. 9

11. Abolfazli, S., Sanaei, Z., Ahmed, E., Gani, A., Buyya, R.: Cloud-Based Augmentation for Mobile

Devices: Motivation, Taxonomies, and Open Challenges. CoRR abs/1306.4956 (2013)

12. Satyanarayanan, M.: Mobile computing: The next decade. In: Proceedings of the 1st ACM Workshop

on Mobile Cloud Computing & Services: Social Networks and Beyond. MCS ’10, New York, NY,

USA, ACM (2010) 5:1–5:6

13. Dinh, H.T., Lee, C., Niyato, D., Wang, P.: A survey of mobile cloud computing: architecture,

applications, and approaches. Wirel. Commun. Mob. Comput. 13(18), 1587–1611 (2013)

14. Yang, X., Pan, T., Shen, J.: On 3g Mobile E-Commerce Platform Based on Cloud Computing. In:

Ubi-media Computing (U-Media), 2010 3rd IEEE International Conference on. (July 2010)

pp. 198–201

15. Chen, X., Liu, J., Han, J., Xu, H.: Primary Exploration of Mobile Learning Mode Under a Cloud

Computing Environment. In: E-Health Networking, Digital Ecosystems and Technologies (EDT),

2010 International Conference on. Vol 2. (April 2010) pp. 484–487

16. Li, J.: Study on the Development of Mobile Learning Promoted by Cloud Computing. In: Information

Engineering and Computer Science (ICIECS), 2010 2nd International Conference on. (Dec 2010)

pp. 1–4

17. Doukas, C., Pliakas, T., Maglogiannis, I.: Mobile Healthcare Information Management Utilizing

Cloud Computing and Android os. In: Engineering in Medicine and Biology Society (EMBC), 2010

Annual International Conference of the IEEE. (Aug 2010) pp. 1037–1040

18. Tang, W.T., Hu, C.M., Hsu, C.Y.: A Mobile Phone Based Homecare Management System on the

Cloud. In: Biomedical Engineering and Informatics (BMEI), 2010 3rd International Conference on.

Vol 6. (Oct 2010) pp. 2442–2445

19. Wang, S., Dey, S.: Rendering Adaptation to Address Communication and Computation Constraints in

Cloud Mobile Gaming. In: Global Telecommunications Conference (GLOBECOM 2010), 2010

IEEE. (Dec 2010) pp. 1–6

20. Li, H., Hua, X.S.: Melog: Mobile Experience Sharing Through Automatic Multimedia Blogging. In:

Proceedings of the 2010 ACM Multimedia Workshop on Mobile Cloud Media Computing. MCMC

’10, New York, NY, USA, ACM (2010) pp. 19–24

21. Ye, Z., Chen, X., Li, Z.: Video Based Mobile Location Search with Large Set of Sift Points in Cloud.

In: Proceedings of the 2010 ACM Multimedia Workshop on Mobile Cloud Media Computing.

MCMC ’10, New York, NY, USA, ACM (2010) pp. 25–30

22. Nawrocki, P., Jakubowski, M., Godzik, T.: Analysis of Notification Methods with Respect to Mobile

System Characteristics. In: 2015 Federated Conference on Computer Science and Information Sys-

tems, FedCSIS 2015, Lódz, Poland, 13–16 Sept 2015. pp. 1183–1189

23. Khan, A.N., Mat Kiah, M.L., Khan, S.U., Madani, S.A.: Towards secure mobile cloud computing: a

survey. Future Gener. Comput. Syst. 29(5), 1278–1299 (2013)

24. Huang, D., Zhou, Z., Xu, L., Xing, T., Zhong, Y.: Secure Data Processing Framework for Mobile

Cloud Computing. In: Computer Communications Workshops (INFOCOM WKSHPS), 2011 IEEE

Conference on. (April 2011) pp. 614–618

25. Ahmed, E., Gani, A., Sookhak, M., Hamid, S.H.A., Xia, F.: Application optimization in mobile cloud

computing: motivation, taxonomies, and open challenges. J. Netw. Comput. Appl. 52, 52–68 (2015)

26. Huerta-Canepa, G., Lee, D.: A Virtual Cloud Computing Provider for Mobile Devices. In: Pro-

ceedings of the 1st ACM Workshop on Mobile Cloud Computing & Services: Social Networks and

Beyond. MCS ’10, New York, NY, USA, ACM (2010) 6:1–6:5

20 J Netw Syst Manage (2018) 26:1–22

123

27. Cheng, J., Balan, R.K., Satyanarayanan, M.: Exploiting rich mobile environment. Technical Report

Technical Report Carnegie Mellon University-CS-05-199, Carnegie Mellon University (2005)

28. Cuervo, E., Balasubramanian, A., Cho, D.k., Wolman, A., Saroiu, S., Chandra, R., Bahl, P.: Maui:

Making Smartphones Last Longer with Code Offload. In: Proceedings of the 8th International

Conference on Mobile Systems, Applications, and Services. MobiSys ’10, New York, NY, USA,

ACM (2010) pp. 49–62

29. Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X.: Thinkair: Dynamic Resource Allocation and

Parallel Execution in the Cloud for Mobile Code Offloading. In: INFOCOM, 2012 Proceedings IEEE.

(March 2012) pp. 945–953

30. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for vm-based cloudlets in mobile

computing. IEEE Pervasive Comput. 8(4), 14–23 (2009)

31. Verbelen, T., Simoens, P., De Turck, F., Dhoedt, B.: Cloudlets: Bringing the Cloud to the Mobile

User. In: Proceedings of the Third ACM Workshop on Mobile Cloud Computing and Services. MCS

’12, New York, NY, USA, ACM (2012) pp. 29–36

32. Wang, S., Tu, G.H., Ganti, R., He, T., Leung, K., Tripp, H., Warr, K., Zafer, M.: Mobile Micro-

Cloud: Application Classification, Mapping, and Deployment. In: Proc. of Annual Fall Meeting of

ITA (AMITA). (2013)

33. Liang, H., Xing, T., Cai, L.X., Huang, D., Peng, D., Liu, Y.: Adaptive computing resource allocation

for mobile cloud computing. Int. J. Distrib. Sens. N. 2013, 181426 (2013). doi:10.1155/2013/181426

34. Brzoza-Woch, R., Nawrocki, P.: Fpga-based web services—infinite potential or a road to nowhere?

IEEE Internet Comput. 20(1), 44–51 (2016)

35. Bachara, P., Brzoza-Woch, R., Dlugopolski, J., Nawrocki, P., Ruta, A., Zaborowski, W., Zielinski,

K.: Construction of hardware components for the internet of services. Comput. Inf. 34(4), 911–940

(2015)

36. Nawrocki, P., Mamla, A.: Distributed web service repository. Comput. Sci. 16(1), 55 (2015)

37. Kosinski, J., Nawrocki, P., Radziszowski, D., Zielinski, K., Zielinski, S., Przybylski, G., Wnek, P.:

SLA Monitoring and Management Framework for Telecommunication Services. In Bi, J., Chin, K.,

Dini, C., Lehmann, L., Pheanis, D.C., eds.: Networking and Services, 2008. ICNS 2008. Fourth

International Conference on, IEEE Computer Society (2008) pp. 170–175

38. Liu, Q., Jian, X., Hu, J., Zhao, H., Zhang, S.: An optimized solution for mobile environment using

mobile cloud computing. In: Wireless Communications, Networking and Mobile Computing, 2009.

WiCom ’09. 5th International Conference on. (Sept 2009) pp. 1–5

39. Nawrocki, P., Sniezynski, B., Czyzewski, J.: Learning agent for a service-oriented context-aware

recommender system in a heterogeneous environment. Comput. Inf. 35(5), 1005–1026 (2016)

40. Abidar, R., Moummadi, K., Medromi, H.: Mobile Device and Multi Agent Systems: An Implemented

Platform of Real Time Data Communication and Synchronization. In: Multimedia Computing and

Systems (ICMCS), 2011 International Conference on. (April 2011) pp. 1–6

41. Sankaranarayanan, S., Cuffe, K.: Intelligent Agent Based Scheduling of Student Appointment-An-

droid Environment. In: Computer Sciences and Convergence Information Technology (ICCIT), 2010

5th International Conference on. (Nov 2010) pp. 46–51

42. Angin, P., Bhargava, B.: An agent-based optimization framework for mobile-cloud computing.

J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 4(2), 1–17 (2013)

43. Shabtai, A., Elovici, Y.: Applying behavioral detection on android-based devices. In: Cai, Y.,

Magedanz, T., Li, M., Xia, J., Giannelli, C. (eds.) Mobile Wireless Middleware, Operating Systems,

and Applications. Lecture Notes of the Institute for Computer Sciences, vol. 48, pp. 235–249. Social

Informatics and Telecommunications Engineering. Springer, Berlin Heidelberg (2010)

44. Sensoy, M., Vasconcelos, W.W., Norman, T.J., Sycara, K.: Reasoning support for flexible task

resourcing. Expert Syst. Appl. 39(2), 1998–2010 (2012)

45. Panait, L., Luke, S.: Cooperative multi-agent learning: the state of the art. Auton. Agents Multi Agent

Syst. 11, 2005 (2005)

46. Tuyls, K., Weiss, G.: Multiagent learning: basics, challenges, and prospects. AI Mag. 33(3), 41–52

(2012)

47. Sen, S., Weiss, G.: Learning in Multiagent Systems. MIT Press, Cambridge (1999)

48. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction (Adaptive Computation and Machine

Learning). The MIT Press, Cambridge (1998)

49. Charvillat, V., Grigora, R.: Reinforcement learning for dynamic multimedia adaptation. J. Netw.

Comput. Appl. 30(3), 1034–1058 (2007)

J Netw Syst Manage (2018) 26:1–22 21

123

http://dx.doi.org/10.1155/2013/181426

50. Singh, D., Sardina, S., Padgham, L., Airiau, S.: Learning Context Conditions for bdi Plan Selection.

In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems -

Volume 1. AAMAS ’10, Richland, SC, International Foundation for Autonomous Agents and

Multiagent Systems (2010) pp. 325–332

51. Czarnowski, I., Jedrzejowicz, P.: Machine learning and multiagent systems as interrelated tech-

nologies. In: Czarnowski, I., Jedrzejowicz, P., Kacprzyk, J. (eds.) Agent-Based Optimization. Studies

in Computational Intelligence, vol. 456, pp. 1–28. Springer, Berlin Heidelberg (2013)

52. Sniezynski, B.: Agent strategy generation by rule induction. Comput. Inf. 32(5), 1055–1078 (2013)

53. Sniezynski, B., Dajda, J.: Comparison of strategy learning methods in farmer-pest problem for

various complexity environments without delays. J. Comput. Sci. 4(3), 144–151 (2013)

54. Sniezynski, B.: Comparison of reinforcement and supervised learning methods in farmer-pest

problem with delayed rewards. In: Badica, C., Nguyen, N.T., Brezovan, M. (eds.) Computational

Collective Intelligence. LNCS, vol. 8083, pp. 399–408. Springer, Berlin Heidelberg (2013)

55. Watkins, C.J.C.H.: Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge (1989)

56. Rummery, G.A., Niranjan, M.: On-line q-learning using connectionist systems. Technical report.

Cambridge University Engineering Department, Cambridge (1994)

57. Bragge, J., Korhonen, P., Wallenius, H., Wallenius, J.: Bibliometric Analysis of Multiple Criteria

Decision Making/Multiattribute Utility Theory. Springer, Berlin, Heidelberg (2010)

58. Michalski, R.S.: AQVAL/1—Computer Implementation of a Variable Valued Logic VL1 and

Examples of its Application to Pattern Recognition. In: Proc. of the First International Joint Con-

ference on Pattern Recognition. (1973)

59. Saaty, T.L.: The Analytic Hierarchy Process : Planning, Priority Setting, Resource Allocation.

McGraw-Hill International Book Co., New York; London (1980)

60. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java

Implementations. Morgan Kaufmann, Los Altos (1999)

61. Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R.P., Mao, Z.M., Yang, L.: Accurate Online Power

Estimation and Automatic Battery Behavior Based Power Model Generation for Smartphones. In:

Proceedings of the Eighth IEEE/ACM/IFIP International Conference on Hardware/Software Code-

sign and System Synthesis. CODES/ISSS ’10, New York, NY, USA, ACM (2010) 105–114

62. Sniezynski, B.: A strategy learning model for autonomous agents based on classification. Int. J. Appl.

Math. Comput. Sci. 25(3), 471–482 (2015)

Piotr Nawrocki, Ph.D., is an Assistant Professor in the Department of Computer Science at the AGH

University of Science and Technology, Krakow, Poland. His research interests include distributed

systems, computer networks, mobile systems, mobile cloud computing, Internet of Things and service-

oriented architectures. He has participated in several national and EU research projects including

MECCANO, 6WINIT and UniversAAL. He is a member of the Polish Information Processing Society

(PTI).

Bartlomiej Sniezynski received his Ph.D. degree in Computer Science in 2004 from AGH University of

Science and Technology in Krakow, Poland. In 2004 he worked as a Postdoctoral Fellow under the

supervision of Professor R. S. Michalski at the Machine Learning and Inference Laboratory, George

Mason University, Fairfax, USA. Currently, he is an assistant professor in the Department of Computer

Science at AGH. His research interests include machine learning, multi-agent systems, and knowledge

engineering.

22 J Netw Syst Manage (2018) 26:1–22

123

	Adaptive Service Management in Mobile Cloud Computing by Means of Supervised and Reinforcement Learning
	Abstract
	Introduction and motivation
	Related Work
	Agent-Based Adaptive Service Management on a Mobile Device
	Assumptions
	Task Allocation Q-Learning Agent
	Task Allocation Supervised Learning Agent

	Mobile Multimedia Processing System
	Performance Evaluation
	Conclusions
	Open Access
	References

