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Adaptive Simulated Annealing with Greedy Search for the Circle Bin Packing Problem
Yong Yuan,Kevin Tole,Fei Ni,Kun He,Zhengda Xiong,Jinfa Liu

• First paper to introduce the circle bin packing problem with circular items (CBPP-CI).
• Define a tangent occupying action and propose a greedy constructive algorithm for CBPP-CI.
• Design two new operations, circle perturbation and sector perturbation, to generate neighbor solutions.
• Propose an adaptive simulated annealing algorithm with greedy search that obtains competitive results.
• Build two sets with a total of 52 new benchmark instances with 20 to 100 circular items.
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ABSTRACT
We introduce a new bin packing problem, termed the circle bin packing problem with circular items
(CBPP-CI). The problem involves packing all the circular items into multiple identical circle bins as
compact as possible with the objective of minimizing the number of used bins. We first define the
tangent occupying action (TOA) and propose a constructive greedy algorithm that sequentially packs
the items into places tangent to the packed items or the bin boundaries. Moreover, to avoid falling
into a local minimum trap and efficiently judge whether an optimal solution has been established, we
continue to present the adaptive simulated annealing with greedy search (ASA-GS) algorithm that
explores and exploits the search space efficiently. Specifically, we offer two novel local perturbation
strategies to jump out of the local optimum and incorporate the greedy search to achieve faster
convergence. The parameters of ASA-GS are adaptive according to the number of items so that they
can be size-agnostic across the problem scale. We design two sets of new benchmark instances, and
the empirical results show that ASA-GS completely outperforms the constructive greedy algorithm.
Moreover, the packing density of ASA-GS on the top few dense bins is much higher than that of
the state-of-the-art algorithm for the single circle packing problem, inferring the high quality of the
packing solutions for CBPP-CI.

1. Introduction
As a classic combinatorial optimization problem, the

packing problems aim to pack a certain number of items
into one or multiple containers without overlapping. Most
researches are for single container packing. The shape of
the container can be rectangular, square, or circular, and
the items can be rectangles or circles. As an important
branch of operational research, the packing problems have a
wide variety of applications in the logistic industry, circular
cutting, container loading, cylinder packing, etc.Meanwhile,
it has been proved to be NP-hard by (Demaine, Fekete and
Lang, 2010). Hence there is no deterministic algorithm to
find the exact solutions in polynomial time unless P = NP.

The bin packing problem (BPP) has been well studied
for multiple container packing since the 1970s (Johnson,
1973). There exist mainly two variants: the two-dimensional
rectangular bin packing problem (2D-RBPP) and the two-
dimensional square bin packing problem with circular items
(SBPP-CI). The 2D-RBPP aims to pack a set of rectangular
items into a minimum number of identical rectangular bins
without overlapping (Chung, Garey and Johnson, 1982).
The impact of these techniques on the practical solution of
2D-RBPP has been quite impressive (Christensen, Khan,
Pokutta and Tetali, 2017). For example, Kang and Park
(2003) propose two greedy algorithms: IFFD and IBFD.
IFFD assigns the items sequentially by the first-fit decreasing
manner, and a new bin will be initialized when there is
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no more room for the packing; IBFD is a modification of
IFFD, which assigns each item to the bin with the smallest
remaining capacity. Other representative approaches include
the tabu search (Lodi, Martello and Vigo, 1999), the guided
local search (Faroe, Pisinger and Zachariasen, 2003), the
hybrid GPASP/VND approach (Parreño, Alvarez-Valdés,
Oliveira and Tamarit, 2010), and various heuristics based on
greedy method (Lodi, Martello and Monaci, 2002; Monaci
and Toth, 2006; Wei, Oon, Zhu and Lim, 2011). The SBPP-
CI allocates all the circular items to a minimum number of
square bins without overlap, which is first presented by He
and Dosh (2017). They further propose a greedy algorithm
with corner occupying action to improve the packing quality
by introducing the adaptive large neighborhood search (He,
Tole, Ni, Yuan and Liao, 2021).

To our knowledge, many studies have focused on mul-
tiple square or rectangular containers, while no significant
published research addresses the problem of packing with
multiple circular bins. Therefore, in this paper, we address
a new variant termed the circle bin packing problem with
circular items (CBPP-CI), which places a series of circular
items inside multiple circular bins to minimize the num-
ber of bins used. It is an important extension of the two-
dimensional circle packing problem (CPP), which is to pack
all circular items into a single container of the circular or
square shape to minimize the size of the container. Generally
speaking, the approaches of CPP can be classified into two
categories: constructive strategies and global optimization
strategies.

Constructive strategies sequentially pack the items into
the bin based on some rules, such as the best-local posi-
tion (BLP) (Hifi and M’Hallah, 2002; Mhand and Rym,

Y. Yuan, K. Tole, F. Ni, K. He et al.: Preprint submitted to Elsevier Page 1 of 14
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2004) and the maximal hole degree (MHD) (Huang, Li, Li
and Xu, 2006), which are defined to evaluate the benefit
of a partial solution. Representative heuristics include the
prune-enrichedRosenbluthmethod (PERM) (Lü andHuang,
2008), the augment beam search (Akeb, Hifi and M’Hallah,
2009; Akeb, Hifi and Negre, 2011), the best-fit algorithm
(BFA) (He, Huang and Jin, 2012), etc.

As the second category of approaches, global optimiza-
tion strategies improve the solution iteratively based on
the initial solution. It could be further subdivided into two
categories: quasi-physical methods and meta-heuristic op-
timizations. The quasi-physical methods are based on a
physical gradient or human-intuitive behavior to enhance the
solutions obtained by problem-oriented heuristics (Wang,
Huang, Zhang and Xu, 2002; Lubachevsky and Graham,
1997), while meta-heuristic optimizations usually have an
evaluation function devised to employ a trade-off between
randomization and local search, with the goal of directing
and remodeling basic heuristics to generate feasible so-
lutions. Typical algorithms include a simulated annealing
approach (SA) (Hifi, Paschos and Zissimopoulos, 2004),
monotonic basin hopping approach (MBH) (Grosso, Jamali,
Locatelli and Schoen, 2010), iterated tabu search(ITS) (Fu,
Huang and Lü, 2013), action-space-based global optimiza-
tion algorithm (ASGO) (He, Huang and Yang, 2015), for-
mulation space search (FSS) (López and Beasley, 2016),
adaptive tabu search and variable neighborhood descent
(ATS-VND) (Zhizhong, Xinguo, Kun and Zhanghua, 2018),
etc.

Most of the constructive solutions focus on the tradi-
tional CPP and are designed on the specific characteristics
of the problem. These methods are no longer applicable for
CBPP-CI because of the characteristic gap between CPP and
CBPP-CI. Moreover, although the global optimization tech-
nique can be used on CBPP-CI as a general search frame-
work, it lacks adaptive adjustments, including the search
strategy and evaluation function. Otherwise, the search effi-
ciency is poor, and it is hard to find an iterative optimization
method to make further improvements based on the current
solution.

As the CBPP-CI is a new problem, there are no available
benchmark instances. Following our previous works on the
square bin packing problem with circular items (SBPP-CI)
in (He et al., 2021; He and Dosh, 2017), we choose two cat-
egories of benchmarks for the single circle packing problem
(SCPP) on the packomonia website 2 and build two sets of
new benchmark instances based on them for the CBPP-CI.
For the solving method, we first propose a greedy heuristic
based on the designed tangent occupying action (TOA),
which can quickly obtain a competitive packing result. TOA
always places the current circular item tangent to any two
packed items or the bin boundary. At the same time, we also
need the packing item to have a minimum distance to the
bin boundary. In this way, items are packed as compact as
possible, and the remaining space can all gather in the center
area of a bin. To judge whether an optimal solution has been

2www.packomonia.com

found, we continue to design adaptive simulated annealing
with greedy search (ASA-GS) method inspired by related
works (He et al., 2021; Hifi et al., 2004; Geng, Chen, Yang,
Shi and Zhao, 2011). In contrast to the TOA algorithm, we
apply a globalization approach that improves the packing
pattern iteratively. We first present an energy function to be
minimized and offer an initial packing solution. Then we try
to seek more adaptive parameter control to improve the solu-
tion quality on large-scale instances. Besides, we utilize the
greedy search strategy to achieve faster convergence. Finally,
to avoid falling into local optimal solutions, we propose
two novel perturbation strategies, and the experiments have
verified their effectiveness. Moreover, the packing density
of ASA-GS on the top few bins is much higher than the
best results for the single circle packing problem on the
packomonia website, which indicates the high quality of our
solution.

The main contributions of this work are summarized as
follows:

• We address a new and important variant of BPP
termed CBPP-CI, which comprises packing circular
items into multiple circle bins as compactly as possi-
ble to minimize the number of used bins. Moreover,
we build two sets of new benchmark instances for
CBPP-CI.

• We propose a constructive greedy algorithm based on
the devised tangent occupying action that can quickly
generate a competitive solution.

• We define an energy function for simulated annealing
and present two novel perturbation methods (sec-
tor perturbation and circle perturbation) to generate
neighbor solutions. Besides, we incorporate a greedy
search to achieve faster convergence.

• The parameters are adaptive along with the number
of items such that our algorithm can obtain the better
solution for the CBPP-CI with a broad scale.

The rest of this paper is organized as follows: Section 2
presents a formal definition of the CBPP-CI and our alternate
optimization function, which could help find denser packing
so as to minimize the objective. Section 3 gives some def-
initions and proposes the constructive algorithm. Section 4
presents two perturbation operators and describes the ASA-
GS algorithm in detail. Section 5 shows and analyzes the
experimental results. Section 6 concludes the work with
future work recommendations.

2. Preliminary
In the proposed circle bin packing problem with circular

items (CBPP-CI), we are given n(n ∈ N+) circular items
C1, C2, . . . , Cn with radius r1, r2, . . . , rn, and a set of n
identical circular bins with radius R (w.l.g. for any circular
item Ci, ri ≤ R), we aim to determine the center coordinates
of each item Ci in a bin such that all items are packed
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Table 1
Variable definition.

Variable Description

n Number of circular items
Ci The i-th circular item
ri Radius of Ci
(

xi, yi
)

Center coordinates of Ci
Bk The k-th bin
R Radius of the circular bins
Iik Indicator of whether Ci is in the k-th bin
Yk Indicator of whether the k-th bin is used
dij Distance between points (xi, yi) and (xj , yj)

feasibly, i.e. with all circular items fitting completely inside
the bins and no overlapping exists between any pair-wise
items (i.e.(Ci∩Cj = ∅)). The goal is tominimize the number
of used bins, denoted as K (1 ≤ K ≤ n).
2.1. Problem Formulation

Assume that the center of each circular bin Bk is locatedat (R,R) in two-dimensional Cartesian coordinate system
and denote the center of each circular item Ci as (xi, yi). We
can define a packing solution as X = {< x1, y1, b1 >,<
x2, y2, b2 >,… , < xn, yn, bn >}, where bi is the indicator
that the placement of item Ci in the bi-th bin Bbi (bi ∈
{1,… , K}). In order to formulate the problem, a summary
of necessary variables is listed in Table 1.

The CBPP-CI problem can be formalized as minimizing
K while satisfying the following constraints:

n
∑

k=1
Iik = 1, (1)

where Iik ∈ {0, 1} and i, k ∈ {1,… , n}, implying that each
circular item is packed exactly once. CBPP-CI also requires
that any pair-wise items in the same bin (i.e. Iik = Ijk = 1,
∀i, j, k ∈ {1,… , n}) must not overlap:

dij =
√

(xi − xj)2 + (yi − yj)2 ≥ (ri + rj)IikIjk. (2)
Third, to ensure that every circular item is placed entirely
inside a bin, CBPP-CI requires:

√

(xi − R)2 + (yi − R)2 + ri ≤ R. (3)
Finally, we use Yk to indicate whether there exist circular
items packed into a bin Bk:

Yk =
{

1, if ∑n
i=1 Iik > 0, i, k ∈ {1,… , n},

0, otherwise. (4)

And the goal is to minimize the summation of Yk:

minK =
n
∑

k=1
Yk, (5)

and clearly 1 ≤ K ≤ n.

We could associate the items in bin Bk as an item
set, denoted as Sk. So a solution can be obtained by two
steps: we first partition the items into different sets  =
⟨S1, S2,… , SK⟩ for the bins; then we try to pack the items
ofSk into binBk without overlapping. An optimal packing is
that the number of bins used can not be reduced any further.
2.2. Optimization Function

The overall goal of the CBPP-CI is to use as few bins as
possible to pack the n circular items Ci, as shown in Eq. (5).However, to attain the global optimum, it is necessary to
consider a more local objective function that focuses on
packing as tightly as possible. In this regard, suppose that
a packing solution X corresponds to a partition S = S1 ∪
S2 ∪…∪SK such that Sk is the set of circular items that are
packed in bin Bk, and k ∈ {1,… , K}. Let A be the area of a
bin (all bins are identical). Then, the density of packing Skinto a bin Bk is given by:

dBk (X) =
1
A

∑

Ci∈Sk

�r2i , where A = �R2. (6)

Given a packing solution X and k ∈ {1,… , n}, let
dmin = min{dBk (X)|1 ≤ k ≤ K} and dmax = max{dBk (X)|1 ≤
k ≤ K}. A useful local optimization function is defined as
follows:

v(X) = dmax − dmin. (7)
The greater the value of v(⋅), the higher the quality of a
feasible solution X. Since an increment in v(⋅) corresponds
to a tighter packing as some items move from sparser bins to
the denser bins.

Further, we need to minimize the value of K , i.e., to
maximize the value of −K . So we define our optimization
function as:

max F (X) = −K + dmax − dmin. (8)
The greater the value of F (⋅) is, the better and tighter the
packing is.

Note that 0 ≤ dmax − dmin ≤ 1, this term is used
for regularization. It implies that the optimization function
is more inclined to use fewer bins, and the difference in
the number of bins is enough to weigh different solutions.
When two feasible packings use the same number of bins,
we will focus on each candidate solution’s densest bin and
the sparsest bin. The denser the densest bin is, the less the
wasted space is. The more sparse the sparsest bin is, the
more concentrated and complete the remaining still-reserved
space is, making it easier to pack the following circular
items. Therefore, we assume such a difference in density
could determine the quality of candidate solutions.

3. Tangent Occupying Action Algorithm
This section introduces the concept of tangent occupying

action and then proposes a constructive greedy algorithm
based on this action. We want to pack circular items into the
bins as compact as possible through the tangent occupying
action to reduce the number of bins used.
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3.1. Definitions
We first provide several essential definitions, especially

the tangent occupying action.
Definition 1. (Tangent occupying action). A tangent

occupying action (TOA) is a packing action that chooses an
outside circular item to place to a position inside a bin such
that the item is tangent to any two or more packed items (the
circular bin can be regarded as a special hollow item).

Definition 2. (Quality of a feasible packing position).
For an item, the quality of a feasible packing position is
determined by the distance between the center of the packing
item and the circular bin’s boundary:

d (x, y) = R −
√

(x − R)2 + (y − R)2 − r, (9)
where (x, y) is the center of the circular item. The smaller
the interval, the better the packing position.

All feasible positions are sorted in the ascending order
of d(x, y) for a circular item in the current bin. A smaller
d(x, y) is better, which allows more concentrated free space
in favor of placing the remaining circular items. The idea is
to pack circular items nearer to the bin’s boundary.
3.2. TOA Algorithm

Algorithm 1: TOA Algorithm
Input: A vector of unassigned circle’s ID:

circle_ids, a vector of bin’s ID: bin_ids,
bin’s radius: R;

Result: For each circle Ci, find a bin Bk, and placethe circle center at (xi, yi
);

1 for i ∈ circle_ids do
2 vector < TOA > s = ∅ ;
3 bin_id_idx = 0;
4 while true do
5 if bin_id_idx == bin_ids.size() then
6 return false;
7 end
8 s← Compute feasible packing positions for

Ci;
9 if s ≠ ∅ then
10 break;
11 end
12 bin_id_idx← bin_id_idx + 1; // Turn to

the next bin

13 end
14 TOA best_toa = Select the best packing

position from s with d(x, y);
15 circles[i].x = best_toa.p.x;
16 circles[i].y = best_toa.p.y;
17 Place the circles[i] into the bin_ids[ bin_id_idx]

bin;
18 end

Details of the TOA algorithm are presented in Alg. 1. It
works by packing circular items sequentially in a particular
order of their radii (e.g., from large to small). To load the

current item, we first locate all the TOAs of the first bin
that satisfies the problem constraints. If there is no available
TOA, we seek the next bin to continue searching feasible
TOAs until at least one available TOA occurs. Among all
possible TOAs, we select the placement with the minimal
distance d(x, y) and place the item at (x, y) in the current
bin. The TOA algorithm iterates the above procedure until
all circular items have been loaded into the bins without
overlapping. With this process, TOA prefers positions closer
to the bin’s boundary. Hence, it packs the circular items as
compact as possible and utilizes the bin space greedily to
minimize the number of bins used.

TOA is very fast in constructing a solution, but it could
not obtain a solution with excellent quality. Therefore, we
present two novel mutations and introduce a meta-heuristic
global optimization approach called ASA-GS to improve the
solution quality.

4. Adaptive Simulated Annealing with Greedy
Search
Simulated annealing (SA) algorithm (Kirkpatrick, Gelatt

and Vecchi, 1983) has been extensively developed and
widely used in many optimization problems. It can avoid
getting trapped in the local optimum and attain better solu-
tions by accepting worse solutions with a certain probability.
To strengthen the packing solution, we propose a boosted
algorithm called the adaptive simulated annealing with
greedy search (ASA-GS) for the CBPP-CI. Our method is
inspired by the works (He et al., 2021; Hifi et al., 2004; Geng
et al., 2011) that can guide the algorithm quickly converging
to optimal solutions.

The ASA-GS algorithm (Geng et al., 2011) is described
in Alg. 2. In ASA-GS, there are several decisions to be
made: how to define the energy function f (⋅); how to attain
an initial solution; how to generate a neighbor solution;
how to determine the assignments of parameters such as
the probability of accepting a new solution, and the current
temperature.

In what follows, we show how one can use the principle
of the ASA-GS algorithm to solve the CBPP-CI.
4.1. Energy Function

According to our defined optimization function of the
packing problem, we define the energy function f (⋅) as
−F (⋅) for the simulated annealing algorithm:

f (X) = −F (X) = K − dmax + dmin. (10)
It can be seen from Eq. (10) that minimizing the energy
function f (⋅) is equivalent to maximizing the optimization
function F (⋅). Therefore, the smaller the value of f (⋅), the
better a packing solution.
4.2. Initial Packing Solution

We can easily obtain an initial packing solution using n
circular bins and assigning each circular item Ci in bin Bi as
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Algorithm 2: ASA-GS Algorithm
Input : Bin radius R, a set of n circular items

{Ci|1 ≤ i ≤ n} with radii
r1,… , rn (ri ≥ ri+1)

Output: A dense packing solution X for CBPP-CI.
1 Initialize the annealing parameters tstart, tcool,N ,

tgreedy, and set tcurrent = tstart, G = 0 ;
2 Initialize a packing solution X0 and let X = X0;
3 for i← 1 toN do
4 Select one perturbation method between sector

perturbation and circle perturbation;
5 Compute dE = f (X′ ) − f (X);

// See Subsection 4.3.3 and Algorithm 6 for

details

6 X′
← Generate a new packing solution(X,R);

7 if dE ≤ 0 then
8 X = X′ ;// Accept the new solution

9 else
10 G = G + 1 and compute f (X′

G);
11 if G ≥ tgreedy then
12 Select X′

best with condition f (X
′

best) =
min(f (X′

1), f (X
′

2), ..., f (X
′
tgreedy

)) ;
// Accept the best solution with

probability p
13 if e(−dE∕tcurrent)×log(n∕2) >= rand(0, 1)

then
14 X = X′

best;
15 end
16 else
17 Continue to generate next neighbor

solution;
18 end
19 end
20 tcurrent = tcurrent × tcool and let G = 0;
21 if tcurrent ≤ tend then
22 break;
23 end
24 end

shown in Fig. 1.
Initialize_packing_solution (P ) =

{

⟨R, ri, Bi⟩ |i ∈ {1,… , n}
} (11)

4.3. Generate Neighbor Solutions
Generally, a new neighbor solution is obtained by con-

ducting a local disturbance to the current solution. Here
an effective perturbation strategy plays a significant role
in heuristic algorithms in the local search process to solve
the optimization problem. Besides, different perturbation
methods usually have different impacts on the specific prob-
lem. To void falling into local optimum, we design two
new perturbation strategies for the CBPP-CI, termed circle
perturbation and sector perturbation.

4.3.1. Circle perturbation
AsAlg. 3 shows, the circle perturbation strategy selects a

circular item randomly in a circular bin Bk, then generates acircular area with the item’s center as its center, the radius of
the circular area is a random number in [0, R2 ]. It guaranteesthat at least one item will intersect the generated circular
area. In most cases, more than one item will cross this area
and be reassigned at each iteration.

Algorithm 3: Pseudo-code of sampling a circle
Input : Bin Bk, bin radius R
Output: A circular area with < x, y, r >
// Each circle is represented as < x, y, r >

1 r← random_real(R∕2); // The circle radius is r

// Randomly select a circular item from Bk
2 if (!Bk.empty()) then
3 i ← random_ints(1,{i |

|

Ci ∈ Bk
}

);
4 end
5 x← Ci.x;
6 y← Ci.y;
7 circle = Circle(x, y, r);// Generate a circle area

Algorithm 4: Pseudo-code of sampling a sector
Input : Size of the central angle Δ�, is_fixed
Output: A sector with (�, �)
// Each sector is represented as (�, �)

1 � ← randInt(0, 360);
2 if !is_fixed then
3 Δ� ← randInt(20, 60);
4 end
5 � ← (� + Δ�)%360;
6 sector = Sector(�,�);// Generate a sector area

4.3.2. Sector perturbation
As Alg. 4 shows, the sector perturbation strategy ran-

domly generates a sector area (�, �) in a circular bin. The
larger the central angle, the larger the sector area. Therefore,
the larger the disturbance, the more circular items intersect-
ing the area will be reassigned at each iteration. Especially
the circular items are taken out and unassigned from the
border to the center of the circular bin.

Alg. 5 can determine whether a circular item Ci inter-sects the selected circular (or sector) area. If a circular item
Ci intersects the chosen area, that is, the item with a red
dotted border in Fig. 2 or Fig. 3, which will be taken out from
the bin and added to the unassigned circular set circle_ids
in Alg. 6 (line 5). However, as the sector area is not easy to
express with mathematical formulas like the circle area, it is
not intuitive to judge whether a circular item intersects with
the sector area. Due to the sector is surrounded by two radii
and the arc opposite the central angle. We turn it into two
small subproblems: 1) whether the center of a circular item
is in the sector area; 2) whether the circular item intersects
the radii r� or r� of the central angle. The former is judged

Y. Yuan, K. Tole, F. Ni, K. He et al.: Preprint submitted to Elsevier Page 5 of 14



ASA-GS for Solving the CBPP-CI

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

R 

ri 

B1 B2 Bi Bn 

R 

ri 

B1 B2 Bi Bn 

R 

ri 

B1 B2 Bi Bn 

Fig. 1: Initialize a packing solution.

Fig. 2: An illustration of circle perturbation.

Fig. 3: An illustration of sector perturbation.

by line 4, Alg. 5, and the latter is implemented by line 7,
Alg. 5.
4.3.3. Generate Neighbor Solution

As Alg. 6 shows, a new packing solutionX′ is generated
from the old packing solution X by selecting two bins
Bk1 , Bk2 randomly and performing sector perturbation or
circle perturbation. We randomly choose a sector area with
equal angle size in each bin, and all items that intersect the

Algorithm 5: Pseudo-code of intersecting with the
sector or circle
Input : Circle Ci, sector S (or circle C), bin radius

R
Output: True or false
// Returns if Ci intersects the perturbation area

S (or C)

1 if adopt the sector perturbation then
2 � = S.�;
3 � = S.�;
4 if the center of Ci is in sector area S then
5 return true;// Intersects with the sector

area S
6 end
7 if Ci intersects with radii r� or r� of S then
8 return true;// Intersects with the sector

area S
9 end

10 return false;// No intersects with the sector

area S
11 else

// adopt the circle perturbation

12 if (Ci.x − C.x)2 + (Ci.y − C.y)2 ≤ Ci.r + C.r
then

13 return true; // Intersects with circle area

C
14 else
15 return false;// No intersects with circle

area C
16 end
17 end

sector area will be taken out, and their IDs will be added
to set circles_ids. k1, k2 will be added to set bin_ids. The
unassigned circular items will be reassigned with algorithm
TOA. Then we will get a new neighbor packing solutionX′ .

At each iteration, two (or more) bins will be selected
so that the unassigned circular items have more free space
to be assigned. Even in the worst case, the algorithm will
attempt to exchange the circular items in the two (or more)
areas, ensuring that there will be some disturbance at each
operation.
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Algorithm 6: Pseudo-code of generating a new
solution
Input : The old packing solution: X, bin radius: R
Output: A new neighbor packing solution: X′

1 K ← X.bins.size();
// Select two bins randomly

2
(

k1, k2
)

← random_ints(2, {1,… , K)}) ;
// Select a sector or circle area in the first

bin using Algorithm 4 or Algorithm 3

3 A1 ← Sample a sector(�, is_fixed); // or Sample a

circle(Bk, R);
// Select an area in the second bin

4 A2 ← Sample a sector(�, is_fixed); // or Sample a

circle(Bk, R);
5 circle_ids ← ⋃

j∈{1,2}{i|
⟨

xi, yi, kj
⟩

∈
X

⋀

Iikj = 1
⋀

intersects(Ci, Aj , R) ==
T rue}; // See Algorithm 5

6 bin_ids← {k1, k2};
7 X′

← TOA(circle_ids, bin_ids, R);// Generate a

new solution

Besides, at the early stage, the sector area (i.e., Δ�) can
be set larger so that the new neighbor solution can be located
far away from the current solution to speed up the search
process and to avoid getting trapped at a local minimum
solution. Once the temperature f (X) gets low, the sector
area will become smaller. The new solutionwill be generated
nearby with the minor disturbance and focus on the local
area.
4.4. The Assignments of Parameters

In the experiments, we find that different assignments of
parameters are suitable for different problem scales. There-
fore, to obtain a better solution in solving the packing prob-
lem in a broad scale, the parameter values should change
along with the number of items, which can make the assign-
ments of parameters dynamic and adaptive, such as the times
of greedy search tgreedy:

tgreedy ← � × n, (12)
and the cool coefficient of the temperature tcool:

tcool ←
� ×

√

n − 1

� ×
√

n
. (13)

In this way, our algorithm is adaptive for the number of
items, and the parameter space can be sampled much more
efficiently. For example, if n is small, we will get a quick
cooling coefficient. As the number of items increases, the
times of greedy search will become larger and get a slower
cooling coefficient fit for big-scale packing instances. The
difficulty of the problem becomes higher as the number of
items becomes larger, indicating more solution space to be
explored.

4.5. The Overall ASA-GS Algorithm
Theworkflow of ASA-GS is provided in Alg. 2. Firstly, it

is necessary to initialize the annealing parameters and attain
a feasible packing pattern with the initial solution as shown
in subsection 4.2. Then, it will select one of the perturbation
methods between sector perturbation and circle perturbation
as well as generate a new neighbor packing solution by
Alg. 6. After that, it will compute the energy function and
utilize the greedy search technique based on the simulated
annealing to decide whether accept the new solution. Finally,
it updates the parameters such as the cooling coefficient
of the temperature with tcurrent = tcurrent × tcool, and the
acceptance probability by Eq. (14). The process will execute
until the terminal criterion such as the current temperature
tcurrent is below the threshold tend , or the number of iterations
i exceeds the given valueN .

The key concept of greedy search can be described as
follows: take a new neighbor packing X′ (i.e.X′

1) as the
best packing X when dE ≤ 0(i.e.f (X′ ) ≤ f (X)), and
go to the next step. Otherwise the algorithm continues to
generate the next new neighbor packing X′

2, and takes it
as the best packing X when f (X′

2) ≤ f (X), then goes
to the next step. Otherwise this step will continue to be
executed until attaining a better packing solution or has
generated tgreedy − tℎ new neighbor packing X′

tgreedy
. The

latter will generate tgreedy neighbor packing solutions X′

1,
X′

2. . . , X
′
tgreedy

while they are all worse than the original
packing solutionX. In such case, it will accept the best new
packing X′

best among the tgreedy neighbor packing solutions
generated with probability p.

p← e−(f (X
′ )−f (X))∕tcurrent×log(n∕2). (14)

Obviously, the quality of the best neighbor solutionX′

bestwill vary from low to high with the times of greedy search
increases so that the new solution can jump to a better
solution space with high probability. f (X′

best) is defined by
Eq. (15):

f (X
′

best) = min(f (X
′

1), f (X
′

2), ..., f (X
′

G), ..., f (X
′

tgreedy
)).

(15)
The ASA-GS algorithm can achieve faster convergence

and improve the quality-time trade-off by utilizing the
greedy search technique. As the experimental results show,
the solutions produced by the ASA-GS algorithm are very
competitive.

5. Experiments
For experiments, we evaluate and analyze the compe-

tency and performance of the proposed algorithms, TOA
and ASA-GS. We implemented the algorithms using Visual
C++ programming language. All results were generated by
setting parameters as N = 2 × 106, � = 0.9, � = 0.08,
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Table 2
Experimental results on the fixed benchmarks with circular bins for ri = i.

n0 n Alg. Bin0 bin 1 bin 2 bin 3 bin 4 bin 5 bin 6 F FA − FT
8 40 ASA-GS 0.78 0.84 0.80 0.74 0.74 0.71 0.03 −5.19 0.19

TOA 0.81 0.74 0.72 0.72 0.69 0.19 −5.38
9 45 ASA-GS 0.79 0.83 0.80 0.77 0.76 0.70 - -4.87 0.47

TOA 0.81 0.75 0.74 0.71 0.69 0.15 -5.34
10 50 ASA-GS 0.80 0.84 0.79 0.79 0.79 0.79 - -4.95 0.45

TOA 0.81 0.79 0.74 0.74 0.70 0.21 -5.40
11 55 ASA-GS 0.80 0.84 0.81 0.81 0.77 0.77 0.07 -5.23 0.29

TOA 0.83 0.74 0.72 0.71 0.70 0.35 -5.52
12 60 ASA-GS 0.80 0.85 0.80 0.79 0.77 0.76 0.06 -5.21 0.21

TOA 0.82 0.79 0.77 0.73 0.68 0.24 -5.42
13 65 ASA-GS 0.81 0.84 0.82 0.81 0.78 0.76 0.10 -5.26 0.16

TOA 0.84 0.81 0.75 0.75 0.72 0.26 -5.42
14 70 ASA-GS 0.81 0.85 0.80 0.79 0.79 0.78 0.12 -5.27 0.11

TOA 0.86 0.80 0.77 0.74 0.72 0.24 -5.38
15 75 ASA-GS 0.82 0.85 0.82 0.81 0.79 0.77 0.08 -5.23 0.19

TOA 0.84 0.79 0.75 0.74 0.72 0.26 -5.42
16 80 ASA-GS 0.83 0.85 0.82 0.82 0.78 0.78 0.11 -5.26 0.13

TOA 0.86 0.82 0.77 0.74 0.70 0.25 -5.39
17 85 ASA-GS 0.83 0.86 0.83 0.81 0.79 0.76 0.11 -5.25 0.12

TOA 0.86 0.84 0.75 0.74 0.74 0.23 -5.37
18 90 ASA-GS 0.83 0.86 0.83 0.80 0.79 0.78 0.14 -5.28 0.11

TOA 0.86 0.83 0.76 0.75 0.75 0.25 -5.39
19 95 ASA-GS 0.84 0.86 0.83 0.80 0.79 0.77 0.15 -5.29 0.12

TOA 0.86 0.82 0.77 0.75 0.73 0.27 -5.41
20 100 ASA-GS 0.84 0.87 0.83 0.80 0.80 0.77 0.13 -5.26 0.12

TOA 0.86 0.83 0.77 0.76 0.75 0.24 -5.38

tstart = 0.1, tend = 10−4, and obtained using a computer
equipped with an Intel(R) Core(TM) i7-10710U CPU @
1.10GHz 1.61Hz.

As the CBPP-CI is a new problem, there are no available
benchmark instances. Referring to the pioneering work of
square bin packing problem with circular items (SBPP-
CI) (He et al., 2021). We choose two categories of bench-
marks for the single circle packing problem (SCPP) on the
packomonia website and build two sets of new benchmark
instances based on them for the CBPP-CI.

The generated instances consist of strong heterogeneous
ri = i (i.e., the circle radii vary widely), and ri =

√

i
for weakly heterogeneous instances. For each category, we
produce fixed and random instances. We first choose in-
stances from the packomonia website for SCPP to generate
our instances. Each circular bin’s best-known solution found
in Eckardi (2018) ranges from 8 to 20 from the circular bin
benchmarks. The fixed set of benchmarks contains exactly
five copies of each circle instance, and for the random bench-
marks instances, it contains a random copy of each circular
item that ranges from 2−10 from the same benchmarks. We
fix the circular bin size from the best solution found on the
packomonia website.

In the computational tables, we list 52 generated in-
stances from the two categories of benchmarks (fixed and
rand). For each instance in the Tables ( 2, 3, 4 and 5), we have
results for two algorithms: ASA-GS and TOA. Column n0

represents the original index number of the circle set for each
instance, column n represents the actual number of repli-
cated circles in the CBPP-CI instance. The third column (i.e.,
Alg.) represents the two algorithms. Column Bin0 is only
for the fixed benchmarks representing the reference value
indexed from Eckardi (2018) for the state-of-the-art results.
Columns 5tℎ to 10tℎ denote the density (bin occupancy rate)
for each bin. Lastly, the F and FA − FT columns represent
the actual measure value achieved for each algorithm and
relative improvement of ASA-GS over TOA.
5.1. Comparison on r = i

Here r = i is a benchmark instance that has a wide
variation of circle sizes. In this set of benchmarks, we
execute ASA-GS and TOA algorithms for comparison. We
select instances that range from 8 to 20 for both fixed and
random setup from the benchmark. Table 2 displays the
computational results of fixed benchmarks while Table 3
displays for random benchmarks.

In Table 2 we can notice that the objective value of
ASA-GS is better than TOA on all the instances, and in
addition, we can also observe one lesser bin occupancy rate.
for instance, n0 = 9 & n = 45 and n0 = 10 & n = 45, i.e.,
ASA-GS uses five bins to pack 45 circles while TOA uses six
bins to load the same set of circular items, for a diagrammatic
representation of the packing layout when n0 = 9 & n = 45
(See Fig. 4) and when n0 = 10 & n = 50, we can also

Y. Yuan, K. Tole, F. Ni, K. He et al.: Preprint submitted to Elsevier Page 8 of 14



ASA-GS for Solving the CBPP-CI

Table 3
Experimental results on the random benchmarks with circular bins for ri = i.

n0 n Alg. bin 1 bin 2 bin 3 bin 4 bin 5 bin 6 F FA − FT
8 35 ASA-GS 0.84 0.81 0.71 - - - -2.87 0.36

TOA 0.84 0.77 0.68 0.07 - - -3.23
9 44 ASA-GS 0.84 0.80 0.80 0.70 - - -3.86 0.41

TOA 0.82 0.75 0.75 0.73 0.09 - -4.27
10 48 ASA-GS 0.84 0.84 0.79 0.70 - - -3.86 0.39

TOA 0.83 0.80 0.74 0.72 0.08 - -4.25
11 52 ASA-GS 0.85 0.84 0.82 0.71 - - -3.86 0.39

TOA 0.85 0.80 0.74 0.73 0.10 - -4.25
12 59 ASA-GS 0.85 0.82 0.81 0.72 - - -3.87 0.37

TOA 0.85 0.80 0.74 0.72 0.09 - -4.24
13 64 ASA-GS 0.85 0.83 0.83 0.73 - - -3.88 0.35

TOA 0.85 0.80 0.77 0.74 0.08 - -4.23
14 67 ASA-GS 0.85 0.82 0.79 0.79 0.16 - -4.31 0.07

TOA 0.87 0.81 0.77 0.72 0.25 - -4.38
15 73 ASA-GS 0.87 0.82 0.78 0.65 - - -3.78 0.10

TOA 0.85 0.80 0.74 0.73 - - -3.88
16 79 ASA-GS 0.86 0.83 0.81 0.80 0.73 - -4.87 0.39

TOA 0.86 0.82 0.77 0.76 0.70 0.12 -5.26
17 84 ASA-GS 0.86 0.84 0.80 0.78 0.10 - -4.24 0.08

TOA 0.86 0.82 0.78 0.74 0.18 - -4.32
18 87 ASA-GS 0.87 0.83 0.80 0.80 0.71 - -4.84 0.44

TOA 0.85 0.82 0.75 0.74 0.72 0.13 -5.28
19 92 ASA-GS 0.87 0.84 0.82 0.80 0.06 - -4.19 0.09

TOA 0.86 0.83 0.80 0.76 0.14 - -4.28
20 97 ASA-GS 0.87 0.84 0.81 0.74 - - -3.87 0.40

TOA 0.86 0.82 0.74 0.71 0.13 - -4.27
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Fig. 4: Packing layouts generated by ASA-GS (top) and TOA (bottom) for the fixed benchmark r = i with 9 × 5 circles.

notice that ASA-GS packs 50 circles in 5 bins while TOA
uses six bins for the same set of circular items. For the fixed
benchmarks, ASA-GS has an average of 21% improvement.

For the random benchmarks, we can also observe that
in all the instances, ASA-GS returns a feasible solution
compared to TOA with an overall average improvement of
30% for r = i benchmarks in Table 3. We show the packing

layout when n0 = 11 & n = 52 in Fig. 5 for the random
benchmarks.
5.2. Comparison on ri =

√

i
Here ri =

√

i has a smaller variation of the circle’s
radii. Similarly, we test the two algorithms on this set of
benchmarks ranging from 8 − 20 instances. Table 4 and 5
represent fixed and random benchmarks respectively.
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Fig. 5: Packing layouts generated by ASA-GS (top) and TOA (bottom) for the random benchmark ri = i with 11 − 52 circles.

Table 4
Experimental results on the fixed benchmarks with circular bins for ri =

√

i.

n0 n Alg. Bin0 bin 1 bin 2 bin 3 bin 4 F FA − FT
8 40 ASA-GS 0.76 0.84 0.78 0.76 0.39 -3.55 0.09

TOA 0.81 0.76 0.76 0.45 -3.64
9 45 ASA-GS 0.77 0.83 0.81 0.76 0.37 -3.54 0.12

TOA 0.83 0.75 0.70 0.49 -3.66
10 50 ASA-GS 0.80 0.83 0.80 0.78 0.39 -3.56 0.09

TOA 0.83 0.75 0.74 0.48 -3.65
11 55 ASA-GS 0.81 0.86 0.80 0.79 0.37 -3.51 0.06

TOA 0.85 0.78 0.74 0.42 -3.57
12 60 ASA-GS 0.81 0.85 0.81 0.80 0.32 -3.47 0.09

TOA 0.86 0.76 0.75 0.42 -3.56
13 65 ASA-GS 0.82 0.85 0.81 0.79 0.37 -3.52 0.07

TOA 0.85 0.78 0.74 0.44 -3.59
14 70 ASA-GS 0.82 0.86 0.80 0.78 0.37 -3.51 0.13

TOA 0.83 0.76 0.75 0.47 -3.64
15 75 ASA-GS 0.82 0.85 0.81 0.79 0.38 -3.53 0.08

TOA 0.86 0.76 0.75 0.47 -3.61
16 80 ASA-GS 0.83 0.86 0.80 0.80 0.39 -3.53 0.06

TOA 0.85 0.79 0.76 0.44 -3.59
17 85 ASA-GS 0.83 0.86 0.80 0.80 0.39 -3.53 0.07

TOA 0.85 0.78 0.77 0.45 -3.60
18 90 ASA-GS 0.84 0.87 0.81 0.80 0.38 -3.51 0.06

TOA 0.87 0.79 0.77 0.44 -3.57
19 95 ASA-GS 0.84 0.87 0.81 0.79 0.40 -3.53 0.07

TOA 0.86 0.78 0.77 0.46 -3.60
20 100 ASA-GS 0.84 0.86 0.82 0.80 0.40 -3.54 0.06

TOA 0.87 0.78 0.75 0.47 -3.60

Table 4 is for the fixed benchmarks, from which we can
notice that ASA-GS outperforms TOA in all the instances
with an average improvement of 8%.We show the significant
improvements of the packing layout in Fig. 6.

We can notice that ASA-GS packs the items with lesser
bins than TOA for the random benchmarks in Table 5. We
can observe that when n0 = 8 (or 9, 10, 12, 13, 15, 16,
18, 19), ASA-GS uses fewer bins than TOA. We use n0 =
16 & n = 81 to demonstrate the packing layout for this

benchmark in Fig. 7. For these random benchmarks, we can
notice an overall improvement of 26%.
5.3. Further Analysis

Since our solution methods are stochastic, we further an-
alyze and assess the two proposed algorithms’ significance
comparison by using a T-tail statistical hypothesis test on
H0:�T = �A.H0 denotes the null hypothesis, which equatesto no difference between the results returned by TOA and
ASA-GS. We apply the commonly used � = 0.05 as our
thresh-hold value. For each table we generated the p-value
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Table 5
Experimental results on the random benchmarks with circular bins for ri =

√

i.

n0 n Alg. bin 1 bin 2 bin 3 bin 4 F FA − FT
8 29 ASA-GS 0.83 0.79 - - -1.96 0.29

TOA 0.82 0.72 0.07 - -2.25
9 36 ASA-GS 0.84 0.75 - - -1.91 0.34

TOA 0.80 0.74 0.05 - -2.25
10 51 ASA-GS 0.86 0.81 0.73 - -2.87 0.34

TOA 0.84 0.76 0.76 0.05 -3.21
11 56 ASA-GS 0.85 0.80 0.68 - -2.83 0.06

TOA 0.85 0.75 0.74 - -2.89
12 61 ASA-GS 0.86 0.82 0.73 - -2.87 0.37

TOA 0.83 0.76 0.75 0.07 -3.24
13 63 ASA-GS 0.86 0.82 0.74 - -2.88 0.33

TOA 0.84 0.79 0.74 0.05 -3.21
14 66 ASA-GS 0.86 0.81 0.65 - -2.79 0.12

TOA 0.83 0.75 0.74 - -2.91
15 77 ASA-GS 0.86 0.83 0.73 - -2.87 0.38

TOA 0.85 0.76 0.72 0.10 -3.25
16 81 ASA-GS 0.86 0.81 0.78 - -2.92 0.36

TOA 0.86 0.76 0.7 0.14 -3.28
17 83 ASA-GS 0.86 0.81 0.79 0.07 -3.21 0.12

TOA 0.85 0.76 0.74 0.18 -3.33
18 89 ASA-GS 0.86 0.84 0.75 - -2.89 0.30

TOA 0.87 0.77 0.76 0.06 -3.19
19 93 ASA-GS 0.87 0.81 0.77 - -2.90 0.31

TOA 0.86 0.80 0.74 0.07 -3.21
20 97 ASA-GS 0.85 0.81 0.80 0.05 -3.2 0.09

TOA 0.85 0.78 0.75 0.14 -3.29
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Fig. 6: Packing layouts generated by ASA-GS (top) and TOA (bottom) for the fixed benchmark ri =
√

i with 14 × 5 circles.

Table 6
T–test statistical analysis.

Group Table p–value

ri = i Table 2 0.0000662229
Table 3 0.0000107770

ri =
√

i Table 4 0.0000000252
Table 5 0.0000037048

and compared with the � = 0.05 value as shown in Table 6.
We reject the null hypothesis from the generated results
and claim with a confidence interval (CI) of 95% that our
proposed algorithms are statistically distinct.

To further demonstrate the typical performance pattern
of the two algorithms, we illustrate the performance compar-
isons of the two algorithms.

In Fig. 8, the Y-axis represents the optimization function
while the X-axis represents the number of circles (n). A red
(blue) line presents ASA-GS (TOA).We can notice a distinct
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i with 16 − 81 circles.
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Fig. 8: ASA-GS versus TOA.

variation of ASA-GS and TOA lines that do not intersect,
indicating that theASA-GS completely outperforms the base
TOA on all instances.

Lastly, we record the runtimes for r = i and ri =
√

i
benchmarks as shown in Table 7. The execution time of
TOA is in micro-seconds while ASA-GS takes less than 200
seconds. In summary, the performance clearly shows ASA-
GS efficiency outperforms TOA in a reasonable amount of
time in all the instances. And in some instances, we can
notice a reduction in the number of bins used. Moreover,
Table 3 and Table 5 show that the density of bin1 and bin2 is

usually greater than that ofBin0. It indicates that the packingdensity of ASA-GS on the top few bins is much higher
than the best packing results for SCPP on the packomonia
website, inferring the high quality of our solution for the
CBPP-CI.
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Table 7
Runtimes for ASA-GS execution on all benchmarks.

ri = i ri =
√

i

fixed random fixed random

n0 n t n t n t n t

8 40 12 35 34 40 24 29 53
9 45 23 44 32 45 30 36 73
10 50 19 48 36 50 39 51 65
11 55 22 52 41 55 47 56 92
12 60 26 59 59 60 51 61 90
13 65 30 64 68 65 63 63 95
14 70 35 67 45 70 68 66 122
15 75 40 73 98 75 75 77 152
16 80 45 79 60 80 89 81 157
17 85 52 84 70 85 98 83 95
18 90 56 87 86 90 110 89 196
19 95 62 92 82 95 128 93 198
20 100 68 97 144 100 138 97 146

6. Conclusion
In this paper, we introduce a new variant of bin packing

problem termed the circle bin packing problem with circular
items (CBPP-CI). For packing solutions, we define the tan-
gent occupying action (TOA) to quickly pack the items into a
bin as compactly as possible to minimize the number of bins
used. Besides, we design a new form of optimization func-
tion embedding the number of bins used and the maximum
density gap of the bins to evaluate the solution quality. We
then propose the adaptive simulated annealing with greedy
search (ASA-GS) algorithm to attain better solutions. The
greedy search strategy can speed up the convergence rate.
Based on the framework of simulated annealing algorithm,
the parameters such as the times of greedy search, the
acceptance probability are adaptive along with the number
of items, which can help to sample the parameter spacemuch
more efficiently and attain a better solution for instances in
a broad scale. To avoid getting trapped in local optimum,
we propose two novel perturbation strategies, sector pertur-
bation and circle perturbation. Experimental results show
that ASA-GS exhibits good performance on the solution
quality and computational time. Besides, the packing quality
is better than that of the constructive algorithm TOA on
all the CBPP-CI instances we generated. As this is a new
problem, there is no baseline algorithm available. However,
we see that the packing density of ASA-GS on the top few
bins is much higher than the state-of-the-art results on the
single circle packing problem, indicating the high quality of
our solution.
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