
Adaptive Simulated Annealing: A Near-Optimal Connection

between Sampling and Counting

DANIEL ŠTEFANKOVIČ

University of Rochester

AND

SANTOSH VEMPALA AND ERIC VIGODA

Georgia Institute of Technology

Abstract. We present a near-optimal reduction from approximately counting the cardinality of a
discrete set to approximately sampling elements of the set. An important application of our work is
to approximating the partition function Z of a discrete system, such as the Ising model, matchings or
colorings of a graph. The typical approach to estimating the partition function Z (β∗) at some desired
inverse temperature β∗ is to define a sequence, which we call a cooling schedule, β0 = 0 < β1 <
· · · < β� = β∗ where Z (0) is trivial to compute and the ratios Z (βi+1)/Z (βi) are easy to estimate
by sampling from the distribution corresponding to Z (βi). Previous approaches required a cooling
schedule of length O∗(ln A) where A = Z (0), thereby ensuring that each ratio Z (βi+1)/Z (βi) is
bounded. We present a cooling schedule of length � = O∗(

√
ln A).

For well-studied problems such as estimating the partition function of the Ising model, or approx-
imating the number of colorings or matchings of a graph, our cooling schedule is of length O∗(

√
n),

which implies an overall savings of O∗(n) in the running time of the approximate counting algorithm
(since roughly � samples are needed to estimate each ratio).

A similar improvement in the length of the cooling schedule was recently obtained by Lovász and
Vempala in the context of estimating the volume of convex bodies. While our reduction is inspired
by theirs, the discrete analogue of their result turns out to be significantly more difficult. Whereas
a fixed schedule suffices in their setting, we prove that in the discrete setting we need an adaptive
schedule, that is, the schedule depends on Z . More precisely, we prove any nonadaptive cooling
schedule has length at least O∗(ln A), and we present an algorithm to find an adaptive schedule of
length O∗(

√
ln A).

Authors’ addresses: D. Štefankovič, Computer Science Department, University of Rochester,
Rochester, NY 14627-0226, e-mail: stefanko@cs.rochester.edu; S. Vempala and E. Vigoda, College
of Computing, Georgia Institute of Technology, 266 Ferst Drive, Atlanta, GA 30332-0765, e-mail:
{vempala,vigoda}@cc.gatech.edu.

1. Introduction

This article explores the intimate connection between counting and sampling prob-
lems. By counting problems, we refer to estimating the cardinality of a large set
(or its weighted analogue), or in a continuous setting, an integral over a high-
dimensional domain. The sampling problem refers to generating samples from a
probability distribution over a large set. The well-known connection between count-
ing and sampling (first studied in a general complexity-theoretic context by Jerrum
et al. [1986] and explored earlier in a more restricted setting by Babai [1979]) is
the starting point for popular Markov chain Monte Carlo (MCMC) methods for
many counting problems. Some notable examples from computer science are the
problems of estimating the volume of a convex body [Dyer et al. 1991; Lovász
and Vempala 2006b] and approximating the permanent of a non-negative matrix
[Jerrum et al. 2004].

In statistical physics, a key computational task is estimating a partition function,
which is an example of a counting problem. Evaluations of the partition function
yield estimates of thermodynamic quantities of interest, such as the free energy and
the specific heat. The corresponding sampling problem is to generate samples from
the so-called Gibbs (or Boltzman) distribution. The analogue of the connection
between sampling and counting in this area is multi-stage sampling [Valleau and
Card 1972].

We present an improved reduction from approximate counting to approximate
sampling. These results improve the running time for many counting problems
where efficient sampling schemes exist. We present our work in the general frame-
work of partition functions from statistical physics. This framework captures many
well-studied models from statistical physics, such as the Ising and Potts models,
and also captures many natural combinatorial problems, such as colorings, inde-
pendent sets, and matchings. For the purpose of this article we define a (discrete)
partition function as follows.

Definition 1.1. Let n ≥ 0 be an integer. Let a0, . . . , an be non-negative real
numbers such that a0 ≥ 1. The function

Z (β) =
n∑

i=0

ai e
−iβ

is called a partition function of degree n. Let A := Z (0).

This captures the standard notion of partition functions from statistical physics
in the following manner. The quantity i corresponds to the possible values of the
Hamiltonian. Then, ai is the number of configurations whose Hamiltonian equals
i . For instance, in the (ferromagnetic) Ising model on a graph G = (V, E), a
configuration is an assignment of +1 and −1 spins to the vertices. The Hamiltonian
of a configuration is the number of edges whose endpoints have different spins. The
quantity β is referred to as the inverse temperature. The computational goal is to
compute Z (β) for some choice of β ≥ 0. Note, when β = 0 the partition function
is trivial since Z (0) = ∑n

i=0 ai = 2|V |. The condition a0 ≥ 1 is clearly satisfied; in
fact, we have a0 = 2 by considering the all +1 and the all −1 configurations.

The general notion of partition function also captures standard combinatorial
counting problems as illustrated by the following example. Let � be the set of all
k-labelings of a graph G = (V, E) (i.e., labelings of the vertices of G by numbers
{1, . . . , k}). Given a labeling σ , let its Hamiltonian H (σ) be the number of edges
in E that are monochromatic in σ . Let �i denote the set of all k-labelings of G
with H (σ) = i . Let ai = |�i |. We would like to compute Z (∞) = a0, that is, the
number of valid k-colorings of G. Once again, the case β = 0 is trivial since we
have Z (0) = k|V |. The condition a0 ≥ 1 simply requires that there is at least one
proper k-coloring.

The standard approach to compute Z (β) is to express it as a telescoping product of
ratios of the partition function evaluated at a sequence of β’s, where the initial β = 0
is the trivial case. The ratios are approximated using a sampling algorithm. More
precisely, consider a set of configurations � that can be partitioned as � = �0 ∪
�1 ∪ · · · ∪ �n , where |�i | = ai for 0 ≤ i ≤ n. Suppose that we have an algorithm
which for any inverse temperature β ≥ 0 generates a random configuration from
the distribution μβ over � where the probability of a configuration σ ∈ � is

μβ(σ) = e−β H (σ)

Z (β)
, (1)

where H (σ) is the Hamiltonian of the configuration defined as

H (σ) = i such that σ ∈ �i .

We now describe the details of the standard approach for using such a sampling
algorithm to approximately evaluate Z (β). In the general setting of Definition 1.1,
for X ∼ μβ , the random variable

Wβ,β ′ := e(β−β ′)H (X) (2)

is an unbiased estimator for Z (β ′)/Z (β). Indeed,

E
(
Wβ,β ′

) = 1

Z (β)

∑
σ∈�

e−β H (σ) · e(β−β ′)H (σ) = Z (β ′)
Z (β)

. (3)

(Equation (3) is related to the single histogram, or reweighting methods in statistical
physics [Salsburg et al. 1959; Ferrenberg and Swendsen 1988].) Thus, a0 = Z (∞)
can be approximated as follows. Take β0 < β1 < · · · < β� with β0 = 0 and
β� = ∞. Express Z (∞) as a telescoping product

Z (∞) = Z (0)
Z (β1)

Z (β0)

Z (β2)

Z (β1)
. . .

Z (β�)

Z (β�−1)
, (4)

and approximate each fraction in the product using the unbiased estimator Wβi ,βi+1 .
The initial term Z (0) is typically trivial to compute.

Taking sufficiently many samples for each Wβi ,βi+1 will give a good approxi-
mation of a0. The question we study in this article is: how should one choose the
inverse temperatures β0, . . . , β� so as to minimize the number of samples needed
to estimate (4)? A specific choice of β0, . . . , β� is called a cooling schedule. More-
over, we say a B-Chebyshev cooling schedule satisfies E

(
W 2

)
/E (W)2 for every

W = Wβi ,βi+1, i = 0, . . . , � − 1. Dyer and Frieze [1991] used a nontrivial ap-
plication of Chebyshev’s inequality to show for a B-Chebyshev cooling schedule
where B = O(1) that O(�/ε2) samples per ratio (more precisely from Wβi ,βi+1) are
sufficient to obtain an (1 ± ε) approximation of Z (∞).

In the past, MCMC algorithms have used cooling schedules that ensure that each
ratio Z (βi+1)/Z (βi) in the telescoping product is bounded by a constant and hence
this immediately implies that it is a B-Chebyshev cooling schedule with constant
B. For applications such as colorings or Ising model, requiring that each ratio is
at most a constant, implies that the length of the cooling schedule is at least �(n),
since Z (0) and Z (∞) typically differ by an exponential factor. A general cooling
schedule of length O∗(n) was presented in Bezáková et al. [2008]. All schedules
prior to our work use nonadaptive cooling schedules. By nonadaptive, we refer to
a schedule that depends only on n and A but not the structure of Z .

The recent volume algorithm of Lovász and Vempala [2006b, 2006a] uses a
nonadaptive cooling schedule of length O(

√
n) to estimate the volume of a convex

body in R
n . Their result relies on the logconcavity of the function βn Z (β) where

Z is the analogue of the partition function.
Here, we present a cooling schedule for discrete partition functions with length

roughly
√

ln A where A = Z (0). (Note,
√

ln A is roughly
√

n in the examples
we have been considering here). The discrete setting presents the following new
challenge. As we show in this article, there can be no short nonadaptive cooling
schedule for discrete partition functions. Any such nonadaptive schedule has length
�(ln A) in the worst case (see Lemma 3.3 for a precise statement).

We prove that every partition function does have an adaptive schedule of length
roughly

√
ln A (see Theorem 4.1 for a precise statement). Further, the schedule

can be figured out efficiently on the fly. We refer to our algorithm, presented in
Section 5, for constructing the cooling schedule as PRINT-COOLING-SCHEDULE.
Here is the formal statement of our main result.

THEOREM 1.2. Let Z be a partition function. Assume that we have access to an
(approximate) sampling oracle from μβ for any inverse temperature β. Let δ′ > 0.
With probability at least 1 − δ′, algorithm PRINT-COOLING-SCHEDULE outputs a
B-Chebyshev cooling schedule for Z (with B = 3 · 106), where the length of the
schedule is at most

� ≤ 38
√

ln A(ln n) ln ln A.

The algorithm uses at most

Q ≤ 107(ln A)((ln n) + ln ln A)5 ln
1

δ′

samples from the μβ-oracles. The samples output by the oracles have to be from a
distribution μ′

β which is within variation distance ≤ δ′/(2Q) from μβ .

As a corollary we get the following result for estimating the partition function.

COROLLARY 1.3. Let Z be a partition function. Let ε > 0 be the desired preci-
sion. Suppose that we are given access to oracles that sample from the distribution
within variation distance

ε2

108(ln A)((ln n) + ln ln A)5

from μβ for any inverse temperature β.
Using 1010

ε2 (ln A)((ln n) + ln ln A)5 samples in total, we can obtain a random
variable Ŝ such that

P((1 − ε)Z (∞) ≤ Ŝ ≤ (1 + ε)Z (∞)) ≥ 3/4.

The existence of a short schedule follows from an interesting geometric fact: any
convex function f can be approximated by a piecewise linear function g consisting
of few pieces, see Figure 1 in Section 4 for an illustration. More precisely, f is
approximated in the following sense: for all x ≥ 0, we have 0 ≤ g(x) − f (x) ≤ 1.

For well-known problems such as counting colorings or matchings, and estimat-
ing the partition function of the Ising model, our results imply an improvement in
the running time by a factor of n, since the complexity grows with the square of
the schedule length; see Section 8 for a precise statement of the applications of our
results.

We observe (in Section 4.1) that our techniques apply to the continuous setting
as well, specifically, to the integration of general functions in R

n . The key property
required for the existence of an adaptive schedule is the logconvexity of the partition
function Z (β). However, this does not immediately lead to any new algorithms for
integration since logconcave functions are the most general class of continuous
functions for which we have efficient sampling algorithms.

In Section 2, we formalize the setup described in this introduction. The lower
bound for non-adaptive schedules is formally stated as Lemma 3.3 in Section 3. The
existence of a short cooling schedule is proved in Section 4, and formally stated in
Theorem 4.1. The algorithm for constructing a short cooling schedule is presented
in Section 5. Finally, in Section 8, we present applications of our improved cooling
schedule.

2. Chebyshev Cooling Schedules

Let W := Wβ,β ′ be the estimator defined by (2) whose expectation is a individual
ratio in the telescoping product. As usual, we will use the squared coefficient of
variance Var (W)/E (W)2 as a measure of the quality of the estimator W , namely to
derive a bound on the number of samples needed for reliable estimation of E (W).
We will also use the quantity E

(
W 2

)
/E (W)2 = 1 + Var (W)/E

(
W 2

)
.

LEMMA 2.1 (CHEBYSHEV). Let W be a random variable with E (W) < ∞ and
E

(
W 2

)
< ∞. Let ε > 0. We have

P((1 − ε)E (W) ≤ W ≤ (1 + ε)E (W)) ≥ 1 − Var (W)

ε2E (W)2 ≥ 1 − E
(
W 2

)
ε2E (W)2 .

The following lemma of Dyer and Frieze [1991] is now well known.

THEOREM 2.2. Let W1, . . . , W� be independent random variables with E
(
W 2

i

)
/

E (Wi)2 ≤ B for i ∈ [�]. Let Ŵ = W1 . . . W�. Let Si be the average of 16B�/ε2

independent random samples from Wi for i ∈ [�]. Let Ŝ = S1S2 · · · S�. Then

Pr
(
(1 − ε)E

(
Ŵ

) ≤ Ŝ ≤ (1 + ε)E
(
Ŵ

)) ≥ 3/4.

It will be convenient to rewrite E
(
W 2

)
/E (W)2 for W := Wβ,β ′ in terms of the

partition function Z . We have

E
(
W 2) = 1

Z (β)

∑
σ∈�

e−β H (σ)e2(β−β ′)H (σ) = Z (2β ′ − β)

Z (β)
,

and hence

E
(
W 2

)
E (W)2 = Z (2β ′ − β)Z (β)

Z (β ′)2
. (5)

Equation (5) motivates the following definition.

Definition 2.3. Let B > 0 be a constant. Let Z be a partition function. Let
β0, . . . , β� be a sequence of inverse temperatures such that 0 = β0 < β1 < · · · <
β� = ∞. The sequence is called a B-Chebyshev cooling schedule for Z if

Z (2βi+1 − βi)Z (βi)

Z (βi+1)2
≤ B, (6)

for all i = 0, . . . , � − 1.

The following bound on the number of samples is an immediate consequence of
Theorem 2.2.

COROLLARY 2.4. Let Z be a partition function. Suppose that we are given a
B-Chebyshev cooling schedule β0, . . . , β� for Z. Then, using 16B�2/ε2 samples
in total, we can compute Ŝ such that

P((1 − ε)Z (∞) ≤ Ŝ ≤ (1 + ε)Z (∞)) ≥ 3/4.

3. Lower Bound for Nonadaptive Schedules

A cooling schedule will be called nonadaptive if it depends only on n and A = Z (0)
and assumes Z (∞) ≥ 1. Thus, such a schedule does not depend on the structure of
the partition function.

The advantage of nonadaptive cooling schedules is that they do not need to be
figured out on the fly. An example of a nonadaptive Chebyshev cooling schedule
that works for any partition function of degree n, where Z (0) = A, is

0,
1

n
,

2

n
, . . . ,

n ln A
n

, ∞. (7)

The idea behind the schedule (7) is that small changes in the inverse temperature
result in small changes of the partition function. We will state this observation more
precisely, since we will use it later.

LEMMA 3.1. Let ε > 0 and let β ≤ β ′ ≤ β + ε. Let Z be a partition function
of degree n. Then

Z (β)e−εn ≤ Z (β ′) ≤ Z (β). (8)

PROOF. For i ≤ n, we have

e−βi e−εn ≤ e−(β+ε)i ≤ e−β ′i ≤ e−βi . (9)

Equation (8) now follows by applying (9) to each term of the Z ’s in (8).

To see that (7) is a Chebyshev cooling schedule, note that, by Lemma 3.1, the
random variable Wβ,β ′ defined by (2) has values from the interval [1/e, 1] if 0 ≤
β ′ −β ≤ 1/n. This implies that for W := Wβ,β ′ the left-hand side of (5) is bounded
by a constant if β, β ′ < ∞ are neighbors in (7). It remains to show that (5) is
bounded for β = ln A and β ′ = ∞. Note that that Z (∞) ≥ 1 (since a0 ≥ 1) and

Z (ln A) = a0 +
n∑

i=1

ai e
−i ln A ≤ Z (∞) + 1

A

n∑
i=1

ai ≤ Z (∞) + 1.

and hence for the right-hand side of (5) we obtain

Z (ln A)

Z (∞)
≤ 2. (10)

The length of the schedule (7) is O(n ln A). The following more efficient non-
adaptive Chebyshev cooling schedule of length O((ln A) ln n) is given in Bezáková
et al. [2008]:

0,
1

n
,

2

n
, . . . ,

k
n
,

kγ

n
,

kγ 2

n
, . . . ,

kγ t

n
, ∞, (11)

where k = �ln A, γ = 1 + 1
ln A , and t = �(1 + ln A) ln n. The schedule (11) is

based on the following observation (the statement of Lemma 3.2 slightly differs
from Bezáková et al. [2008] and hence we include a short proof).

LEMMA 3.2 [BEZÁKOVÁ ET AL. 2008]. Let Z be a partition function with
Z (0) = A. Let β > 0 be an inverse temperature and let β ′ = β(1 + 1

ln A). Then

1

2e
Z (β) ≤ Z (β ′).

PROOF. Let n be the degree of Z . First assume that ane−βn ≥ 1. We have
an ≤ Z (0) = A and hence β ≤ ln A

n . This implies β ′ ≤ β + 1
n and we can use

Lemma 3.1.
Now assume ane−βn < 1. Let k ∈ {0, . . . , n} be the smallest such that

n∑
i=k

ai e
−βi < 1. (12)

Note that k ≥ 1, since a0 ≥ 1. From the minimality of k, we obtain

Ae−β(k−1) ≥
n∑

i k 1

ai e
−βi ≥ 1,

and hence β(k − 1) ≤ ln A. Hence, for i ≤ k − 1, we have β ′i ≤ βi + 1. Now

Z (β) < 1 +
k−1∑
i=0

ai e
−βi , (13)

and

Z (β ′) ≥
k−1∑
i=0

ai e
−β ′i ≥

k−1∑
i=0

ai e
−βi−1 ≥ 1

e

k−1∑
i=0

ai e
−βi ≥ 1

e
. (14)

Combining (13) and (14), we obtain the result.

Next we show that the schedule (11) is the best possible up to a constant factor.
We will see later that adaptive cooling schedules can be much shorter.

LEMMA 3.3. Let n ∈ Z
+, and A, B ∈ R

+. Let S = β0, β1, . . . , β� be a
nonadaptive B-Chebyshev cooling schedule that works for all partition functions
of degree at most n with Z (0) = A, and Z (∞) ≥ 1. Assume β0 = 0 and β� = ∞.
Then

� ≥ ln(n/e)

(
ln(A − 1)

ln(4B)
− 1

)
. (15)

In the proof of Lemma 3.3, we will need the following bound on the first step of
the cooling schedule.

LEMMA 3.4. Let n ∈ Z
+, and A, B ∈ R

+. Let S = β0, β1, . . . , β� be a
nonadaptive B-Chebyshev cooling schedule which works for all partition functions
of degree at most n with Z (0) = A, and Z (∞) ≥ 1. Assume β0 = 0. If A−1 > 4B,
then

β1 ≤ ln(4B)

n
. (16)

PROOF OF LEMMA 3.4. Let 0 ≤ a ≤ A − 1. Then S has to be a B-Chebyshev
cooling schedule for

Z (β) = A
1 + a

(
1 + ae−βn) .

Equation (6) needs to be satisfied for Z , β0 = 0 and β1. Thus,

(1 + ae−2β1n)(1 + a)

(1 + ae−β1n)2
≤ B. (17)

After substitution z = e−β1n , Eq (17) becomes equivalent to

(1 + az2)(1 + a)

(1 + az)2
= 1 + a

(
1 − z

1 + az

)2

≤ B. (18)

Suppose that z ≤ 1
A−1 . Note that the left-hand side of (18) is decreasing in z. Hence,

(18) is true for z = 1
A−1 . Let a = A − 1. For this choice of a and z, (18) yields

(A − 1)/4 ≤ B, a contradiction with A > 4B + 1. Thus, z > 1
A−1 .

Since z > 1/(A − 1), we have 1/z < A − 1 and, hence, we can choose a = 1/z.
Plugging a = 1/z into (18) we obtain

(1 + z)2

4z
≤ B, (19)

and, hence, z ≥ 1/(4B), which implies (16).

Note, since β0 = 0, Lemma 3.4 gives an upper bound on β1 − β0. Moreover,
we also can easily obtain an upper bound on the later steps in the schedule for a
worst-case partition function. We will apply Lemma 3.4 to the partition function
Ẑ (x) = Z (x + βi). Note, Ẑ (0) − 1 ≥ (A − 1) exp(−βi k) if Z is of degree at most
k. Then we obtain the following result.

COROLLARY 3.5. Let n ∈ Z
+, and A, B ∈ R

+. Let S = β0, β1, . . . , β� be a
nonadaptive B-Chebyshev cooling schedule that works for all partition functions of
degree at most n with Z (0) = A, and Z (∞) ≥ 1. Assumeβ0 = 0. Let k ∈ {1, . . . , n}.
If (A − 1)e−βi k > 4B, then

βi+1 − βi ≤ ln(4B)

k
.

PROOF OF LEMMA 3.3. Let S′ = β0, β1, . . . , β� be the shortest sequence such
that β0 = 0, β� = ∞ and the Corollary 3.5 is satisfied for S′.

We can greedily construct the shortest sequence S′ as follows. If k ∈ {1, . . . , n}
is the largest such that (A − 1)e−βi k > 4B, then we take

βi+1 = βi + ln(4B)

k
.

(If (A − 1)e−βi ≤ 4B, then we take βi+1 = ∞.)
Let xi be the number of indices for which βi+1 − βi = ln(4B)

i . Let j ∈ {2, . . . , n}
and

β =
n∑

i= j

xi
ln(4B)

i
. (20)

From β, we take a step of length at least ln(4B)
j−1 (since we already took all shorter

steps) and hence

(A − 1)e−β j ≤ 4B. (21)

Plugging (20) into (21) we obtain
n∑

i= j

xi
ln(4B)

i
≥ 1

j
ln

A − 1

4B
. (22)

Summing (22) for j = 2, . . . , n we obtain

(ln(4B))
n∑

j=2

xi ≥
(

n∑
j=2

1

j

)
ln

A − 1

4B
≥

(
ln

n
e

)
ln

A − 1

4B
,

which implies (15).

The number of samples needed in Theorem 2.2 (and Corollary 2.4) is linear in
B and hence, in view of Lemma 3.3, the optimal value of B is a constant. Our
understanding of nonadaptive schedules is now complete up to a constant factor.
In particular, the schedule (11) and Lemma 3.3 imply that the optimal nonadaptive
schedule has length 	((ln A) ln n).

We would like to have a similar understanding of adaptive cooling schedules. A
reasonable conjecture is that the optimal adaptive schedule has length

	
(√

(ln A) ln n
)

. (23)

We will present (in Theorem 1.2) an adaptive schedule of length O(
√

ln A
(ln n) ln ln A). This comes reasonably close to our guess in (23) (in fact, in our
applications we are only off by polylogarithmic factors).

We will have the following technical assumptions on A and n.

ln n ≥ 1, ln ln A ≥ 1, and A ≥ ln n. (24)

The first two assumptions are necessary since both ln n and ln ln A figure in our
bounds on the length of the schedule. The third assumption is justified for the fol-
lowing two reasons. First, in the applications we consider, A is usually exponential
in n. Second, if A is too small then no cooling schedule is necessary—a direct ap-
plication of the Monte Carlo method uses only A/ε2 samples (which, for A ≤ ln n,
is less than the number of samples needed by a cooling schedule of length given by
(23)).

4. Adaptive Cooling Schedules

In this section, we prove the existence of short adaptive cooling schedules for general
partition functions. We now formally state the result (to simplify the exposition we
will choose B = e2, the construction works for any B).

THEOREM 4.1. Let Z be a partition function of degree n. Let A = Z (0). Assume
that Z (∞) ≥ 1. There exists an e2-Chebyshev cooling schedule S for Z whose length
is at most

4(ln ln A)
√

(ln A) ln n.

It will be convenient to define f (β) = ln Z (β). Some useful properties of f are
summarized in the next lemma. We include a short proof in Section 6.

LEMMA 4.2. Let f (β) = ln Z (β) where Z is a partition function of degree n.
Then (a) f is decreasing, (b) f ′ is increasing (that is, f is convex) (c) f ′(β) ≥ −n
for all β ∈ R.

Recall that an e2-Chebyshev cooling schedule for Z is a sequence of inverse
temperatures β0, β1, . . . , β� such that β0 = 0, β� = ∞, and

Z (2βi+1 − βi)Z (βi)

Z (βi+1)2
≤ e2. (25)

Since (25) is invariant under scaling we can, without loss of generality, assume
Z (∞) = 1 (or equivalently a0 = 1). Since we assumed a0 ≥ 1, the scaling will not
increase Z (0).

FIG. 1. The light curve is f (x) = ln Z (x) for the partition function Z (x) = (1 + exp(−x))20. The
dark curve is a piecewise linear function g consisting of 3 pieces which approximates f . In particular,
g ≥ f and the midpoint of each piece is close to the average of the endpoints (specifically, (25) holds).

Let f (β) = ln Z (β), so that f (0) = ln A, and f (∞) = 0. The condition (25) is
equivalent to

f (2βi+1 − βi) + f (βi)

2
− f (βi+1) ≤ 1. (26)

If we substitute x = βi and y = 2βi+1 − βi , the condition can be rewritten as

f
(

x + y
2

)
≥ f (x) + f (y)

2
− 1.

In words, f satisfies approximate concavity. The main idea of the proof is that
we do not require this property to hold everywhere but only in a sparse subset of
points that will correspond to the cooling schedule. A similar viewpoint is that we
will show that f can be approximated by a piecewise linear function g with few
pieces, see Figure 1 for an illustration. We form the segments of g in the following
inductive, greedy manner. Let γi denote the endpoint of the last segment. We then
set γi+1 as the maximum value such that the midpoint mi of the segment (γi , γi+1)
satisfies (26) (for βi = γi , βi+1 = mi). We now formally state the lemma on the
approximation of f by a piecewise linear function.

LEMMA 4.3. Let f : [0, γ] �→ R be a decreasing, convex function. There exists
a sequence γ0 = 0 < γ1 < · · · < γ j = γ such that for all i ∈ {0, . . . , j − 1},

f
(

γi + γi+1

2

)
≥ f (γi) + f (γi+1)

2
− 1, (27)

and

j ≤ 1 +
√

(f (0) − f (γ)) ln
f ′(0)

f ′(γ)
.

PROOF. Let γ0 := 0. Suppose that we already constructed the sequence up to
γi . Let γi+1 be the largest number from the interval [γi , γ] such that (27) is satisfied.
Let mi = (γi + γi+1)/2, let
i = (γi+1 − γi)/2, and Ki = f (γi) − f (γi+1).

If γi+1 = γ , then we are done constructing the sequence. Otherwise, by the
maximality of γi+1, we have

f (mi) = f (γi) + f (γi+1)

2
− 1. (28)

Using the convexity of f and (28), we obtain

− f ′(γi) ≥ f (γi) − f (mi)

i
= Ki + 2

2
i
, (29)

and

− f ′(γi+1) ≤ f (mi) − f (γi+1)

i
= Ki − 2

2
i
. (30)

Combining (29) and (30), we obtain

f ′(γi+1)

f ′(γi)
= − f ′(γi+1)

− f ′(γi)
≤ Ki − 2

Ki + 2
= 1 − 4

Ki + 2
. (31)

From (30) and the fact that f is decreasing we obtain Ki ≥ 2. Hence, we can
estimate (31) as follows

f ′(γi+1)

f ′(γi)
≤ 1 − 4

Ki + 2
≤ 1 − 1

Ki
≤ e−1/Ki . (32)

Since f is decreasing, we have

j−2∑
i=0

Ki ≤ f (0) − f (γ). (33)

Now we combine (32) for all i ∈ {0, . . . , j − 2}.
j−2∑
i=0

1

Ki
≤ ln

f ′(0)

f ′(γ)
. (34)

Applying Cauchy-Schwarz inequality on (33) and (34) we obtain

(j − 1)2 ≤ (f (0) − f (γ)) ln
f ′(0)

f ′(γ)
.

Before proving Theorem 4.1 we give some high-level intuition. The sequence
we obtain from Lemma 4.3 will yield a natural cooling schedule for proving
Theorem 4.1. A schedule ending at βk = γi can be extended to βk+1 = mi where
mi is the midpoint of the segment (γi , γi+1). Moreover, we can then set βk+2 as the
midpoint of (mi , γi+1). We continue in this geometric manner for at most ln ln A
steps, after which we can set the next inverse temperature in our schedule to γi+1.

Then we continue on the next segment. It then follows that the length � of the
cooling schedule satisfies � ≤ j ln ln A where j is the length of the sequence from
Lemma 4.3. We now present the proof of the Theorem 4.1.

PROOF OF THEOREM 4.1. Let γ be such that f (γ) = 1. We describe a sequence
β0 = 0 < β1 < . . . β� = γ satisfying (26). Note that since f (γ) = 1, we can
take β�+1 = ∞ and the sequence will still satisfy (26) (and thus we get a complete
e2-Chebyshev cooling schedule for Z). We have

Z (γ) = exp(f (γ)) =
n∑

i=0

ai e
−iγ = e,

and, hence, (using a0 = 1)

−Z ′(γ) =
n∑

i=0

iai e
−iγ ≥ e − 1.

Thus,

− f ′(γ) = − ln Z (γ) = −Z ′(γ)

Z (γ)
=

∑n
i=0 iai e−iγ∑n
i=0 ai e−iγ

≥ e − 1

e
. (35)

By Lemmas 4.2 and 4.3, there exists a sequence of γ0 = 0 < γ1 < · · · < γ j = γ
of length

j ≤ 1 +
√

(ln A) ln
ne

e − 1
(36)

such that (27) is satisfied.
Now we show how to add �ln ln A inverse temperatures between each pair γi

and γi+1 to obtain our cooling schedule. For notational convenience, we show this
only for γ0 = 0 and γ1.

Note that (27) implies that (26) is satisfied for β0 = 0 and β1 = γ1/2. We now
show that

0, (1/2)γ1, (3/4)γ1, (7/8)γ1, . . . , (1 − 2−�ln ln A)γ1, γ1

is an e2-Chebyshev cooling schedule. Let

g(x) = f
(

γ1 + x
2

)
− f (x) + f (γ1)

2
.

Note that, by (28), we have g(0) = −1. We have

g′(x) = 1

2

(
f ′

(
γ1 + x

2

)
− f ′(x)

)
.

Thus,

if x ≤ γ1 we have g′(x) ≥ 0, (37)

and, hence,

g(x) ≥ g(0) = −1.

Plugging in x = (1 − 2−t)γ1, we conclude

f ((1 − 2−t−1)γ1) ≥ f ((1 − 2−t)γ1) + f (γ1)

2
− 1. (38)

From (28), it follows that the sequence 0, (1/2)γ1 satisfies (26), and from (38) it
follows that the sequence

0, (1/2)γ1, (3/4)γ1, (7/8)γ1, . . .

satisfies (26).
We will now show that we can truncate the sequence at t = �ln ln A and take a

last step from (1 − 2−t)γ1 to γ1. By the convexity of f

f ((1 − 2−t−1)γ1) ≤ f ((1 − 2−t)γ1) + f (γ1)

2
,

and hence

f ((1 − 2−t−1)γ1) − f (γ1) ≤ f ((1 − 2−t)γ1) − f (γ1)

2
. (39)

Equation (39) states that the distance of f ((1 − 2−t)γ1) from f (γ1) halves in each
step. Recall that f (γ1/2) − f (γ1) ≤ f (0) ≤ ln A and, hence, for t := �ln ln A,
we have

f ((1 − 2−t)γ1) − f (γ1) ≤ 1. (40)

Hence, we have the following sequence satisfying (26):

0, (1/2)γ1, (3/4)γ1, (7/8)γ1, . . . , (1 − 2−t)γ1, γ1 (41)

This yields the initial portion of our cooling schedule:

β0 = 0, β1 = (1/2)γ1, β2 = (3/4)γ1, . . . , βt+1 = γ1,

going from γ0 = 0 to γ1. Repeating the above process for each segment γi to
γi+1, i = 0, . . . , j − 1, completes the construction of the cooling schedule. The
length of the schedule is ≤ j t . Plugging in (36) yields the theorem.

The optimal Chebyshev cooling schedule can be obtained in a greedy manner.
In particular, starting with β0 = 0, and then from βi , choosing the maximum βi+1
for which (26) is satisfied. The reason why the greedy strategy works is that if we
can step from β to β ′, then for any γ ∈ [β, β ′] we can step from γ to β ′ (that is,
having large inverse temperature can not hurt us). The last fact follows from the
convexity of f (or alternatively from (37)).

COROLLARY 4.4. Let Z be a partition function of degree n. Let A = Z (0).
Assume that Z (∞) ≥ 1. Suppose that β0 < · · · < β� is a cooling schedule for Z.
Then, the number of indices i for which

Z (2βi+1 − βi)Z (βi)

Z (βi+1)2
≥ e2 (42)

is at most 4(ln ln A)
√

(ln A) ln n.

We will prove Corollary 4.4 shortly. We now formally prove the greedy property
of Chebyshev cooling schedules. Note that we can make a step from x to y if
g(x, y) ≤ 1, where

g(x, y) = f (x) + f (2y − x)

2
− f (y) . (43)

LEMMA 4.5. Let Z be a partition function. Let f = ln Z (β) and let g be given
by (43). The function g(x, y) is decreasing in x for x < y. The function g(x, y) is
increasing in y for x < y.

PROOF. By Lemma 4.2, we have that f ′ is an increasing function. We have
2y − x > x and hence

∂g(x, y)

∂x
= f ′(x) − f ′(2y − x)

2
< 0.

Analogously

∂g(x, y)

∂y
= f ′(2y − x) − f ′(y) > 0.

PROOF OF COROLLARY 4.4. Let k0 < k1 < · · · < km be the indices for which
(42) is satisfied. Let α0 = 0 < α1 < · · · < α� = ∞ be the optimal e2-Chebyshev
cooling schedule. We are going to show, using induction on j , that

α j ≤ βk j . (44)

Clearly (44) is true for j = 0.
Now assume (44) is true for some j . We have g(α j , α j+1) ≤ 1, g(βk j , βk j +1) ≥ 1,

and α j ≤ βk j . From Lemma 4.5, it follows that α j+1 ≤ βk j +1 and hence

α j+1 ≤ βk j +1 ≤ βk(j+1),

completing the induction step.
Equation (44) implies m ≤ � ≤ 4(ln ln A)

√
(ln A) ln n.

4.1. EXTENSIONS. The key property of Z (β) used in the proof of existence
of a fast cooling schedule is the fact that it is logconvex (i.e., its logarithm,
f (β) = ln Z (β), is convex). The proof above can be appropriately modified for
other function classes with this property. We highlight this for a class of continuous
functions.

LEMMA 4.6. Let g : R
n → R be a continuous, integrable, nonnegative func-

tion. Define

Z (β) =
∫

Rn
g(x)β dx

for β > 0. Then, Z (β) is logconvex.

The proof is identical to that of Lemma 4.2, part (b).

4.2. LOWER BOUND FOR ADAPTIVE COOLING

LEMMA 4.7. Let n ≥ 1. Consider the following partition function of degree n:

Z (β) = (1 + e−β)n.

Any B-Chebyshev cooling schedule for Z (β) has length at least
√

n/(20 ln B).

PROOF. Let f (β) = ln Z (β) = n ln(1+e−β). If the current inverse temperature
is βi =: β, the next inverse temperature βi+1 =: β + x has to satisfy

f (β) + f (β + 2x) − 2 f (β + x) ≤ ln B.

Later, we will show that for any β ∈ [0, 1] and x ∈ [0, 1] we have

f (β) + f (β + 2x) − 2 f (β + x) ≥ n
20

x2. (45)

From (45), it follows that for β ≤ 1 the inverse temperature increases by at most

x ≤
√

20 ln B
n

,

and, hence, the length of the schedule is at least
√

n/(20 ln B).
It remains to show (45). Let

g(x, β) := f (β) + f (β + 2x) − 2 f (β + x)

2n
.

We have

∂

∂x
g(x, β) = e−β−x

1 + e−β−x
− e−β−2x

1 + e−β−2x
.

We will show

e−β−x

1 + e−β−x
− e−β−2x

1 + e−β−2x
≥ x/20, (46)

which will imply (45) (by integration over x).
Let C := e−β and y := 1 − e−x . Note that C ∈ [1/e, 1], y ∈ [0, 1 − 1/e], and

x = − ln(1 − y). For y ∈ [0, 1 − 1/e], we have − ln(1 − y) ≤ y + y2 and hence it
is enough to show

C(1 − y)

1 + C(1 − y)
− C(1 − y)2

1 + C(1 − y)2
≥ 1

20
(y + y2). (47)

Multiplying both sides by the numerators, we obtain that (47) is equivalent to

P(y, C) := y(y + 1)(y − 1)3C2 − (y4 − 2y3 + 19y2 − 18y)C − (y2 + y) ≥ 0.

The polynomial y(y + 1)(y − 1)3 is negative for our range of y and hence for any
fixed y, the minimum of P(y, C) over C ∈ [1/3, 1] occurs either at C = 1 or at
C = 1/3 (we only need to show positivity of P(y, C) for C ∈ [1/e, 1], but for
numerical convenience we show it for a larger interval). We have

p(y, 1) = y5 − 3y4 + 2y3 − 18y2 + 16y, (48)

and

9p(y, 1/3) = y5 − 5y4 + 6y3 − 64y2 + 44y. (49)

Both (48) and (49) are non-negative for our range of y (as is readily seen by
the method of Sturm sequences). This finishes the proof of (46), which in turn
implies (45).

5. An Adaptive Cooling Algorithm

The main theorem of the previous section proves the existence of a short adaptive
cooling schedule, whereas in Section 3 we proved any nonadaptive cooling schedule
is much longer. In this section, we present an adaptive algorithm to find a short
cooling schedule. We restate the main result (Theorem 1.2) before describing the
details of the algorithm PRINT-COOLING-SCHEDULE. Pseudocode for the algorithm
is presented in the Appendix for completeness, in the main text we present a high-
level and also a detailed description of the algorithm. The algorithm has access to a
sampling oracle, which on input β produces a random sample from the distribution
μβ , defined by (1) (or a distribution sufficiently close to μβ).

THEOREM 1.2. Let Z be a partition function. Assume that we have access to an
(approximate) sampling oracle from μβ for any inverse temperature β. Let δ′ > 0.
With probability at least 1 − δ′, algorithm PRINT-COOLING-SCHEDULE outputs a
B-Chebyshev cooling schedule for Z (with B = 3 · 106), where the length of the
schedule is at most

� ≤ 38
√

ln A(ln n) ln ln A. (50)

The algorithm uses at most

Q ≤ 107(ln A) ((ln n) + ln ln A)5 ln
1

δ′ (51)

samples from the μβ-oracles. The samples output by the oracles have to be from a
distribution μ′

β which is within variation distance ≤ δ′/(2Q) from μβ .

In Section 7, we extend the algorithm to the setting of warm-start sampling
oracles (see Theorem 7.6).

5.1. HIGH-LEVEL ALGORITHM DESCRIPTION. We begin by presenting the high-
level idea of our algorithm. Ideally we would like to find a sequence β0 = 0 <
β1 < · · · < β� = ∞ such that, for some constants 1 < c1 < c2, for all i , the
random variable W := Wβi ,βi+1 satisfies

c1 ≤ E
(
W 2

)
E (W)2 ≤ c2. (52)

The upper bound in (52) is necessary so that Chebyshev’s inequality guarantees that
few samples of W are required to obtain a close estimate of the ratio Z (βi)/Z (βi+1).
On the other side, the lower bound would imply that the length of the cooling
schedule is close to optimal. We will guarantee the upper bound for every pair of
inverse temperatures, but we will only obtain the lower bound for a sizable fraction
of the pairs. Then, using Corollary 4.4, we will argue that the schedule is short.

During the course of the algorithm we will try to find the next inverse temperature
βi+1 so that (52) is satisfied. For this, we will need to estimate u = u(βi , βi+1) :=
E

(
W 2

)
/E (W)2. We already have an expression for u, given by Eq. (5):

u = E
(
W 2

)
E (W)2 = Z (2βi+1 − βi)Z (βi)

Z (βi+1)2
= Z (2βi+1 − βi)

Z (βi+1)

Z (βi)

Z (βi+1)
. (53)

Hence, to estimate u it suffices to estimate the ratios Z (2βi+1 − βi)/Z (βi+1) and
Z (βi)/Z (βi+1). Recall that the goal of estimating u was to show that W is an efficient
estimator of Z (βi)/Z (βi+1). Now it seems that to estimate u we already need a
good estimator for W . An important component of our algorithm, which allows us
to escape from this circular loop, is a rough estimator for u which bypasses W .

Recall, the Hamiltonian H takes values in {0, 1, . . . , n}. For the purposes of
estimating, u it will suffice to know the Hamiltonian within some relative accuracy.
Thus, we partition {0, 1, . . . , n} into (discrete) intervals of roughly equivalent values
of the Hamiltonian. Since we need relative accuracy the size of the interval is smaller
for smaller values of the Hamiltonian (specifically, value i is an interval of size about
i/

√
ln A). We let P denote the set of intervals. We will define the intervals so that

the number of intervals |P| is at most O(
√

ln A ln n).
The rough estimator for u needs an interval I = [b, c] ⊆ {1, . . . , n}, which

contributes a significant portion to Z (β) for all β ∈ [βi , 2βi+1 − βi]. We say
such an I is heavy for that interval of inverse temperatures. Thus, if we generate
a random sample from μβ , we have a significant probability that the sample is
in the interval I . The key observation is that if an interval I is heavy for inverse
temperatures β1 and β2, then by generating samples from μβ1 and μβ2 , and looking
at the proportion of samples whose Hamiltonian falls into interval I , we can roughly
estimate Z (β2)/Z (β1).

Thus, if an interval I is heavy for an interval of inverse temperatures B = [βi , β
∗],

then we can find a βi+1 ∈ B ′ = [βi , (βi +β∗)/2] satisfying (52) (making an optimal
move in some sense) or determine there is no such βi+1 ∈ B ′.

In the latter case we construct a sequence of inverse temperatures that goes from
βi to β∗ where the upper bound in (52) holds for this sequence. We will show that
O(ln ln A) intermediate inverse temperatures are sufficient to go from βi to β∗ (the
construction is analogous to the sequence (41) in the proof of Theorem 4.1). Once
we reach β∗, we will be done with this interval I and will not need to consider it
again.

An important fact is that for an interval I , the set of β’s where I is heavy is itself
an interval. Hence, each interval causes a nonoptimal step at most once (causing
a sequence of O(ln ln A) intermediate inverse temperatures). Thus, our algorithm
will find a cooling schedule whose length is at most

O
(

(ln ln A)
√

(ln A) ln n +
√

ln A(ln n) ln ln A
)

, (54)

where the first term comes from Corollary 4.4 and the second term comes from the
upper bound on |P| = O(

√
ln A(ln n)) and the fact that the nonoptimal steps cause

the algorithm to output a sequence of O(ln ln A) intermediate inverse temperatures.
To simplify the high-level exposition of the algorithm, we glossed over a technical

aspect of the rough estimator that sometimes does not allow a move long enough
to finish off the interval I . Such a move will be long relative to the reciprocal of the

width of the I and will be referred to as “long” step. (“Long” steps will be analyzed
by a separate argument, and their number will be smaller than (54).) Thus, in the
detailed description of the algorithm we will have three kinds of steps: “optimal”
steps, “interval” steps, and “long” steps.

Combining Theorem 1.2 with Corollary 2.4, we obtain Corollary 1.3 which we
restate for convenience.

COROLLARY 1.3. Let Z be a partition function. Let ε > 0 be the desired preci-
sion. Suppose that we are given access to oracles that sample from the distribution
within variation distance

ε2

108(ln A) ((ln n) + ln ln A)5

from μβ for any inverse temperature β.
Using 1010

ε2 (ln A)((ln n) + ln ln A)5 samples in total, we can obtain a random
variable Ŝ such that

P((1 − ε)Z (∞) ≤ Ŝ ≤ (1 + ε)Z (∞)) ≥ 3/4.

5.2. DETAILED ALGORITHM DESCRIPTION. Here we present a detailed descrip-
tion of the algorithm. We also present pseudocode for the algorithm in the Appendix.

First, we construct a partition P of {0, . . . , n} into O(
√

ln A ln n) disjoint in-
tervals. We construct P inductively, starting with interval [0, 0]. Suppose that
{0, . . . , b − 1} is already partitioned. Let

w := �b/
√

ln A�. (55)

Add the interval [b, b + w] to P and continue inductively on {b + w + 1, . . . , n}.
Note, the initial

√
ln A intervals are of size 1 (i.e., contain one natural number),

and have width 0. Later (in Section 5.3), we will show the following explicit upper
bound on the number of intervals in P .

LEMMA 5.1. |P| ≤ 4
√

ln A ln n.

In each stage of the algorithm, we want an interval that is heavy in the following
precise sense.

Definition 5.2. Let Z be a partition function. Let β ∈ R
+ be an inverse tem-

perature. Let I = [b, c] ⊆ {0, . . . , n} be an interval. For h ∈ (0, 1), we say that I
is h-heavy for β, if for X chosen from μβ , we have

Pr (H (X) ∈ I) ≥ h.

The following property will be crucial for our algorithm: the set of inverse tem-
peratures for which an interval I is heavy is itself an interval (in R

+), the proof is
deferred to Section 6.

LEMMA 5.3. Let Z be a partition function. Let I = [b, c] ⊆ {0, . . . , n} be
an interval. Let h ∈ (0, 1]. The set of inverse temperatures for which I is h-heavy
forms an interval (possibly empty).

Let

h := 1

8|P| . (56)

In our algorithm, we will use an interval which is h-heavy. Given access to a
sampler for X ∼ μβ one can approximately check whether an interval is h-heavy
for β. More precisely, we can distinguish the case when I is h-heavy versus when
I is not 4h-heavy. We formalize this observation in Lemma 5.5. First, we need the
following definition.

Definition 5.4. Let Z be a partition function. Let I = [b, c] ⊆ {0, . . . , n} be
an interval. Let δ ∈ (0, 1] and let β be an inverse temperature. Let X ∼ μβ and let
Y be the indicator function for the event H (X) ∈ I . Let s = �(8/h) ln 1

δ
. Let U

be the average of s independent samples from Y . Let

IS-HEAVY(I, β) =
{

true if U ≥ 2h
false if U < 2h.

LEMMA 5.5. If I is not h-heavy at inverse temperature β, then

Pr (IS-HEAVY(I, β) = true) ≤ δ. (57)

If I is 4h-heavy at inverse temperature β, then

Pr (IS-HEAVY(I, β) = false) ≤ δ. (58)

The above lemma is proved in Section 6.
If we take s = �(8/h) ln 1

δ
 samples from μβ , and take the interval that received

the most samples, then we are likely to get an h-heavy interval. Note that by our
choice of h there exists a 8h-heavy interval J . By Lemma 5.5, it is very likely
that J receives more than 2hs samples and that all intervals that are not h-heavy
receive less than 2hs samples. Thus, the interval with the most samples will likely
be h-heavy.

COROLLARY 5.6. Given an inverse temperature β, using s = �(8/h) ln 1
δ

samples from μβ , we can find an h-heavy interval. The failure probability of the
procedure is at most δ|P|.

We will need a more general version of Corollary 5.6 in which the set of intervals
that can be chosen is restricted. The forbidden intervals will not be 8h-heavy and,
hence, there will exist an allowed interval that is 8h-heavy. Using the same reasoning
as we used for Corollary 5.6, we obtain the following procedure, which we call
FIND-HEAVY.

COROLLARY 5.7. Let β be an inverse temperature. Let Bad be a set of intervals
such than no interval in Bad is 8h-heavy at β. Given an inverse temperature β,
using s = �(8/h) ln 1

δ
 samples from μβ we can find an h-heavy interval which

is not in Bad. The failure probability of the procedure FIND-HEAVY is at most
δ|P|.

We use the following idea: If a narrow interval is heavy for two nearby inverse
temperatures β1, β2, then the interval can be used to estimate the ratio of Z (β1) and
Z (β2).

LEMMA 5.8. Let Z be a partition function. Let I = [b, c] ⊆ {0, . . . , n} be
an interval. Let δ ∈ (0, 1]. Suppose that I is h-heavy for inverse temperatures
β1, β2 ∈ R

+. Assume that

|β1 − β2| · (c − b) ≤ 1. (59)

For k = 1, 2, we define the following. Let Xk ∼ μβk and let Yk be the indicator
function for the event H (Xk) ∈ I . Let s = �(8/h) ln 1

δ
. Let Uk be the average of s

independent samples from Yk. Let

EST(I, β2, β1) := U1

U2
exp(b(β1 − β2)). (60)

With probability at least 1 − 4δ, we have

Z (β2)

4eZ (β1)
≤ EST(I, β2, β1)) ≤ 4eZ (β2)

Z (β1)
. (61)

The above lemma is proved in Section 6.

Remark 5.9 (on Imperfect Sampling). In the description of our algorithms, we
will assume that we can perfectly sample from the distributions μβ . Of course, in
applications, we can only sample from distributions that are at a small variation
distance δ from μβ .

Our algorithms will still work, as the following, standard, coupling trick shows.
We can couple the biased distributions and the perfect distributions so that they
differ with probability δ. If we take t samples total, then, by union bound, with
probability at least 1 − δt the algorithm with biased samplers will have the same
output as the algorithm with perfect samplers.

Remark 5.10. (on Randomization). The randomness in our algorithm will come
from the procedures EST and IS-HEAVY. The failure probability parameter δ will
be chosen very small so that during the execution of the algorithm no failures of
EST and IS-HEAVY occur with high probability (formally, we use the union bound).
Thus, in the proof of correctness, we will ignore the possibility of failure of these
procedures and deal with the errors separately.

Remark 5.11 (on Binary Search). In our algorithm, we will have to (approxi-
mately) find the right-most point in an interval [a, b] which satisfies a given predi-
cate . The predicate will be such that (a) is true. We use the binary search on an
interval [a, b] in the following manner. If (b) is true, then we return b. Otherwise,
we set λ = a, ρ = b and perform binary search until ρ − λ ≤ ε, where ε is the
precision. Note that in the end we will have (ρ) is false and (λ) is true. We
return λ.

We now give a detailed description of our algorithm for constructing the cooling
schedule. Let δ′ be the desired final error probability of our algorithm. We will call
the procedures EST, IS-HEAVY, and FIND-HEAVY with the same value of δ, which
will be chosen as follows:

δ = δ′

7200(ln n)2(ln A)2
. (62)

Let

s =
⌈

(8/h) ln
1

δ

⌉
.

We will keep a set Bad of banned intervals, which is initially empty.
Note it suffices to have the penultimate β in the sequence be βi−1 = ln A, since

we can then set βi = ∞ (see Eq. (10)). The algorithm for constructing the sequence
works inductively. Thus, consider some starting β0.

(1) We first find an interval I that is h-heavy at β0 and is not banned. By generating
s samples from the distribution μβ0 and taking the most frequently seen inter-
val, we will successfully find an h-heavy interval with high probability (see
Corollary 5.7 for the formal statement).

(2) Let w denote the width of I , that is, w = c − b where I = [b, c]. Our rough
estimator (given by Lemma 5.8) only applies for β1 ≤ β0 +1/w (by convention
1/0 = ∞). Moreover, since we only need to reach a final inverse temperature
of ln A, let

L = min{β0 + 1/w, ln A}.
Now we concentrate on constructing a cooling schedule within (β0, L].

(3) Intuitively, we do binary search in the interval [β0, L] to find the maximum β∗
such that I is h-heavy at β∗. We can use binary search because, by Lemma 5.3,
the set of inverse temperatures for which an interval is heavy is an interval in
R

+. (More precisely, we do binary search in the interval [β0, L] with predicate
IS-HEAVY(I, β) and precision ε = 1/(2n). We use the binary search procedure
described in Remark 5.11.)

(4) We now check if there is an “optimal” move within the interval

B ′ = (β0 , (β0 + β∗)/2].

We want to find the maximum β ∈ B ′ satisfying (52) for u(β0, β), or determine
no such β exists. Let c1 = e2 and c2 = 3 · 106 for (52). To find such a β, we do
binary search and apply Lemma 5.8 to estimate the ratios Z (2β−β0)/Z (β) and
Z (β0)/Z (β). Note for β ∈ B ′ we have 2β −β0 ∈ [β0, β

∗], hence, the interval I
is h-heavy at inverse temperatures β0, β and 2β − β0 and Lemma 5.8 applies.1

(a) If such a β ∈ B ′ exists, then we set β as the next inverse temperature and we
repeat the algorithm starting from β. We refer to these steps as “optimal”
moves.

(b) If no such β exists, then we can reach the end of the interval [β0, β
∗]

as follows. There are two cases, either the interval was too wide for the
application of Lemma 5.8, or the interval I stops being heavy too soon.
More precisely, either:
i. If β∗ = L , then we set (β0 + β∗)/2 as the next inverse temperature.

Moreover, if β∗ < ln A, we continue the algorithm starting from β∗;
whereas if β∗ = ln A, we are done. We refer to these steps as “long”
moves.

1 More precisely, we perform binary search with predicate EST(I, β0, β)·EST(I, 2β − β0, β) ≤ 2000.
Note, binary search is well defined since u(β0, β) is nondecreasing in β by Lemma 4.5.

ii. Otherwise, we add the following inverse temperatures to our schedule:

β0 + 1

2
γ, β0 + 3

4
γ, β0 + 7

8
γ, . . . , β0 + (1 − 2−t)γ, β0 + γ,

where γ = β∗ −β0 and t = �ln ln A. We add the interval I to the set of
banned intervals Bad and continue the algorithm starting from β∗. We
refer to these steps as “interval” moves since the interval I will not be
used by the algorithm again.

LEMMA 5.12 (STEP 3). Assume that no failures occurred. After Step 3 of the
algorithm, the interval I is h-heavy for β∗. Moreover, if β∗ �= L, then the interval
I is not 8h-heavy for β∗.

LEMMA 5.13 (STEP 4). Assume that no failures occurred. Then, after Step 4 of
the algorithm

Z (β0)Z (2β − β0)

Z (β)2
≤ 3 · 106. (63)

Moreover, if β < (β∗ + β0)/2, then

Z (β0)Z (2β − β0)

Z (β)2
≥ e2. (64)

5.3. BOUNDING THE LENGTH OF THE COOLING SCHEDULE. We first estimate
|P|, the number of intervals in P . It is used to bound the number of interval moves.

PROOF OF LEMMA 5.1. Let i ∈ {0, . . . , n}. Suppose that the interval I containing
i starts at b. Thus, by (55), the width of I is �b/

√
ln A�. Since i is in I , we have

i ≤ b + �b/
√

ln A� ≤ b(1 + 1/
√

ln A) = b
1 + √

ln A√
ln A

. (65)

We can lower bound the width of the interval containing i as follows (in the second
inequality we use (65)):⌊

b√
ln A

⌋
≥ b√

ln A
− 1 ≥ i

1 + √
ln A

− 1.

If for each i ∈ {0, . . . , n}, we take the width w of the interval containing i and
add up the 1/(w + 1), we obtain the number of intervals. Thus, the total number of
intervals is bounded as follows

|P| ≤ 1 +
n∑

i=1

1 + √
ln A

i
≤ 1 + (1 + ln n)(1 +

√
ln A) ≤ 4

√
ln A ln n. (66)

We now bound the number of long moves.

LEMMA 5.14. Assume that no failures occurred during the algorithm. The num-
ber of “long” steps is bounded by 26

√
ln A ln n.

PROOF. At most, one “long” move can have L = ln A (because the algorithm
stops at the inverse temperature ln A). Thus, we only need to estimate the number
of “long” moves for which L = β0 + 1/w .

Let xk be the total number of “long” moves for which the width of the interval I
was k. Let k ′ be the largest k such that xk is non-zero. Let yk = xk for k < k ′ and
let yk ′ = xk ′ − 1.

Let k ∈ {1, . . . , k ′}. Let t = (yk ′ + yk ′−1 + · · · + yk). After t “long” moves the
inverse temperature satisfies

β0 ≥
k ′∑

i=k

yi

2i
(67)

(β0 would be equal to the right-hand side of (67) if we took the t shortest “long”
moves). Note that xk ′ + · · · + xk > t , and, hence, we still have to make a long step
with the width of the h-heavy interval I at least k. This long step has to happen at
an inverse temperature β0, or higher.

We will need the following property, for any interval [b, c] ∈ P of width w =
c − b and any i ∈ [b, c] we have

i ≥ b ≥ w
√

ln A. (68)

This follows directly from (55) (since the chose the width w to be �b/
√

ln A�).
From (68), we have ∑

i∈I

ai e
−β0i ≤ Ae−β0k

√
ln A. (69)

Assume the left-hand side of (69) is ≤ h. Then, I is not h-heavy for any (inverse
temperature) ρ ≥ β0, since for X ∼ μρ

Pr (H (X) ∈ I) =
∑

i∈I ai e−ρi

Z (ρ)
≤

∑
i∈I ai e−β0i

Z (ρ)
≤ h,

in the last inequality we used Z (ρ) ≥ a0 ≥ 1, which is true for any ρ. Thus, in the
binary search in Step 3) of the algorithm the IS-HEAVY will always report false and
β∗ will be about β0+1/2n (more precisely β∗ ≤ β0+1/2n). Hence, β∗ < L , which
implies that a “long” move with I of width ≥ k is impossible, a contradiction.

Thus, the left-hand side of (69) is ≥ h, and hence

Ae−β0k
√

ln A ≥ h. (70)

By combining (70) and (67), we obtain

k ′∑
i=k

yi

i
≤ 2β0 ≤ 2

k
· ln(A/h)√

ln A
. (71)

Adding (71) for k = 1, . . . , k ′, we obtain

k ′∑
i=1

yi ≤ 2(1 + ln n)
ln(A/h)√

ln A
≤ 4(ln n)

(√
ln A + ln(1/h)√

ln A

)
. (72)

By Lemma 5.1 and the definition of h (Eq. (56)), we have

1/h ≤ 32
√

ln A ln n.

and hence (using our assumptions (24)) we obtain

ln(1/h) ≤ 5 ln A.

The total number of long moves is thus bounded

2 +
k ′∑

i=1

yi ≤ 2 + 24(ln n)
√

ln A ≤ 26
√

ln A ln n.

We now prove Theorem 1.2.

PROOF OF THEOREM 1.2. The number of “optimal” moves is bounded by

4
√

(ln A) ln n ln ln A, (73)

see Corollary 4.4. Each “interval” move causes at most s = 2 ln ln A inverse temper-
atures to be output. Hence, by Lemma 5.1, the total number of inverse temperatures
output by “interval moves” is bounded by

8
√

ln A(ln n) ln ln A. (74)

Finally, the number of “long” moves is bounded by Lemma 5.14, and it is at most

26
√

ln A ln n. (75)

The total number of moves is bounded by the sum of (73), (74), (75), which is
bounded by 38

√
ln A(ln n) ln ln A. This proves (50).

Let T = 38
√

ln A(ln n) ln ln A. The length of the output schedule is bounded by
T and hence every step of the algorithm is executed at most T times. The binary
search in Step 4 starts with an interval of width at most ln A and works with precision
1/(4n). The total number of calls to EST is thus bounded by

2T log2(8n ln A) ≤ 8T (ln n + ln ln A). (76)

The total number of calls (in Step 3) to IS-HEAVY is certainly bounded by (76),
since the starting interval has width at most ln A and works with precision only
1/(2n). Finally, the number of calls to FIND-HEAVY is at most T .

Assuming perfect samples from the μβ , our algorithm can only fail inside EST,
IS-HEAVY, and FIND-HEAVY. For each call, this failure is bounded by 4δ for the first
two, and |P|δ for FIND-HEAVY (see Lemma 5.5, Lemma 5.8, and Corollary 5.7).
By the union bound, the total failure probability is bounded by

16T (ln n + ln ln A)4δ + T (4
√

ln A ln n)δ

= T δ
√

ln A(ln n)

(
64√
ln A

+ 64 ln ln A

(ln n)
√

ln A
+ 4

)
≤ T δ

√
ln A(ln n)

(
64√

e
+ 128

e
+ 4

)
since ln ln A ≥ 1 and ln n ≥ 1

≤ 90T
√

ln A(ln n)δ
≤ 3600(ln A)2(ln n)2δ since ln ln A ≤ ln A
≤ δ′/2. by the definition of δ given by (62).

Of course, requiring perfect samples is a too stringent requirement. Imperfect
samples introduce one more source of error in our algorithm. As discussed in

Remark 5.9, this is dealt with by a coupling argument. By our choice of the variation
distance, the imperfectness of samples manifests with probability at most δ′/2.

The number of calls (per invocation) to the μβ oracles made by any of the three
procedures is

s =
⌈

(8/h) ln
1

δ

⌉
≤ 512

√
ln A(ln n)

(
ln 7200 + (2 ln ln n) + (2 ln ln A) + ln

1

δ′

)
≤ 104

√
ln A(ln n)

(
(ln ln n) + (ln ln A) + ln

1

δ′

)
.

(77)

Hence, the total number of calls to the μβ oracles is bounded by

Q ≤ 20T ((ln n) + ln ln A)s ≤ 107(ln A)((ln n) + ln ln A)5 ln
1

δ′ .

6. Leftover Proofs

PROOF OF LEMMA 4.2. We have

f (β) = ln Z (β) = ln

(
n∑

i=0

ai e
−βi

)
.

Let Y be the random variable defined by Y = H (X) where X ∼ μβ . We have

f ′(β) = Z ′(β)

Z (β)
= E (−Y) = −E (Y).

Since the Hamiltonian H had values in the range [0, n], we obtain parts (a) and (c)
of the lemma.

Similarly,

f ′′(β) = Z ′′(β)Z (β) − Z ′(β)2

Z (β)2
= Z ′′(β)

Z (β)
−

(
Z ′(β)

Z (β)

)2

= E
(
Y 2) − E (Y)2 > 0,

by Jensen’s inequality, proving part (b) of the lemma.

PROOF OF LEMMA 5.5. Assume that I is 4h-heavy. Thus, the expected number
of samples that fall inside I is at least 4hs. By the Chernoff bound (see, e.g., Janson
et al. [2000, Corollary 2.3]), it is very likely that the number of samples X that fall
inside I is greater than 2hs. Formally,

Pr (X ≤ 2hs) ≤ e−sh/8 ≤ δ. (78)

Now assume that I is not h-heavy. Thus, the expected number of samples that fall
inside I is at most hs. By the Chernoff bound,

Pr (X ≥ 2hs) ≤ e−sh/8 ≤ δ. (79)

PROOF OF LEMMA 5.3. The interval I is h-heavy for β = − ln x if

0 ≥ h
n∑

i=0

ai xi −
∑
i∈I

ai x i =: g(x). (80)

Note that g(x) is a polynomial with at most 2 coefficient sign changes (i.e., looking
at the coefficients sorted by the degree, the sign changes at most twice). Hence,
by the Descartes’ rule of signs, it has at most 2 positive roots. Without loss of
generality, we can assume that n �∈ I (otherwise we can “flip” the problem by
i �→ n − i). Thus, g(x) is positive at x = ∞ and hence the set of x ∈ R

+ on
which g(x) is negative is an interval. Using the monotonicity of ln, we obtain the
result.

PROOF OF LEMMA 5.8. Note that E (Yk) = Pr (Xk ∈ I) ≥ h. By the Chernoff
bound for k = 1, 2 we have

Pr

(
E (Yk)

2
≤ Uk ≤ 2E (Yk)

)
≥ 1 − 2e−hs/8,

and hence

Pr

(
1

4
· E (Y1)

E (Y2)
≤ U1

U2
≤ 4 · E (Y1)

E (Y2)

)
≥ 1 − 4e−hs/8. (81)

We have

E (Y1)

E (Y2)
= Z (β2)

Z (β1)
·
∑

i∈I ai e−β1i∑
i∈I ai e−β2i

= Z (β2)

Z (β1)
· eb(β2−β1) ·

∑
i∈I ai e−β2i+(β2−β1)(i−b)∑

i∈I ai e−β2i
,

and therefore

e−|β1−β2|(c−b) · Z (β2)

Z (β1)
≤ E (Y1)

E (Y2)
· eb(β1−β2) ≤ e+|β1−β2|(c−b) · Z (β2)

Z (β1)
. (82)

Now combining (82), (81), and using assumption (59), the lemma follows.

PROOF OF LEMMA 5.12. IS-HEAVY(β∗, I) reported I as h-heavy for β∗. Assume
that β∗ �= L . Then the binary search ended with interval [λ, ρ] where λ = β∗, ρ ≤
β∗ + 1/2n. We have that IS-HEAVY(ρ, I) reported I as not 4h-heavy for ρ. The
weight of an interval decreases by a factor of at most

√
e between λ and ρ and, hence,

I is not 8h-heavy for α + β. (The weight of an interval I at inverse temperature γ
is

∑
i∈I ai exp(−iγ).)

PROOF OF LEMMA 5.13. We use EST to refer to the procedure defined in
Lemma 5.8. Since there were no failures, none of the calls to EST failed.

The predicate

EST(I, β0, x)EST(I, 2x − β0, x) ≤ 2000 (83)

was true for x = β. From (61), we obtain

Z (β0)

Z (β)

Z (2β − β0)

Z (β)
≤ (4e)2EST(I, β0, β)EST(I, 2β − β0, β),

and hence
Z (β0)

Z (β)

Z (2β − β0)

Z (β)
≤ (4e)22000 < 3 · 106.

Assume that β < (β∗ + β0)/2. The binary search ended with an interval [λ, ρ]
where λ = β and ρ ≤ β + 1/(4n). Using (61), we obtain

Z (β0)

Z (ρ)

Z (2ρ − β0)

Z (ρ)
≥ 1

(4e)2
EST(I, β0, ρ)EST(I, 2ρ − β0, ρ).

The predicate (83) was false on ρ and hence

Z (β0)

Z (ρ)

Z (2ρ − β0)

Z (ρ)
≥ 2000

(4e)2
.

By Lemma 3.1, we have Z (2β − β0) ≥ Z (2ρ − β0) and Z (β) ≤ Z (ρ)e1/4.

Z (β0)

Z (β)

Z (2β − β0)

Z (β)
≥ e−1/2 Z (β0)

Z (ρ)

Z (2ρ − β0)

Z (ρ)
≥ e2.

7. Reversible Cooling Schedules for Warm Starts

In this section, we show how to adapt the schedule generating algorithm to the
setting of “warm starts”, which often leads to faster sampling algorithms (see, e.g.,
Kannan et al. [1997], and Lovász and Vempala [2006b]).

This method reuses randomness to improve the overall running time. The down-
side is a slight dependence between random variables occurring in our algorithm.
We will use the following notion of dependence.

Definition 7.1. Random variables X, Y are κ-independent if for every (mea-
surable) A, B we have

|P(X ∈ A, Y ∈ B) − P(X ∈ A)P(Y ∈ B)| ≤ κ.

We will need the following variant of Theorem 2.2, implicit in Lovász and
Vempala [2006b], which allows for slight dependence between its random variables.

THEOREM 7.2. Let W = (W1, . . . , W�) be a vector random variable. Let � be
a nonnegative integer, K ≥ 512B�/ε2 and κ ≤ 2−20ε2/(K 5�). Assume that
—Wi is κ-independent from (W1, . . . , Wi−1), and
—E

(
W 2

i

)
/E (Wi)2 ≤ B

for i ∈ [�]. Let Ŵ = W1 . . . W�. Let S = (S1, . . . , S�) be the average of K
independent samples from W . Let Ŝ = S1S2 · · · S�. Then

Pr
(
(1 − ε)E

(
Ŵ

) ≤ Ŝ ≤ (1 + ε)E
(
Ŵ

)) ≥ 3/4.

We will see shortly a bound on the number of steps required to achieve κ-
independence.

We will use the following two notions of distance between probability distribu-
tions. For a pair of distributions ν and π on a finite space �, their total variation
distance is defined as:

‖ν − π‖TV = 1

2

∑
x∈�

|ν(x) − π (x)| = max
A⊂�

(ν(A) − π (A)) .

In the applications section, we will also need to consider L2 distance defined by:∥∥∥ ν

π
− 1

∥∥∥2

2,π
= Varπ (ν/π) =

∑
x∈�

π (x)

(
ν(x)

π (x)
− 1

)2

.

For a Markov chain (Xt) with unique stationary distribution π , we will use
the following result on the distance from stationarity after t steps, starting from
a “warm start” ν0. Let νt denote the distribution of Xt , t ≥ 0. Let τ2 denote the
inverse spectral gap, commonly known as the relaxation time, of the Markov chain.
We will then use the following well-known fact, (see, e.g., Jerrum [2003, Theorem
5.6]).

LEMMA 7.3.

‖νt − π‖TV ≤ exp(−t/2τ2)
∥∥∥ν0

π
− 1

∥∥∥
2,π

.

The next lemma uses the previous lemma to obtain bounds on the number of
steps to guarantee κ-independence (see, e.g., Vempala [2005, Lemma 7.2]).

LEMMA 7.4. For any κ > 0, the following holds. Let π be the stationary
distribution of a Markov chain X0, X1, Let ν be the distribution of X0, and let
M = ∥∥ ν

π
− 1

∥∥
2,π

. If t ≥ (2τ2) ln(8M/κ), then Xt is κ-independent from X0.

Let β0 = 0 < · · · < β� = ∞ be a cooling schedule and let μi = μβi (for
i = 0, . . . , �). In our applications we will use the distribution from the previous
round (i) to serve as a warm start the current round (i +1). For this, we need that the
“warm start” distribution μi is close to the distribution μi+1, which is the stationary
distribution for the current chain. We will use the L2-notion of warm start, that is,
we will require inverse temperatures such that

Varμi+1 (μi/μi+1) =
∥∥∥∥ μi

μi+1
− 1

∥∥∥∥
2,μi+1

(84)

is bounded. Then, μi is a good “warm start” for μi+1 and we can use Lemma 7.3 to
upper bound the mixing time, obtaining a substantial improvement over the usual
“cold start” bound (the saving comes from the fact that τ2 is often substantially
smaller than the pessimistic “cold start” mixing time τmix).

A short calculation yields that the L2 distance between distributions μi and μ j
can be expressed as a squared coefficient of variation of the variables arising in our
algorithm. More precisely

Varμ j

(
μi/μ j

) = Var
(
Wβ j ,βi

)
E

(
Wβ j ,βi

)2 = Z (2βi − β j)Z (β j)

Z (βi)2
− 1 ≤ Z (2βi − β j)Z (β j)

Z (βi)2
,

(85)

where Wβ j ,βi is defined in (2).
Note that for j = i −1 the right-hand side of (85) becomes the right-hand side of

the definition of B-Chebyshev cooling schedule (Eq. (6)). Thus, for a B-Chebyshev
cooling schedule,

Varμi (μi+1/μi) ≤ B − 1. (86)

The left-hand side of (86) is the left-hand side of (84) with the roles of μi and μi+1
reversed. Thus, the condition that (84) be bounded is equivalent to saying that the
schedule

β� = ∞ > β�−1 > · · · > β1 > 0 = β0,

(i.e., the schedule in reverse) is a B-Chebyshev schedule for some constant B. This
motivates the following definition.

Definition 7.5. Let B > 0 be a constant. Let Z be a partition function. Let
β0, . . . , β� be a sequence of inverse temperatures such that 0 = β0 < β1 < · · · <
β� = ∞. The sequence is called a reversible B-Chebyshev cooling schedule for Z
if

Z (2βi+1 − βi)Z (βi)

Z (βi+1)2
≤ B, (87)

and

Z (2βi − βi+1)Z (βi+1)

Z (βi)2
≤ B, (88)

for all i = 0, . . . , � − 1.

Given a B-Chebyshev cooling schedule of length � it is relatively easy to produce
a reversible B-Chebyshev cooling schedule. We do so at the expense of an extra
O((ln n) + ln ln A) factor in the length of the schedule. We will augment each
interval [βi , βi+1], i = 0, . . . , � − 2 by careful initial steps. Let t be the largest
integer such that 2t/n ≤ βi+1 −βi . Note that t = O((ln n) + ln ln A). We insert the
following inverse temperatures between βi and βi+1

βi + 1/n, βi + 2/n, βi + 4/n, . . . , βi + 2t/n. (89)

For β = βi and β ′ = βi + 1/n, we have, by Lemma 4.2:

Z (2β − β ′)Z (β ′)
Z (β)2

≤ e.

For β = βi + 2 j/n and β ′ = βi + 2 j+1/n, we have 2β − β ′ = βi and β ′ ≤ βi+1.
Hence

Z (2β − β ′)Z (β ′)
Z (β)2

= Z (βi)Z (2β − βi)

Z (β)2
≤ Z (βi)Z (2βi+1 − βi)

Z (βi+1)2
≤ B,

since we started with a B-Chebyshev cooling schedule. For β = βi + 2t/n and
β ′ = βi+1, the argument is the same.

THEOREM 7.6. Let Z be a partition function. Suppose that for every inverse
temperature β we have a Markov chain Mβ with stationary distribution μβ . Assume
that the relaxation time of all the Mβ chains is uniformly bounded by τ2. Assume
that we can directly sample from μ0.

With probability at least 1−δ′, we can produce a reversible B-Chebyshev cooling
schedule β0 = 0 < β1 < · · · < β�−1 < β� = ∞, for B = 3 · 106, with

� ≤ 38
√

ln A(ln n)(ln ln A)((ln n) + ln ln A).

The algorithm uses at most

Q ≤ 107(ln A)((ln n) + ln ln A)5τ2 ln
1

δ′

steps of the Mβ chains.

PROOF. We will run the algorithm PRINT-COOLING-SCHEDULE from Section
5.2 to construct a B-Chebyshev cooling schedule and then we will augment this
schedule using (89) to obtain a reversible B-Chebyshev cooling schedule.

The algorithm from Section 5.2 requires samples from μβ for many different
settings of β. We only assume a bound on the relaxation time of the Markov chain,
hence to generate samples we need warm starts. To facilitate warm starts, we will
utilize the nonadaptive cooling schedule

β ′
0 = 0 < β ′

1 < · · · < β ′
�′ = ∞ (90)

of Bezáková et al. [2008] (Eq. (11) in this article). By Lemmas 3.1 and 3.2, a
sample from μβ ′

i
is a warm start for μβ ′

i+1
. Hence, to obtain a warm start for every

β ′
i , i = 0, . . . , �′ we run the following process. Start with a random sample at the

inverse temperature 0. Using the sample from β ′
0 = 0 as the initial state, run Mβ ′

1

for τ2 steps. Then, for i = 2, . . . , �′, using the final state of the chain Mβ ′
i−1

as the
initial state, run Mβ ′

i
for τ2 steps. This process yields a warm start sample for all

inverse temperatures in the schedule (90). We repeat the above process (starting
with a random sample from β ′

0) m = O(log 1/δ′) times so that at any particular
temperature β ′

i we have m independent samples. Obtaining m independent samples
will be necessary to utilize a procedure of Gillman [1998], which is a Chernoff-
type inequality for Markov chains where the required number of steps of the chain
depends on τ2 (rather than the mixing time). Note that in the above process, we
made O(mτ2(ln n) ln A) steps of the chains so far, since �′ = O((ln n) ln A).

Note, since a sample from μβ ′
i

is a warm start for μβ ′
i+1

, it is also a warm start
for all β ∈ [β ′

i , β
′
i+1]. Therefore, in the algorithm PRINT-COOLING-SCHEDULE to

generate samples for μβ for some β we can use the closest inverse temperature β ′
i

as a warm start. Moreover, we can obtain m independent families of samples at any
particular β as before.

Using these m independent families of samples from a particular β as warm
starts for m copies of the chain, we can apply a result of Gillman [1998] to obtain
a version of the Chernoff inequality which is applicable for our purposes in the
algorithms EST and IS-HEAVY. The procedure APm of Gillman [1998] says that
using s = O(τ2/h) steps of m independent chains (which start from a warm start)
we can estimate π (A) within a constant relative factor with probability ≥ 1−δ′. This
gives the analogues of the Chernoff bounds used in the analysis of the algorithm
PRINT-COOLING-SCHEDULE, and the theorem follows.

Combining Theorem 7.2 with Theorem 7.6 and Lemma 7.4 we obtain.

COROLLARY 7.7. Let Z be a partition function. Let ε > 0 be the desired
precision. Suppose that for every inverse temperature β we have a Markov chain
Mβ with stationary distribution μβ . Assume that the relaxation time of all the Mβ

chains is uniformly bounded by τ2. Assume that we can directly sample from μ0.

Using

τ2
1010

ε2
(ln A)((ln n) + ln ln A)7 ln

108(ln A)((ln n) + ln ln A)7

ε2

steps of the Mβ chains, we can obtain a random variable Ŝ such that

P((1 − ε)Z (∞) ≤ Ŝ ≤ (1 + ε)Z (∞)) ≥ 3/4.

8. Applications

We detail several specific applications of our work: matchings, Ising model, color-
ings and independent sets. To simplify the comparison of our results with previous
work and since we have not optimized polylogarithmic factors in our work, we use
O∗() notation which hides polylogarithmic terms and the dependence on ε. Our
cooling schedule results in a savings of a factor of O∗(n) in the running time for
all of the approximate counting problems considered here.

8.1. MATCHINGS. We first consider the problem of generating a random match-
ing of an input graph G = (V, E). Let λ = exp(−1/β) and let � denote the set
of matchings of G. For M ∈ �, let w(M) = λ|M | (where 00 = 1). The Gibbs
distribution is then μ(M) = w(M)/Z where Z = ∑

M ′ w(M ′). Note, for β = ∞
(i.e., λ = 1), μ is uniform over �, whereas for β = 0 (i.e., λ = 0), Z = 1 since
the empty set is the only matching with positive weight,

Consider the following ergodic Markov chain with stationary distribution μ. Let
X0 ∈ �, where w(X0) > 0. From Xt ∈ �,

—Choose e = (u, v) uniformly at random from E .
—Set

X ′ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Xt \ e if e ∈ Xt

Xt ∪ e if u and v are unmatched in Xt

Xt ∪ e \ (v, w) if u is unmatched in Xt and (v, w) ∈ Xt

Xt ∪ e \ (u, z) if v is unmatched in Xt and (u, z) ∈ Xt

Xt otherwise

—Let Xt+1 = X ′ with probability min{1, w(X ′)/w(Xt)}/2, and otherwise set
Xt+1 = Xt .

Jerrum and Sinclair [1989] proved that the above Markov chain has relaxation
time τ2 = O(nm) (see Jerrum [2003] for the claimed upper bound).

Since A ≤ n!2n , using Theorem 7.6, we obtain a cooling schedule of length � =
O(

√
n log4 n). In contrast, the previous best schedule was presented by Bezáková

et al. [2008], which had length O(n log2 n). Thus, we save a factor of O∗(n) in the
running time for approximating Z . Applying Corollary 7.7, we obtain the following
result.

COROLLARY 8.1. For any G = (V, E), for all ε > 0, let M(G) denote the set
of matchings of G. We can compute an estimate EST such that:

EST(1 − ε) ≤ |M(G)| ≤ EST(1 + ε)

with probability ≥ 3/4 in time O(n2mε−2 log7 n) = O∗(n2m).

Recall, the error probability 3/4 can be replaced by 1 − δ, for any δ > 0, at the
expense of an extra factor of O(log(1/δ)) in the running time.

8.2. SPIN SYSTEMS. Spin systems are a general class of statistical physics mod-
els where our results apply. We refer the reader to Martinelli [2004] and Weitz [2004]
for an introduction to spin systems. The examples we highlight here are well-studied
examples of spin systems. Recall, the mixing time of a Markov chain is the number
of transitions (from the worst initial state) to reach within variation distance ≤ δ
of the stationary distribution, where 0 < δ < 1. The following results follow in a
standard way from the stated mixing time result combined with Corollary 1.3.

Colorings. For a graph G = (V, E) with maximum degree
 we are interested in
approximating the number of k-colorings of G. Here, we are coloring the vertices
using a palette of k colors so that adjacent vertices receive different colors. This
problem is also known as the zero-temperature (thus, β = ∞) anti-ferromagnetic
Potts model. The simple single-site update Markov chain known as the Glauber
dynamics is ergodic with unique stationary distribution uniform over all k-colorings
whenever k ≥
 + 2. There are various regions where fast convergence of the
Glauber dynamics is known, we refer the interested reader to Frieze and Vigoda
[2007] for a survey. For concreteness, we consider the result of Jerrum [1995]
who proved that the Glauber dynamics has mixing time O(kn log(n/δ)) whenever
k > 2
. Moreover, his proof easily extends to any non-zero temperature. (Recall,
the mixing time of a Markov chain is the number of steps so that, from the worst
initial state, we are within variation distance ≤ δ of the stationary distribution.)
Since A = kn , using Corollary 1.3, we obtain the following result.

COROLLARY 8.2. For all k > 0, any graph G = (V, E) with maximum degree

, let �(G) denote the set of k-colorings of G. For all ε > 0, whenever k > 2
,
we can compute an estimate EST such that:

EST(1 − ε) ≤ |�(G)| ≤ EST(1 + ε)

with probability ≥ 3/4 in time O(kn2ε−2 log6 n) = O∗(n2).

In comparison, the previous bound [Bezáková et al. 2008] required O∗(n3) time
(and Jerrum [1995] required O∗(nm2) time).

Ising Model. There are extensive results on sampling from the Gibbs distribution
and approximating the partition function of the (ferromagnetic) Ising model. We
refer the reader to Martinelli [2004] for background and a survey of results. We
consider a particularly well-known result. For the Ising model on an

√
n × √

n 2-
dimensional grid, Martinelli and Olivieri [1994] proved that the Glauber dynamics
(i.e., single-site update Markov chain) has mixing time O(n log(n/δ)) for all β > βc
where βc is the critical point for the phase transition between uniqueness and non-
uniqueness of the infinite-volume Gibbs measure. In this setting, we have A = 2n

and, hence, we obtain the following result.

COROLLARY 8.3. For the Ising model on a
√

n × √
n 2-dimensional grid, let

Z (β) denote the partition function at inverse temperature β > 0. For all ε > 0, for
all β > βc, we can compute an estimate EST such that:

EST(1 − ε) ≤ Z (β) ≤ EST(1 + ε)

with probability ≥ 3/4 in time O(n2ε−2 log6 n) = O∗(n2).

Independent Sets. Given a fugacityλ > 0 and a graph G = (V, E) with maximum
degree
, we are interested in computing

ZG(λ) =
∑
σ∈�

λ|σ |,

where � is the set of independent sets of G. This is known as hard-core lattice
gas model. Vigoda [2001] proved that the Glauber dynamics for sampling from
the distribution corresponding to ZG(λ) has O(n log(n/δ)) mixing time whenever
λ < 2/(
 − 2). As a consequence, we obtain the following result.

COROLLARY 8.4. For any graph G = (V, E) with maximum degree
, For all
ε > 0, for any λ < 2/(
 − 2), we can compute an estimate EST such that:

EST(1 − ε) ≤ ZG(λ) ≤ EST(1 + ε)

with probability ≥ 3/4 in time O(n2ε−2 log6 n) = O∗(n2).

Note, Weitz [2006] has an alternative approach for this problem. His approach
approximates ZG(λ) directly (without using sampling) and holds for a larger range
of λ (though
 is required to be constant).

9. Discussion

An immediate question is whether these results extend to estimating the permanent
of a 0/1 matrix. Our current adaptive scheme works assuming a sampling subrou-
tine that can produce samples at any given temperature (from a warm start). The
permanent algorithm of Jerrum et al. [2004] also requires a set of n2 + 1 weights
to produce samples from a given temperature. These weights are computed from
n2 +1 partition functions and it appears that a schedule of length �(n) is necessary
if one considers all n2 + 1 partition functions simultaneously. In fact, this is the
case for the standard bad example of a chain of boxes (or a chain of hexagons as
illustrated in Figure 2 of Jerrum et al. [2004]).

Appendix

Algorithm 1. PRINT-COOLING-SCHEDULE

input : A black-box sampler for X ∼ μβ for any β ≥ 0,
starting inverse temperature β0.

output: A cooling schedule for Z .
Bad ← ∅
print β0

if β0 < ln A then

1 I ←FIND-HEAVY(β0, Bad)
2 w ← the width of I

L ← min{β0 + 1/w, ln A}; (where 1/0 = ∞)
3 β∗ ← binary search on β∗ ∈ [β0, L]

with precision 1/(2n),
using predicate IS-HEAVY(β∗, I)

4 β ← binary search on β ∈ [β0, (β∗ + β0)/2]

with precision 1/(4n),
using predicate EST(I, β0, β)·EST(I, 2β − β0, β) ≤ 2000

If β < (β∗ + β0)/2 then

PRINT-COOLING-SCHEDULE(β) (“optimal” move)
else

Ifβ = L then

PRINT-COOLING-SCHEDULE(β) (“long” move)
else

γ ← (β∗ − β0)/2
print β0 + γ, β0 + (3/2)γ, β0 + (7/4)γ, . . . , β0 + (2 − 2−�ln ln A)γ
Bad ← Bad ∪ I
PRINT-COOLING-SCHEDULE(β∗) (“interval” move)

end

end

end

print ∞
end

ACKNOWLEDGMENTS. We thank the anonymous referees for many useful com-
ments.

REFERENCES

BABAI, L. 1979. Monte-carlo algorithms in graph isomorphism testing. Tech. Rep. 79-10, Université de
Montréal, Montréal, Quebec.

BEZÁKOVÁ, I., ŠTEFANKOVIČ, D., VAZIRANI, V. V., AND VIGODA, E. 2008. Accelerating simu-
lated annealing for the permanent and combinatorial counting problems. SIAM J. Comput. 37, 5,
1429–1454.

DYER, M., AND FRIEZE, A. 1991. Computing the volume of convex bodies: a case where randomness
provably helps. In Probabilistic combinatorics and its applications. Proceedings of Symposiusm on
Applied Mathematics, vol. 44. American Mathematics Society, Providence, RI, 123–169.

DYER, M., FRIEZE, A., AND KANNAN, R. 1991. A random polynomial-time algorithm for approximating
the volume of convex bodies. J. ACM 38, 1, 1–17.

FERRENBERG, A. M., AND SWENDSEN, R. H. 1988. New Monte Carlo technique for studying phase
transitions. Phys. Rev. Lett. 61, 23 (December), 2635+.

FRIEZE, A., AND VIGODA, E. 2007. A survey on the use of Markov chains to randomly sample colourings.
In Combinatorics, complexity, and chance. Oxford Lecture Ser. Math. Appl., vol. 34. Oxford Univ. Press,
Oxford, UK, 53–71.

GILLMAN, D. 1998. A Chernoff bound for random walks on expander graphs. SIAM J. Comput. 27, 4,
1203–1220 (electronic).

JANSON, S., LUCZAK, T., AND RUCINSKI, A. 2000. Random graphs. Wiley-Interscience Series in Discrete
Mathematics and Optimization. Wiley-Interscience, New York.

JERRUM, M. 1995. A very simple algorithm for estimating the number of k-colorings of a low-degree
graph. Random Struct. Algor. 7, 2, 157–165.

JERRUM, M. 2003. Counting, sampling and integrating: algorithms and complexity. Lectures in Mathe-
matics ETH Zürich. Birkhäuser Verlag, Basel.

JERRUM, M., AND SINCLAIR, A. 1989. Approximating the permanent. SIAM J. Comput. 18, 6, 1149–1178.
JERRUM, M., SINCLAIR, A., AND VIGODA, E. 2004. A polynomial-time approximation algorithm for the

permanent of a matrix with nonnegative entries. J. ACM 51, 4, 671–697 (electronic).
JERRUM, M. R., VALIANT, L. G., AND VAZIRANI, V. V. 1986. Random generation of combinatorial

structures from a uniform distribution. Theoret. Comput. Sci. 43, 2-3, 169–188.
KANNAN, R., LOVÁSZ, L., AND SIMONOVITS, M. 1997. Random walks and an O∗(n5) volume algorithm

for convex bodies. Random Struct. Algor. 11, 1, 1–50.

LOVÁSZ, L., AND VEMPALA, S. 2006a. Fast algorithms for logconcave functions: Sampling, rounding,
integration and optimization. In Proceedings of the Symposium on Foundations of Computer Science
(FOCS). IEEE Computer Society Press, Los Alamitos, CA, 57–68.

LOVÁSZ, L., AND VEMPALA, S. 2006b. Simulated annealing in convex bodies and an O∗(n4) volume
algorithm. J. Comput. Syst. Sci. 72, 2, 392–417.

MARTINELLI, F. 2004. Relaxation times of Markov chains in statistical mechanics and combinatorial
structures. In Probability on Discrete Structures. Encyclopaedia Math. Sci., vol. 110. Springer-Verlag,
Berlin, Germany, 175–262.

MARTINELLI, F., AND OLIVIERI, E. 1994. Approach to equilibrium of Glauber dynamics in the one phase
region. I. The attractive case. Comm. Math. Phys. 161, 3, 447–486.

SALSBURG, Z. W., JACOBSON, J. D., FICKETT, W., AND WOOD, W. W. 1959. Application of the Monte
Carlo method to the lattice-gas model. J. Chem. Phys. 30, 1, 65–72.

VALLEAU, J. P., AND CARD, D. N. 1972. Monte Carlo estimation of the free energy by multistage sampling.
J. Chem. Phys. 57, 12, 5457–5462.

VEMPALA, S. 2005. Geometric random walks: A survey. In Combinatorial and computational geometry.
Math. Sci. Res. Inst. Publ., vol. 52. Cambridge Univ. Press, Cambridge, MA, 577–616.

VIGODA, E. 2001. A note on the Glauber dynamics for sampling independent sets. Electron. J. Com-
bin. 8, 1, Research Paper 8, 8 pp. (electronic).

WEITZ, D. 2004. Mixing in time and space for discrete spin systems. Ph.D. dissertation, University of
California, Berkeley, CA.

WEITZ, D. 2006. Counting independent sets up to the tree threshold. In STOC’06: Proceedings of the
38th Annual ACM Symposium on Theory of Computing. ACM, New York, 140–149.

