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Abstract

In this paper, we formulate the image classification
problem in a multi-task learning framework. We
propose a novel method to adaptively share infor-
mation among tasks (classes). Different from im-
posing strong assumptions or discovering specific
structures, the key insight in our method is to se-
lectively extract and exploit the shared information
among classes while capturing respective dispari-
ties simultaneously. It is achieved by estimating
a composite of two sets of parameters with differ-
ent regularization. Besides applying it for learn-
ing classifiers on pre-computed features, we also
integrate the adaptive sharing with deep neural net-
works, whose discriminative power can be aug-
mented by encoding class relationship. We further
develop two strategies for solving the optimization
problems in the two scenarios. Empirical results
demonstrate that our method can significantly im-
prove the classification performance by transferring
knowledge appropriately.

1 Introduction

Image classification is a core problem in computer vision and
artificial intelligence. Learning with a number of class labels
poses a great challenge on traditional multi-class classifica-
tion models, where training multiple classifiers is typically
independent or mutually exclusive. The task of distinguish-
ing one class from hundreds of class labels would be difficult,
especially when its training data is insufficient.

Much of the effort in deploying algorithms is devoted
to leveraging rich task relationship to transfer information
[Caruana, 1997; Thrun and Pratt, 1998; Evgeniou and Pon-
til, 2004]. The learning paradigms aim to achieve better
generalization performance by encouraging common knowl-
edge to be shared across related ones. Accordingly, the cru-
cial aspect is the introduction of hypothesis to model the re-
latedness among tasks. For example, widely used assump-
tions that task parameters (i.e., classifier parameters) either
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lie in a common feature subspace [Obozinski et al., 2006;
Argyriou et al., 2008; Liu et al., 2009] or share a common
probabilistic prior [Yu et al., 2005; Fei-Fei et al., 2006],
are essentially based on the hypothesis that all tasks are re-
lated and all relevant information should be shared. When
such strong assumptions do not hold, such sharing may in-
cur adverse effect on overall performance. To avoid this,
some methods have been proposed to discover specific struc-
tures, such as outliers [Gong et al., 2012; Pu et al., 2014]

or disjoint groups [Zhou et al., 2011; Kang et al., 2011;
Srivastava and Salakhutdinov, 2013].

Regarding the realistic classification problems, it is com-
plicated to model class relatedness in the target space. Deter-
mining how to share is hard to be addressed accordingly. For
example, the introduction of disjoint group structure reflects
the desire of intra-group sharing, which drives the classifier
parameters in a group close to each other. As a matter of fact,
the sharing among classes usually forms a continuum in the
more realistic setting. Some classes are less related than oth-
ers even if they are partitioned to a group. On the other hand,
it is imperative to highlight the specific features of one class
against others even if they have much in common, since the
original goal of developing model is to distinguish the set of
classes. A robust method is needed to effectively share infor-
mation and identify individual difference.

In this regard, we propose an Adaptive Sharing method for
image classification. A distinct insight from our method is
to selectively share information among classes while captur-
ing respective disparities simultaneously. The learning model
is expected to leverage feature relevance when it exists, but
not require it strictly satisfying certain structure. This goal
is achieved by estimating a composite of two parameter sets
with different types of regularization. The classifier parame-
ters for all classes are decomposed into two parts: one corre-
sponds to the shared features and the other corresponds to
the class-specific features. A nuclear norm penalty is ex-
ploited on the first part to capture the underlying relatedness
structure among classes and an element-wise sparsity penalty
is imposed on the second part to highlight the disparities of
each class. The objective is formulated as a non-smooth con-
vex optimization problem when given the feature space. We
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adopt the accelerated proximal gradient algorithm [Beck and
Teboulle, 2009] to solve the problem.

Besides, we propose to learn the classifier parameters in
the context of deep architectures (e.g., convolutional neural
networks) by incorporating Adaptive Sharing. Convolutional
neural networks with discriminative training have obtained
state-of-the-art results on many classification problems. Our
method augments the network by encoding the class relat-
edness. We also develop an effective way to solve the opti-
mization by using stochastic gradient descent algorithm with
approximation on low-rank constraint. In summary, the main
contributions in this paper are as follows:

• We propose a novel Adaptive Sharing method which selec-
tively shares information among classes and captures the
class-specific properties simultaneously. Compared with
imposing strong assumptions or discovering specific struc-
tures, we provide an elegant way to appropriately transfer
knowledge among classes.

• Besides applying it for learning classifiers on pre-computed
features, we also integrate Adaptive Sharing with deep neu-
ral networks, where the performance can be improved by
encoding class relatedness structure. Consequently, we de-
velop different optimization strategies in the two scenar-
ios. Experimental results on multiple challenging datasets
demonstrate the efficacy of such selectively transfer for im-
proving the overall classification performance.

2 Related Work

Image classification in real world scenario has drawn increas-
ing attention. Complex appearance variations and class cor-
relation bring in the difficulties for classifying many classes.
Much work is proposed to study and exploit the relatedness
among classes to transfer information in a multi-task learning
paradigm. A family of methods are developed based on shar-
ing a prior in the hierarchical Bayesian framework [Fei-Fei
et al., 2006; Archambeau et al., 2011]. Another direction is
formulating the approaches in the regularization framework
where the tasks are assumed to lie in a common feature sub-
space [Argyriou et al., 2007; Liu et al., 2009]. However, these
methods typically assume strong shared relationship among
tasks, which might degrade the overall performance due to
the information transfer among unrelated tasks. Some meth-
ods are further proposed to discover relatedness structure for
sharing. For example, a mixed penalty is adopted in [Mei et
al., 2012], outlier tasks are detected in [Gong et al., 2012;
Pu et al., 2014] and task grouping is learnt in [Zhou et al.,
2011; Kang et al., 2011]. Different from our method, these
methods encourage the relatedness satisfying certain struc-
tural bracket. Moreover, the work in [Jalali et al., 2010;
Chen et al., 2012] captures the inherent relationship among
tasks while allowing the existence of different features. The
two work provide theoretical analysis based on the linear fea-
ture space, whereas we are concerned with a more realistic
problem and further incorporate our method with deep archi-
tectures.

Alternatively, much effort is devoted to developing feature
representation learning [Krizhevsky et al., 2012; Lin et al.,
2014; Lee et al., 2014; Stollenga et al., 2014; He et al., 2014;

Simonyan and Zisserman, 2014], which achieves state-of-the-
art performance on image classification. However, the de-
velopment of these models does not take advantage of class
relatedness. The work [Deng et al., 2014] exploits seman-
tic prior in the deep model, which is different from implicitly
learning the relatedness structure in our method. In [Srivas-
tava and Salakhutdinov, 2013], a group-based structure is es-
timated with deep model iteratively. As any change on class
partitioning would lead to the re-training of overall network,
the method suffers from considerable time cost for reach-
ing a plateau and might be intractable for dealing with many
classes. Our method adopts a more concise and effective way
to combine the class relationship.

3 Adaptive Sharing Approach

Assume we have a set of training images X = {xi}
N
i=1

. Y =
{yi}

N
i=1

is the corresponding label set. yi is a K dimensional
vector (whose value can be binary or one-of-K) for indexing
target classes. The learning of each classifier is regarded as
a single task. Notation ‖ · ‖1, ‖ · ‖F and ‖ · ‖∗ denote the ℓ1
norm, Frobenius norm and nuclear norm of matrix [Lin et al.,
2011], respectively. The nuclear norm is the sum of singular
values.

In this section, we first describe our method based on pre-
computed features and the optimization strategy by using ac-
celerated proximal gradient algorithm. Then we incorpo-
rate Adaptive Sharing with convolutional neural networks and
present the corresponding optimization strategy.

3.1 Learning on pre-computed features

Suppose each image x ∈ X has been represented by a pre-
computed feature vector x ∈ R

D. Let wk ∈ R
D denote the

corresponding parameter vector of task k (i.e., the classifier
parameters of class k) which is a column of the parameter ma-
trix W ∈ R

D×K . In the standard learning paradigm where
each task is learnt independently, the objective function typi-
cally takes the form:

min
W

1

N

K
∑

k=1

N
∑

i=1

ℓ
(

wT
k xi, y

k
i

)

+ λ‖W‖2F , (1)

where λ is the regularization factor, and ℓ(wT
k xi, y

k
i ) denotes

the loss between the prediction wT
k xi and the true value yki .

When considering feature selection [Obozinski et al., 2006],
ℓ1 norm regularization is utilized instead.

In multi-task learning paradigm, the tasks are expected to
learn jointly and share a common feature subspace, such as
imposing a low-rank structure [Argyriou et al., 2008]:

min
W

1

N

K
∑

k=1

N
∑

i=1

ℓ
(

wT
k xi, y

k
i

)

+ λ‖W‖∗. (2)

Such a regularizer enforces the strict sharedness, which
might drive multiple classifiers too close. However, with re-
spect to classification problems, the essential goal is to distin-
guish between classes. For example, it is imperative to high-
light the features differentiating “Siberian husky” and “Mala-
mute” although they share much common information. Thus,
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we suppose that each task depends on the shared information
and the additional specific properties.

Here we leverage a composite of two parameter vectors,
ck and sk, to represent the classifier parameters towards class
k, i.e., wk = ck + sk. The two components correspond to
the shared features and the specific features, respectively. Let
C = (c1, · · · , cK) and S = (s1, · · · , sK). We introduce dif-
ferent structures on the matrics C and S. A low-rank structure
is exploited to capture the inherent relatedness among tasks
and an element-wise sparsity structure is leveraged to high-
light the disparities of each task simultaneously. Formally,
the learning problem can be formulated as:

min
C,S

1

N

K
∑

k=1

N
∑

i=1

ℓ
(

(ck + sk)
Txi, y

k
i

)

+ λc‖C‖∗ + λs‖S‖1,

(3)
where λc and λs are the penalty factors. The nuclear norm
penalty has the effect of encouraging a low rank solution on
matrix C for coupling the related tasks. The ℓ1 norm penalty
is adopted to characterize the specific features by encouraging
the sparsity on matrix S.

To solve the optimization problem (3), we use accelerated
proximal gradient algorithm [Beck and Teboulle, 2009]. Let
L(X ,Y;C,S) symbolically denote the empirical loss:

L(X ,Y;C,S) =
1

N

K
∑

k=1

N
∑

i=1

ℓ
(

(ck + sk)
Txi, y

k
i

)

, (4)

Z denote the variables to be optimized,

Z =

(

C
S

)

,C ∈ R
D×K ,S ∈ R

D×K , (5)

g(·) and h(·) refer to the smooth term and non-smooth convex
term, respectively,

g(Z) = L(X ,Y;C,S), h(Z) = λc‖C‖∗ + λs‖S‖1. (6)

The updating at the t-th iteration performs as follows:

Zt+1 = argmin
Z

(

h(Z) +
1

2ηt
‖Z− (Ut − ηt∇g(Ut))‖

2
F

)

,

(7)

where ηt denotes step size. g(Z) is approximated by a
quadratic local model around Ut. The variable Ut can be
set as a combination of Zt and Zt−1 from previous iterations:

Ut = Zt +
bt−1 − 1

bt
(Zt − Zt−1) , (8)

where bt =
(

1 +
√

4b2t−1
+ 1

)

/2 for t ≥ 1, and b0 = 1.

Considering that (7) takes an equivalent form:

min
C,S

1

2
‖C− Ĉt‖

2

F +
1

2
‖S− Ŝt‖

2

F + λ̂c‖C‖∗+ λ̂s‖S‖1, (9)

where

(

Ĉt

Ŝt

)

, Ẑt=Ut−ηt∇g(Ut), and λ̂c = ηtλc, λ̂s =

ηtλs. We can leverage the decomposability in (9) to optimize
variables C and S separately, and the closed-form solutions
can be obtained [Lin et al., 2011], respectively.

3.2 Integrating Adaptive Sharing with Deep
Neural Networks

Deep neural networks have shown strong power on image
classification. We aim to integrate Adaptive Sharing into deep
neural network framework to augment the network by encod-
ing the relatedness among classes. Our model can be imple-
mented as a standalone layer in such a framework. We exploit
it to replace the last full-connected layer in deep neural net-
works (such as convolutional neural networks [Krizhevsky et
al., 2012]), that is to say, the last layer weight parameters
(connected to K nodes corresponding to the K classes) are
comprised of two components.

The neural network can be regarded as a feature space pro-
jection for each image xi. Different from learning classifiers
on pre-computed features (in Section 3.1), the parameters in
the projection should be learnt jointly. Let θ denote the pa-
rameters in the network except the ones at the last layer. Then
the empirical loss in (4) can be reformulated with negative
log-likelihood:

L(X ,Y;C,S,θ) = −
1

N

N
∑

i=1

logP (yi|xi,C,S,θ). (10)

θ can be regarded as the parameters to generate the represen-
tation for image xi. The matrices C and S compose the last
layer weight parameters, i.e., wk = ck + sk, which denote
the weight parameters towards class k.

The optimization can be done using stochastic gradient de-
scent method with mini-batches. However, the problem is
non-trivial due to the low-rank constraint on the matrix C.
Therefore, we adopt an operator Ωε(C) [Mei et al., 2012] to
approximate the nuclear norm penalty λc‖C‖∗:

Ωε(C) = min
Q

(

1

2ε
‖Q−C‖2F + λc‖Q‖∗

)

, (11)

where ε is the approximation factor. The approximation
Ωε(C) is convex and smooth with respect to C. Then the
gradient can be computed as:

∇Ωε(C) = λc (C−Q∗) , (12)

where Q∗ = argminQ
(

1

2ε
‖Q−C‖2F + λc‖Q‖∗

)

. With re-
spect to nuclear norm, Q∗ can be computed with a closed-
form expression by utilizing the soft-thresholding operator on
the singular values of the matrix C [Lin et al., 2011]. Con-
sequently, the gradient of the regularized loss over a batch of
data D = {xi,yi} is estimated as:

〈 ∂L(xi,yi)

∂C

〉

D

+∇Ωε(C), (13)

where 〈·〉D denotes the average operator over the batch D.
The update rule for the parameters S and θ follows the stan-
dard algorithm [Jia et al., 2014].

4 Experiments

We present extensive empirical studies to evaluate our Adap-
tive Sharing learning in two scenarios: pre-computed features
and deep neural networks. We first compare our method with
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Figure 1: Example images from the CUB-200-2010 dataset.

Table 1: Evaluation on the CUB-200-2010 dataset (Birds200)
and a subset of 14 species (Birds14), measured by accuracy
(Acc) and mean Average Precision (mAP), respectively.

Method Birds200
Acc

Birds14
mAP

FGC methods

Multi-Cue [Khan et al., 2011] 22.4% –

Birdlets [Farrell et al., 2011] – 40.3%

TriCoS [Chai et al., 2012] 25.5% –

KDES [Bo et al., 2010] 26.4% 42.5%

UTL [Yang et al., 2012] 28.2% –

Random template [Yao et al., 2012] – 44.7%

Det. + Seg. [Angelova and Zhu, 2013] 30.2% –

MTL methods

JFS [Argyriou et al., 2007] 21.7% 38.9%

CMTL [Zhou et al., 2011] 22.0% 40.6%

GMTL [Pu et al., 2014] 28.4% 45.7%

Adaptive Sharing 31.3% 49.1%

some representative multi-task learning methods in the fine-
grained classification problem and assess the performance
on a widely used dataset CUB-200-2010 [Welinder et al.,
2010]. Moreover, we evaluate it on two challenging datasets,
CIFAR-100 [Krizhevsky, 2009] and ImageNet 2012 classifi-
cation dataset [Russakovsky et al., 2014], in the context of
deep architectures.

4.1 Evaluation with Pre-computed Features

The CUB-200-2010 (Birds200) is a widely used dataset for
fine-grained classification (FGC). It contains 6,033 images
of birds belonging to 200 species, where only 15 images
per class are used for training, the rest are used for testing.
Some example images from the dataset are shown in Fig. 1.
Each image is first cropped against the provided bounding
box and resized such that the longer side is no more than 300
pixels. Our method does not specify features, and we use
kernel descriptors (KDES) [Bo et al., 2010] as the image-
level representation. Specifically, four types of the KDES
are applied: gradient-based, color-based, normalized color-
based, and local-binary-pattern-based. The patch size is set
to 16 × 16, and the stride is set to 8 pixels. We adopt the
squared hinge loss [Yang et al., 2009]. We change λc from 0
to 1.0 with step 0.1, and λs from 0.001 to 1.0 with ratio 10.

We compare our Adaptive Sharing with three representa-
tive multi-task learning methods (MTL): JFS [Argyriou et
al., 2007], CMTL [Zhou et al., 2011] and GMTL [Pu et al.,
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Figure 2: Per-class AP (%) of CMTL, GMTL and Adaptive
Sharing on Birds14 (with abbreviated names). The species
are sorted by the per-class AP of Adaptive Sharing.

2014]. All the methods are based on the same KDES fea-
tures as ours. The regularization parameters are chosen by
cross validation on the training set for all the MTL methods.
In order to comprehensively assess the results, we also pro-
vide some FGC methods as baselines. Recently, several work
exploits the techniques of segmentation and localization on
object parts to obtain strong performance on the dataset, such
as [Chai et al., 2013; Gavves et al., 2013]. These methods
contain extra procedures, and the results highly depend on
the quality of segmentation and localization. Thus, we leave
them out of the comparison, however our advantage is com-
plementary to their strength of modeling object parts.

The results of different methods on overall 200 classes are
summarized in Table 1. Our result is obtained when λc = 0.8
and λs = 0.1. The performance is measured by accuracy.
Adaptive Sharing achieves better result than baseline meth-
ods. In particular, we can observe that it clearly outperforms
baseline MTL methods. Compared with the FGC methods,
baseline MTL methods achieve marginal improvement, even
worse performance. Complex intra-class variations and inter-
class correlation incur negative transfer in these methods,
which hurts the overall performance. In contrast, our method
appropriately exploits shared information by jointly capturing
the task relationships and individual disparities.

To further evaluate the performance among the MTL meth-
ods, we test them on a frequently used subset of CUB- 200-
2010 dataset, Birds14. The subset is comprised of 14 species
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Table 2: Architectures of the networks used for classification
on CIFAR-100. The convolutional layer is denoted as “conv
<receptive field>, <filters>”. The max-pooling layer is de-
noted as “maxpool <region size>, <stride>”.

input size model A / A-AS model B / B-AS

32

conv 5×5, 96 conv 3×3, 64

conv 3×3, 64

maxpool 3×3, 2 maxpool 2×2, 2

16

conv 5×5, 128 conv 3×3, 128

conv 3×3, 128

maxpool 3×3, 2 maxpool 2×2, 2

8

conv 5×5, 256 conv 3×3, 256

conv 3×3, 256

maxpool 3×3, 2 spp, {4, 2, 1}

- FC, 2048

- FC, 2048

- FC, 100 / AS, 100

- softmax

Table 3: Performance comparison of the four models on
CIFAR-100. In the brackets are the improvements over the
“no Adaptive Sharing” baselines.

Model A A-AS B B-AS

Test error (%) 37.20 35.75(1.45) 33.17 31.20(1.97)

birds, which are from two families: vireos and woodpeck-
ers [Duan et al., 2012]. Following [Duan et al., 2012], the
evaluation is measured by Average Precision (AP) on each
class. We report the mean AP (mAP) as the overall perfor-
mance of different methods in Table 1. Our result is obtained
when λc = 0.1 and λs = 0.01. Adaptive Sharing achieves
an outstanding result compared with these baseline methods.
Moreover, we list the per-class results of our method in Fig. 2.
As shown in the figure, the performance of our method is
consistently better than CMTL and GMTL on almost all of
the species. This further illuminates that our method benefits
from appropriately sharing information, and hence can effec-
tively improve the generalization performance.

4.2 Evaluation on Deep Neural Networks

The CIFAR-100 dataset [Krizhevsky, 2009] is composed of
32 × 32 color images belonging to 100 classes, with 50,000
images for training and 10,000 images for testing. We choose
this dataset because there are a large number of classes but
each one has a few samples, making it suitable for demon-
strating the efficacy of sharing paradigm. The dataset is pre-
processed by subtracting the mean image over the training
set. We evaluate without any data augmentation.

Our Adaptive Sharing (AS) is independent of the deep ar-
chitectures used. We investigate two different convolutional
neural network architectures, as shown in Table 2. The model
A is the one used in [Hinton et al., 2012]. Inspired by [Si-
monyan and Zisserman, 2014], we develop a deeper network,
model B, by replacing one 5 × 5 convolutional (conv) layer

Table 4: Test errors on CIFAR-100.

Method Test error

Tree based Priors
[Srivastava and Salakhutdinov, 2013] 36.85%

Network in Network [Lin et al., 2014] 35.68%

Deeply Supervised [Lee et al., 2014] 34.57%

dasNet [Stollenga et al., 2014] 33.78%

Deeper Network (B) 33.17%

Adaptive Sharing (B-AS) 31.20%

Table 5: Test errors (%) of B-AS against parameter λc and ε.

❍
❍

❍
❍

ε
λc 10−1 10−2 10−3 10−4

100 32.45 31.87 31.39 32.03

10−1 32.61 31.81 31.48 31.84

10−2 32.23 31.82 31.20 31.97

with a stack of two 3 × 3 conv layers. We also incorpo-
rate spatial pyramid pooling (spp) [He et al., 2014] into the
model B, where the pyramid configuration is 4× 4, 2× 2 and
1×1. All weights layers (except for the last Fully-Connected
(FC) layer) are followed by the Rectified Linear Unit (ReLU).
Dropout is applied to all the pooling layers and the first two
FC layers, with the dropout ratios 0.25 and 0.5, respectively.
We implement the Adaptive Sharing as a standalone layer,
which can be integrated by replacing the last FC layer. We
denote the models as A-AS and B-AS, respectively. Conse-
quently, there are four models, A and B, as well as A-AS and
B-AS for comparison.

Our implementation is based on the publicly available code
of Caffe [Jia et al., 2014]. We train the networks by apply-
ing stochastic gradient descent with a mini-batch size of 128
and a fixed momentum of 0.9. The training is regularized by
weight decay (the ℓ2 penalty factor is set to 0.004). Particu-
larly, the parameter matrix S in Adaptive Sharing is regular-
ized with ℓ1 weight decay (the penalty factor is set to 0.0005).
The learning rate is initialized to 0.001, is divided by 10 when
the error plateaus.

The performance on the four models is shown in Table 3.
With respect to model A, we achieve a coincide result as
the one reported in [Hinton et al., 2012]. By integrating our
Adaptive Sharing, the model performance can be effectively
enhanced (with 1.45% improvement). On the other hand,
[Srivastava and Salakhutdinov, 2013] achieves marginal im-
provement (test error is 36.85%, with 0.35% improvement)
by using the same network configuration. The method is also
formulated in transfer learning framework. However, infor-
mation sharing is strictly governed by the determination of
group structure, which may hurt the performance due to hard
partitioning. In contrast, our method does not strictly require
the relatedness to satisfy certain structure. It is flexible to cou-
ple related classes, and the information can be appropriately
transferred in our model. The clear improvement over [Sri-
vastava and Salakhutdinov, 2013] (1.10%) demonstrates the

2187



Table 6: Class groups based on the model B-AS.

Superclass Classes

superclass 1 apple, bottle, mushroom, orange, pear, sweet pepper

superclass 2 bowl, can, clock, cup, lamp, plate, television

superclass 3 bed, chair, couch, keyboard, table, telephone, wardrobe

superclass 4 baby, boy, girl, man, woman

superclass 5 lawn mower, pickup truck, tank, tractor

superclass 6 bee, beetle, butterfly, caterpillar, cockroach, spider

superclass 7 fox, leopard, lion, skunk, squirrel, tiger, wolf

superclass 8 maple tree, oak tree, palm tree, pine tree, willow tree

superclass 9 dolphin, flatfish, ray, seal, shark, turtle, whale

superclass 10 bear, camel, cattle, elephant

superclass 11 cloud, forest, mountain, plain, road, sea

superclass 12 aquarium fish, trout

superclass 13 beaver, otter, porcupine, shrew, snail

superclass 14 bicycle, motorcycle

superclass 15 crab, crocodile, lizard, lobster, snake, worm

superclass 16 hamster, mouse, possum, rabbit, raccoon

superclass 17 orchid, poppy, rose, sunflower, tulip

superclass 18 bridge, bus, castle, house, streetcar, train

superclass 19 chimpanzee, dinosaur, kangaroo

superclass 20 skyscraper, rocket

advantage of Adaptive Sharing. It is worth noting that Adap-
tive Sharing can enhance the model A and B consistently, and
the superiority is more significant in the deeper network B.
This implies that such sharing paradigm is beneficial for dis-
covering useful features.

In order to comprehensively confirm the effectiveness of
our method, we compare with the previous state-of-the-art
results, as shown in Table 4. By virtue of a deeper archi-
tecture, the model B (in Table 3) outperforms the published
best result. However, the superiority is marginal. Our Adap-
tive Sharing (B-AS) further improves the result. A test error
of 31.20% is achieved, which surpasses dasNet [Stollenga et
al., 2014] by 2.58%.

The balance between the shared part C and the specific
part S can be regularized by the values of the parameters λs

and λc. Due to many parameters in deep neural networks, we
apply a simple strategy that specifies λs (and other param-
eters in the networks) with aforementioned empirical value,
and study the effect of low rank parameters (i.e., the regular-
ization factor λc and the approximation factor ε in (11)) on
model performance. The test errors of B-AS with different
values of λc and ε are summarized in Table 5. The results
show that the model is insensitive to the factor ε, that similar
performance can be obtained with a fixed λc. In contrast, the
regularization factor λc plays a critical role in model perfor-
mance. The best result is obtained when λc is set to 10−3.

To investigate the power of our Adaptive Sharing in captur-
ing the class relatedness, we make an analysis on the matrix
C (corresponding to the shared features) of the model B-AS.
We utilize CTC to represent the similarity matrix of all the
classes in CIFAR-100, which is shown in Fig. 3. Darker color
describes larger value in the similarity matrix (diagonal line
denotes self-similarity). The matrix exhibits block-diagonal
structure, indicating that related classes are encouraged to be
coupled and share information. While hard partitioning is not
applied in Adaptive Sharing, we adopt the Normalized Cut
[Shi and Malik, 2000] to visualize the induced class groups
of the similarity matrix, as shown in Table 6. For comparison,
we also provide the class groups of the model B by adopting
a similar operation on the weight matrix of the last FC layer,

Table 7: Class groups based on the model B.

Superclass Classes

superclass 1 cockroach, crab, lion

superclass 2 bee, butterfly, orchid, poppy, rose, sunflower, sweet pepper, tulip

superclass 3 flatfish, ray, shark, shrew, turtle

superclass 4 kangaroo, leopard, raccoon, skunk, tiger, wolf

superclass 5 cattle, table

superclass 6 clock, house, lamp, skyscraper, telephone

superclass 7 apple, bear, beaver, camel, chimpanzee, elephant, otter, pear, seal

superclass 8 bus, lawn mower, motorcycle, pickup truck, tractor, train

superclass 9 bed, chair, couch, keyboard, snake, worm

superclass 10 maple tree, oak tree, palm tree, pine tree, porcupine, willow tree

superclass 11 dolphin, rocket, whale

superclass 12 bridge, forest, road, sea, streetcar, television

superclass 13 bottle, bowl, can, cup, orange, plate, wardrobe

superclass 14 mushroom, snail, squirrel

superclass 15 crocodile, dinosaur, lobster, trout

superclass 16 beetle, lizard, spider

superclass 17 baby, boy, girl, man, woman

superclass 18 aquarium fish, fox, hamster, mouse, possum, rabbit

superclass 19 bicycle, mountain, plain

superclass 20 castle, caterpillar, cloud, tank

Figure 3: Similarity matrix (CTC) of CIFAR-100.

and the result is shown in Table 7. It is obvious that the relat-
edness captured in Adaptive Sharing is more reasonable. In
fact, the cluster relationship among classes is introduced in
our method although there is no explicit partitioning as [Sri-
vastava and Salakhutdinov, 2013] did.

We perform additional experiments on the ImageNet 2012
classification dataset [Russakovsky et al., 2014], which is a
challenging dataset with 1000 classes. We use the AlexNet
architecture [Krizhevsky et al., 2012] (based on Caffe train-
ing protocol [Jia et al., 2014]) as baseline, which achieves
57.1% on top-1 accuracy and 80.2% on top-5 accuracy on the
validation set, using the center crop. We integrate our Adap-
tive Sharing in the network by replacing the last FC layer.
We apply the same setting of the parameters λc, λs and ε
as in CIFAR-100, and set the other parameters the same as
the baseline. Our model is trained on a single Tesla K40
GPU within two weeks. We obtain 57.7% on top-1 accuracy
and 81.3% on top-5 accuracy on the validation set, where the
improvements over the baseline are 0.6% and 1.1%, respec-
tively. Due to the high baseline on top-5 accuracy, the im-
provement is more difficult than the one on top-1 accuracy.
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Nevertheless, our model achieves more improvement on top-
5 accuracy by virtue of appropriately transferring knowledge
among classes.

5 Conclusion

In this paper, we present a novel adaptive sharing method for
image classification. The shared information is selectively
extracted and exploited to improve the generalization per-
formance while simultaneously identifying the class-specific
properties. We further integrate such adaptive sharing with
deep neural networks. The outstanding performance on mul-
tiple challenging datasets verifies the effectiveness of such
adaptive transfer. As a future direction, we are interested
in leveraging such sharing paradigm to model the relation
among the filters in deep neural networks.
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