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Adaptive SIR model 
with vaccination: simultaneous 
identification of rates and functions 
illustrated with COVID‑19
Tchavdar T. Marinov1* & Rossitza S. Marinova2,3

An Adaptive Susceptible‑Infected‑Removed‑Vaccinated (A‑SIRV) epidemic model with time‑
dependent transmission and removal rates is constructed for investigating the dynamics of an 
epidemic disease such as the COVID‑19 pandemic. Real data of COVID‑19 spread is used for the 
simultaneous identification of the unknown time‑dependent rates and functions participating in 
the A‑SIRV system. The inverse problem is formulated and solved numerically using the Method of 
Variational Imbedding, which reduces the inverse problem to a problem for minimizing a properly 
constructed functional for obtaining the sought values. To illustrate and validate the proposed 
solution approach, the present study used available public data for several countries with diverse 
population and vaccination dynamics—the World, Israel, The United States of America, and Japan.

Infectious diseases modelling attracted great deal of attention by scientists and people around the world during 
the COVID-19 pandemic. The novel coronavirus (SARS-CoV-2) started to quickly spread in the early months of 
2020 and was announced as a global pandemic by the World Health  Organization1 in March 2020. Population-
wide vaccination is critical for achieving herd immunity and for controlling the COVID-19 pandemic while 
combined with effective testing and preventive measures.

Inevitably, the development of vaccines became the highest priority of governments and pharmaceutical 
 companies2. Several vaccines were available in the last months of 2020. As of 30 July 2021, over 28% of the world 
population is partly or fully  vaccinated3. Not knowing much about the coronavirus disease in the early months, 
mathematical models have played an important role in shedding some light on the disease dynamics.

The SIR model categorizes individuals as Susceptible, Infectious, and Recovered. Mathematical infectious 
disease models based on the classical SIR  model4 are widely used to examine the spread of a disease. These models 
display compelling results especially during the early period of the  pandemic5–19. In a recent  article20, the authors 
studied the immune response of recovered from COVID-19 individuals up to 8 months patients and found that 
they have considerable immune memory.

Vaccination is a common method of reducing infectious diseases  spread21–25 because it reduces the number 
of susceptible, from where the reproduction number naturally also decreases. The reproductive number is an 
indicator of the transmissibility of the virus caused by infectious individuals. It is affected by the population 
density, vaccinations, quarantines, social distancing, mask wearing and other  measures25,26.

In a recent  work27, the authors present a study of the temporal evolution of epidemic outbreaks accounting for 
vaccinations with monitored real time COVID-19 data, using the SIRV model, V denoting the relative fractions 
of currently vaccinated. They make certain assumptions and reduce the time-dependent general SIRV equations 
to an analytical model. SIR and SEIR models with vaccination are used to simulate and predict the development 
of the COVID-19 spread, e.g.25,28–30.

In several very recent  publications31–35 applied to the COVID-19 epidemic, researchers have developed and 
used SIR and SEIR based models with vaccination to overcome the limitations of the conventional SIR model. 
The work  in31 presents an investigation of the dynamics of a stochastic SIRV epidemic model with general non-
linear incidence and vaccination. The introduced random fluctuations controls the disease outbreak. Zhao et al.32 
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use improved SIRV to evaluate the performance of non-pharmaceutical interventions in reducing the number of 
daily new cases of COVID-19 in South and Southeast Asia. They apply statistical methods to estimate parameters.

The research presented  in33 proposes an SIRV evolutionary game model for infectious disease vaccination 
strategies based on the scale-free networks with tunable clustering. Their model analyzes the vaccination strate-
gies taking into account factors such as vaccination effectiveness, vaccination cost, treatment cost after illness, 
government subsidy rate and treatment discount rate. Other notable work is about modelling infectious diseases 
with herd immunity in a randomly mixed  population34. The authors formulate two new SIR models to mimic 
the declining transmission rate of infectious diseases at different stages of transmission. They found that natural 
herd immunity might not be sufficiently effective in infectious diseases with high reproduction numbers.

Researchers implemented a modification of a SIR  model35 to study the role of the rate of vaccination, rate of 
transmission and the likelihood of emergence of resistant strains. They used parameters realistically resembling 
SARS-CoV-2 transmission to run simulations for a total time of three years, with vaccination starting one year 
into the model.

The goal of the present work is to develop and to demonstrate the effectiveness of an inverse method for 
identifying the time-dependent functions and parameters of the SIRV model simultaneously (Sect. 2). We apply 
the method to the adaptive SIRV (A-SIRV) epidemic model using publicly available COVID-19 data. In contrast 
to other works which use statistical approaches to estimate parameters, we apply an inverse problem approach to 
identify these parameters. The dynamically estimated rates can be particularly useful in running other simula-
tions, such as  in35, to study the epidemic.

The modified SIR model for the spread of an infectious disease and vaccination 
(SIRV)
The standard notations in the SIR model are: S(t) denotes the number of susceptible, I(t) – infectives, and R(t) 
– removed individuals. Assume that the time-dependent function u = u(t) represents the vaccination rate. Then 
the total number of vaccinated individuals is given by

Every vaccine has different level of efficacy. We assume that the vaccine efficacy impacts disease spread and 
prevents transmission at the same rate, which is a reasonable assumption according to the  study35. If people are 
vaccinated with the same vaccine type / brand, it is possible to introduce the efficacy of the vaccine in the model. 
Since there is lack of information about the vaccine types and other details concerning the vaccinated individuals, 
we make the following assumptions, which may not be true for all

• Individuals being vaccinated belong to the class S (susceptible) before the vaccine. There are recovered people 
who vaccinate themselves; this is not included in the model because of lack of data.

• Individuals move to the class R (removed) after vaccination. In other words, the model assumes the vaccine 
is 100% effective against the disease, namely vaccinated people become fully immune.

Due to unavailability of data about COVID-19 variants and vaccine details on a country level, at this stage, 
the model does not include important assumptions, such as:

• Vaccinated individuals could be infected and be infectious if the infection is caused by other variants, known 
as the vaccine breakthrough problem; there might be multiple variants circulated in the same country, not 
only a single strain.

• Infected individuals could be vaccinated again to improve their immune level; vaccinated individuals could 
be infected again due to waning of immunity for COVID-19.

 The transmission rate β > 0 gives the probability that a random infective person infects a random susceptible 
person. A major approximation here is the assumption that the population under study is well mixed so that 
every person has equal probability of coming into contact with every other person. The removal rate γ > 0 gives 
the probability that an infective person recovers. In the classical SIR model β and γ are constants, while they 
are functions of time  in14. The diagram in Fig. 1 describes the adaptive SIR (A-SIR) model with vaccinations 
(A-SIRV) and time-dependent coefficients:

(1)V(t) =

∫

t

0
u(t)dt.

Figure 1.  The A-SIRV epidemic model.
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The total population N = S(t)+ I(t)+ R(t) is considered constant in the equations. Fig. 1 shows the diagram 
for the A-SIRV model, corresponding to the system (2)–(4).

The A-SIRV model used in this study assumes that the removed individuals are no longer susceptible nor 
infectious. The number of cases for recovered from COVID-19 individuals who are re-infected at the present 
moment is very limited and the rate cannot be estimated; thus, this possibility in not taken into account.

Effective and basic reproductive ratios R
e
 and R

0
. An epidemic occurs if an infective individual intro-

duced into a population of susceptible individuals infects on average more than one other person, namely I(t) is 
increasing in time. The original SIR model assumes that the transmission and removal rates are constants. Equa-
tions (2)–(4), with proper initial conditions, allow the determination of I(t), and S(t), and R(t), if the coefficients 
β and γ are known constants. However, in the case of a pandemic, the rates may vary in time; hence, β = β(t) 
and γ = γ (t).

The so-called effective reproduction number (also effective reproduction rate or ratio) for a given epidemic is 
the parameter Re(t) given by

An epidemic occurs when Re(t) > 1 . Then the fraction of the population that is immune increases (because of 
vaccination or because of recovering from the disease) so much that Re(t) < 1 , ”herd immunity” is achieved. 
Hence, the number of new cases occurring in the population will decrease to zero.

Another important characteristic of an epidemic, the basic reproduction number (or ratio, or rate) R0 , is 
defined as:

where N is the size of the total population.
Multiple factors may cause the rates to change over time. In the case of COVID-19, examples include social 

distancing, restrictions imposed by governments, and preventive treatments. Therefore, we define the effec-
tive reproduction number and the basic reproduction number to be functions of time, defined in (5) and (6), 
respectively.

The main goal of the present work is to identify the time-dependent reproduction rates directly using the 
SIRV model.

Inverse problem formulation. The initial-value problem consisting of the system of equations (2)–(4), 
with coefficients β(t) and γ (t) known, along with proper initial conditions derived from the given data, consti-
tutes the direct problem. Note that the vaccination rate function u(t) in equations (2) and (4) can be obtained 
from the function V(t), which is known from the reported public data on a daily basis.

In reality, the values of the time-dependent parameters β(t) and γ (t) are unknown for a new epidemic disease. 
Hence, the simultaneous determination of the coefficients and functions from the available data is an inverse 
problem.

Let [0, P], where P is a number of days, be a time sub-interval (Fig. 2), where approximate values of the sus-
ceptible S(t) and currently infectious I(t) are known at specified time moments ν0, ν1, . . . , νP,

(2)L1(S, I ,β) =
dS(t)

dt
+ β(t)S(t)I(t)+ u(t) = 0

(3)L2(S, I ,β , γ ) =
dI(t)

dt
− β(t)S(t)I(t)+ γ (t)I(t) = 0

(4)L3(I ,R, γ ) =
dR(t)

dt
− γ (t)I(t)− u(t) = 0.

(5)Re(t) =
β(t)S(t)

γ (t)
.

(6)R0 =
β(t)N

γ (t)
,

(7)S(νi) ≈ σi , I(νi) ≈ �i , i = 0, 1, . . . ,P.

Figure 2.  The time nodes νi where the data values are given.
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At the same time, the values of V(νi) are given exactly since the number of vaccinated people is available, as 
reported  in3. Therefore, we can approximate the data values of V(t) using a function with a continuous second 
derivative. From this function, the values u(t) = dV

dt
 can be estimated.

Since the values of the vaccination rate function u(t) can be found from the available data of vaccinated indi-
viduals, we can find I(t), S(t), β(t) , and γ (t) from equations (2), (3), and (7). Note that this problem is inverse and 
require a special treatment. The approach used here is based on the Method of Variational Imbedding (MVI)14,36. 
Following the idea of MVI, we construct a functional using the original equations (2), (3), and the available data 
values (7). We define the functional over the sub-interval [0, P] as

where µi are the weights prescribed for the i-th node and δ(t) is the Dirac delta function δ(t − νi) defined as:

In other words, we substitute the problem for finding the unknown functions I(t), S(t) and the coefficients 
β(t) , γ (t) in equations (2), (3), and (7) with a problem for minimization of the functional F defined by (8). 
Finding R(t) is straightforward after knowing the values of I(t), S(t), β(t) , and γ (t).

The absolute minimum of F is equal to zero with the functional becoming zero if and only if equations (2), 
(3) and conditions (7) are satisfied. We want to emphasize here that the functions (S, I, V) and the parameters 
(β , γ , u) are unknown and one have to identify them simultaneously by solving a minimization problem.

Method for solving the inverse problem with time‑dependent rates
In order to solve the inverse problem with time-dependent rates, we first find the minimum of the functional F , 
defined in (8), numerically over a sub-interval of the entire period assuming constant transmission and recovery 
rates. The details of solving the minimization sub-problem are given in “Appendix A”.

Let the values of S(t) and I(t) be known at some time moments ν0, ν1, . . . , νm , shown in Fig. 3, namely

We consider the following two approaches for estimating the coefficients βl and γl in the system of equations 
(2), (3): 

 i. Solve the inverse problem for the system of equations (2), (3) under the boundary conditions 

 for l = 1, 2, . . . ,m . This approach is similar to the method developed  in37 for estimating the coefficient 
in Euler-Bernoulli equation, later modified  in36 for the SIR equations. It works well if the data represent 
the exact values of the functions S(t) and I(t). In a real-world data, e.g. the available public data for the 
COVID-19 pandemic, there usually exists random noise causing oscillations in the numerical results.

 ii. Use the solution method, proposed in Sect. 3, for estimating the parameters β and γ as constants on every 
sub-interval [νl , νl+P] , Then, we use the obtained constant values to approximate the non-constant values 
βl+P and γl+P for l = 0, 1, . . . ,m− P . This approach is smoothing the data automatically. Knowing the 
approximate values of the transmission and recovery rates, we obtain the reproduction rates 

Results
The numerical simulations have been performed using the available public data  from3  and38 websites. The number 
of currently infected persons, �k , is reported daily  on38. Both  websites3  and38, report the total number of infected 
individuals, Tk = Ik + Rk from the beginning of the COVID-19 pandemic.

(8)F =

∫

P

0

[

L
2
1 + L

2
2 +

P−1
∑

i=1

δ(t − νi) µi

(

(S(t)− σi)
2 + (I(t)− �i)

2
)

]

dt,

δ(t − νi) =

{

∞, t = νi
0, t �= νi

and

∫ ∞

−∞

δ(t − νi)dt = 1.

(9)S(νl) = σl , I(νl) = �l , for l = 0, 1, . . . ,m.

(10)S(νl−1) = σl−1, I(νl−1) = �l−1, S(νl) = σl , I(νl) = �l ,

R0,k =
βk

γk
N and Re,k =

βk

γk
σl , k = P, P + 1, . . . ,m.

Figure 3.  The time nodes and the subsets of fixed length of P + 1 days for identifying β(t) and γ (t).
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The daily number of vaccinated people, Vk , is taken  from3. We assume that the reported data is correct. In 
order to to obtain a smooth approximation of the vaccinated persons V(t) and the vaccination rate u(t) = dV/dt , 
we use cubic spline approximation based on the values Vk . Consequently, the number of susceptible individuals, 
σk , for a given country can be found in the following way: σk = N − Tk − Vk , where N is the total population.

We do not pretend that the available data are accurate. For sure, the so-called ”hidden cases” (asymptotic cases 
or cases without official tests) are not included in the reported data. Moreover, the posted data contain random 
(human) mistakes which can be treated as random noise. Here, we use the posted data to illustrate the method 
described in "Method for solving the inverse problem with time-dependent rates" section.

The presented results for the rates Nβ , γ (t) , R0(t) , and Re(t) are based on 28-day, 35-day, and 42-day sub-
periods, over the entire multi-month period, from August 2020 until August 3, 2021.

The selected countries (Israel, United States, and Japan) for this study represent population with different 
vaccination dynamics. Israel performed early aggressive vaccination during the first half of 2021, United States 
is catching up, whereas Japan is behind compared to them. The World is aa good example of aggregated global 
data. Table 1.

The World.  Estimated rates Nβ , γ , R0 , and Re for the World are shown at Fig. 4. According to the reported 
data as of August 3, 2021: 14.78% of the population was fully vaccinated; about 2.56% of the population met the 
virus. Thus, 82.66% of the population remained susceptible. The basis and effective reproduction rates have been 
near 1 since January 2021.

Israel. During the first half of 2021, Israel was the COVID-19 vaccination champion – over 57.7% of the 
population of the country was vaccinated by the end of July. At the same time, according to the reports, approxi-
mately 9.43% of the population met the virus; hence, only 32.87% of the population was susceptible. According 
 to21, early mass vaccination programs predict a reduction of the effective reproduction rate of infection within 
communities. The estimated values of the basic and effective reproduction ratios R0 and Re for Israel are shown 
in Fig. 5. The effective reproduction rate is practically constant, slightly less then 1 from January to middle June 
2021. In June 2021, the rates increased significantly for a short period of time. Then, the reproduction rates 
decreased but they still remained above 1.

The United States of America.  The reported data for The United States of America state: 49.54% were 
fully vaccinated, about 10.79% of the population met the virus; hence, 39.67% of the population were susceptible. 
The estimated values of the transmission rate Nβ , γ , the basic and effective reproduction ratios R0 and Re are 
shown at Fig. 6. The transmission rate was the highest in fall 2020. It started to increase again in June-July 2021. 
COVID-19 is on the rise in many countries, casing a new wave. This surge is due to widespread resumption of 
normal activities.

Japan.   Japan is with about 30.10% fully vaccinated individuals, approximately 0.75% reported to be totally 
infected; this, about 69.15% are susceptible;. The estimated values of the transmission rate Nβ , γ , the basic and 
effective reproduction rates R0 and Re are shown in Fig. 7. While the rates had been relatively reasonable and low 
until recently, they started to increase lately. This growth can be explained with the 2020 Summer Olympics held 
from 23 July to 8 August 2021 in Japan.

Discussion
We performed numerical simulations with the developed method for the A-SIRV model for identifying the 
transmission, removal and reproduction rates globally and for three countries (Israel, United States, and Japan) 
using publicly available data. Estimated rates for the World show the presence of three waves and a forth wave 
being formed since July 2021.

The values for the identified rates for the World do not oscillate, regardless of the number of days P. By con-
trast, the obtained rates of the selected individual countries have fluctuations during 2021, which are smaller 
for P = 42 compared to P = 28 and P = 35 . This is because a larger time period is having a smoothing effect of 
the oscillating functions.

We observe oscillations during time periods that include vaccination data. The vaccination rate u(t) is approxi-
mated from the given data for the number of vaccinated individuals V(t). It clearly affects the computed rates 
in the A-SIRV equations. The oscillations in the rates for Israel, Japan, and to some extent United States can be 
explained with fluctuations in the vaccination rate u(t) due to irregularities in the data for vaccinated people 
V(t). We assume that the problem is posed correctly, namely the data have ”physical meaning” and, therefore, 

Table 1.  Vaccinated, recovered, and susceptible for the World and selected countries as of August 3, 2021.

Fully vaccinated (%) Recovered (%) Susceptible (%)

World 14.78 2.56 82.66

Israel 57.70 9.43 32.87

United States 49.54 10.79 39.67

Japan 30.10 0.75 69.15
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a solution of the problem exists,  see39. The randomness of the vaccination data introduces oscillations in the 
obtained numerical values of the rates.

Finally, it is important to mention that the A-SIRV model considers only one homogeneous population for 
the selected countries: thus, giving aggregated results for the estimated rates and the unknown functions. The 
populations of The World and The United State of America are obviously not homogeneous. Such results can 
still help see trends of potential future growth of the epidemics and, if needed, guide the design of alternative 
interventions.

Conclusions
Mathematical models can help with visualizing and predicting the long-term behaviour of an infectious disease, 
despite of the fact that there are many limitations to using them. For instance, the SIR type models contain many 
assumptions such as: accuracy and completeness of reported data; mixing of the population; no reinfection; con-
stant population; and so forth. The present work studies the performance of a method for an epidemic based on 
an inverse problem approach for estimating the time-dependent transmission and removal rates in the A-SIRV 
epidemic model. The inverse problem is solved by defining a minimization problem using the entire dataset for 
the examined population, with available COVID-19 data. The work utilizes an inverse problem approach to the 
time-dependent transmission and removal rates identification as well as the unknown functions in the A-SIRV 
(Adaptive SIRV) model. This can give insight into how well the method identifies the parameters that can be used 
to predict the infectious disease spread. If conditions change, then the predictions may no longer be accurate; 
hence, adjustments will be required based on the existing conditions, for obtaining new predictions.

Data availibility
The COVID-19 data is publicly available at https:// ourwo rldin data. org/ coron avirus- source- data and https:// 
www. world omete rs. info/ coron avirus/.
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Figure 4.  Estimated rates Nβ , γ , R0 , and Re for the World.
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Appendix A: Solving the minimization sub‑problem
In order to solve the minimization sub-problem used in Sect. 3, we first approximate the derivatives and integrals 
in (8).

A.1 Discretization of the minimization sub‑problem. Let τ = P

n
 be the time-step of a uniform grid 

on the finite interval [0, P], where n is the total number of grid nodes. The grid nodes are defined as: tk = kτ , 
k = 0, 1, . . . , n . It is important that τ (respectively n) is chosen to ensure that every time moment ν1, ν2, . . . , νP 
coincides with one grid node. Let Sk , Ik , and uk be notations for the corresponding grid values of the functions 
S(tk) , I(tk) , and u(tk).

Since the problem for minimization of the functional F is non-linear, it requires lineariation at some stage 
of the solution process. Let Ŝk , Îk be known approximate values (say from the previous iteration), used in the 
non-linear term of the differential equations (2), (3). Such linearization has the advantage that it allows build-
ing an iterative procedure with a time-independent matrix of the resulting linear system. Hence, we invert this 
matrix once, at the start of the iterations.

In order to secure O(τ 2) errors of approximation of the operators in (8), we discretize the derivatives in L1 and 
L2 at the grid nodes tk−1/2 . We introduce the notations for the approximations of S(t) and I(t) at the midpoints 
of [tk−1, tk] , where k = 1, 2, . . . , n:

Consequently, the differential operators L1 and L2 are approximated by the following linear difference operators 
�1 and �2

Ŝk−1/2 = 0.5(Ŝk−1 + Ŝk), Îk−1/2 = 0.5(Îk−1 + Îk), uk−1/2 = 0.5(uk−1 + uk).
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Figure 5.  Estimated rates βN , γ , R0 , and Re for Israel.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15688  | https://doi.org/10.1038/s41598-022-20276-7

www.nature.com/scientificreports/

for k = 1, 2, . . . , n.
We approximate δ(tk − νi) as

As already stated, it is important that for every 1 ≤ i ≤ P − 1 , there exists index ki , such that νi = tki , i.e., the set 
of time moments {ν0, ν1, . . . , νP} , is a subset of the set of grid nodes {t0, t1, . . . , tn} . To simplify the presentation, 
let us introduce the notations

In other words, the values µ̄ , σ̄ , and �̄ on the grid {t0, t1, t2, . . . , tn} are equal to µ , σ , and � , respectively, if there 
exists k ∈ {0, 1, . . . , n} such that tk = νi , 1 ≤ i ≤ P − 1 . Otherwise, for tk  = νi the values µ̄ , σ̄ , and �̄ are zero.

This way, the discretized version of the functional F becomes

(11)�1,k =
Sk − Sk−1

τ
+ βŜk−1/2 Îk−1/2 + uk−1/2

(12)�2,k =
Ik − Ik−1

τ
− βŜk−1/2 Îk−1/2 + γ Îk−1/2,

(13)δ(tk − νi) =

{

1

τ
, tk = νi

0, tk �= νi

for k = 1, 2, . . . , n, i = 1, 2, . . . , P − 1.

µ̄k =

{

µi , tk = νi ,
0, otherwise

σ̄k =

{

σi , tk = νi ,
0, otherwise

�̄k =

{

�i , tk = νi ,
0, otherwise

.
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Figure 6.  Estimated rates Nβ , γ , R0 , and Re for United States.
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A.2 Equations for S and I. The necessary conditions for minimization of the function � with respect to its 
arguments Sk and Ik are

For the case under consideration, we obtain the following equations in the internal grid nodes tk , where 
k = 1, 2, . . . , n− 1

The equations at the start grid node t0 and the end grid node tn are

(14)� =

n
∑

k=1

[

(�2
1,k +�2

2,k)τ + µ̄k

(

(Sk − σ̄k)
2 + (Ik − �̄k)

2
)]

.

(15)
∂�

∂Sk
= 0,

∂�

∂Ik
= 0.

(16)
Sk−1 − (2+ τµk)Sk + Sk+1

= −τβ(Ŝk+1/2 Îk+1/2 − Ŝk−1/2 Îk−1/2)− τ(uk+1/2 − uk−1/2)− τµkσk ,

(17)
Ik−1 − (2+ τµk)Ik + Ik+1

= τβ(Ŝk+1/2 Îk+1/2 − Ŝk−1/2 Îk−1/2)− τγ (Îk+1/2 − Îk−1/2)− τµk�k .

(18)S1 − S0 = τ(−β Ŝ1/2 Î1/2 − u1/2),
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Figure 7.  Estimated rates βN , γ , R0 , and Re for Japan.
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This way, given that approximate values of β and γ  are known from the previous iteration, there are 
two well-posed systems of (n+ 1) linear equations: (16), (18), and (20) for the unknown set of new values 
(S0, S1, S2, . . . , Sn) ; and (17), (19), and (21) for (I0, I1, I2, . . . , In) . Due to the early linearization, these two systems 
are with constant matrices. Hence, we need to invert them once and use the inverse matrices during the entire 
iterative process.

A.3 Equations for β and γ. We rewrite the function � in the form

where

The necessary conditions for minimization of the function � with respect to β and γ are given by

The solution of the system (23), (24) is

Up to this point, we have constructed two systems of linear equations, one system for (S, I) under the condi-
tion that (β , γ ) are given, and another system for (β , γ ) under the condition that (S, I) are given. This allows us 
to build an algorithm for finding a solution to the entire non-linear problem, by means of an iterative procedure, 
replacing (β , γ ) (when calculating (S, I)), or (S, I) (when calculating (β , γ ) ) with their values from the previous 
iteration. If the iterations converge, then they will give one of the possible solutions of the problem. Thus, the 
existence of the solution to the problem can be established a-posteriori. If the iterative process diverges, this will 
mean that there exists no solution to the problem.

A.4 Iterative algorithm for the inverse sub‑problem. Algorithm 1 shows the iterative procedure for 
solving the system (16)–(21), along with obtaining the values of the transmission and removal rates from equa-
tions (25) and (26).

(19)I1 − I0 = τ(βŜ1/2 Î1/2 − γ Î1/2),

(20)Sn − Sn−1 = τ(−β Ŝn−1/2 În−1/2 − un−1/2),

(21)In − In−1 = τ(βŜn−1/2 În−1/2 − γ În−1/2),

(22)� = α00 + α10β + α01γ + α20β
2 + α11βγ + α02γ

2,

α00 =

n
∑

k=1

[

(Ik − Ik−1)
2 + (Sk − Sk−1)

2 + τ 2u2
k−1/2

]

,

+ µ̄k

[

(Sk − σ̄k)
2 + (Ik − �̄k)

2
]

,

α10 =

n
∑

k=1

−2Îk−1/2Ŝk−1/2(Ik − Ik−1 − Sk + Sk−1 − τuk−1/2)τ ,

α01 =

n
∑

k=1

2Îk−1/2(Ik − Ik−1)τ ,

α20 =

n
∑

k=1

2Î2
k−1/2Ŝ

2
k−1/2τ

2, α11 =

n
∑

k=1

−2Î2
k−1/2Ŝk−1/2τ

2, α02 =

n
∑

k=1

Î
2
k−1/2τ

2.

(23)
∂�

∂β
=α10 + 2α20β + α11γ = 0,

(24)
∂�

∂γ
=α01 + α11β + 2α02γ = 0.

(25)β =−
2α02α10 − α01α11

−α2
11 + 4α02α20

,

(26)γ =−
α10α11 − 2α01α20

α2
11 − 4α02α20

.
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A.5 Validation of the numerical solution method. The accuracy of the developed numerical method 
and the corresponding algorithm are verified with mandatory tests involving different values of the time step τ . 
We confirmed the practical convergence and the O(τ 2) approximation of the difference scheme. We chose Israel 
for these tests because this country started mass vaccination of the population relatively early compared to other 
countries.

The computed numerical values of the identified coefficients β and γ with four different values of τ for a time 
period P = 28 days for Israel are given in Table 2, from May 24, 2021 to June 21, 2021. The rates of convergence 
are computed using the formulas

The tests confirm the second order of convergence of the numerical solution with respect to τ . The results for 
other countries and time periods P are similar.
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