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ABSTRACT 

 

In an Additive Manufacturing (AM) process, the layer-by-layer fabrication of a part leads 

to a staircase effect affecting its final quality. Parts manufactured using AM process may not 

satisfy the specified tolerance requirements due to this staircase effect. An improved surface 

quality (reduction in staircase effect) and a reduced build time are the two most important 

driving factors which led to the development of different slicing algorithms. The uniform slicing 

approach presents a tradeoff between the part‟s quality and the build time whereas current 

adaptive slicing methods are computationally expensive. 

An innovative algorithm to compute adaptive slice thicknesses in an AM process is 

presented in this study. This method, termed as Modified Boundary Octree Data Structure 

(MBODS), is used to convert the STL file of an object to an octree data structure, by considering 

the part‟s geometry, the AM machine parameters, and user defined tolerance values. This 

algorithm ensures that the fabricated part satisfies the required geometric tolerances. The 

developed algorithm is characterized by its simple structure and its modest storage space and 

computation time requirements.  

A subsequent algorithm computes the variable slice thicknesses using the MBODS 

representation of the part and virtually manufactures the part using these calculated slice 

thicknesses. Points sampled from the VM of the part are inspected to evaluate the part errors.  In 

the present study, the volumetric, profile and cylindricity errors have been evaluated using the 

adaptive slice thicknesses. The MBODS algorithm is validated by comparing it with uniform 

slicing approaches using various constant slice thicknesses. The developed algorithm is observed 

to be more effective in improving the part-quality with lesser number of slices. 
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1. INTRODUCTION 

 

Cost, quality, and velocity are three factors of major importance that are essential to excel 

under present global competitive pressures. Design is a crucial step in developing a new product 

consuming a substantial percentage of time and cost.  Prototypes that do not qualify user defined 

criteria are rejected and rebuilt. Virtual manufacturing of parts plays an important role in 

minimizing these wastes. A part is physically built only if it qualifies all inspection tests in the 

virtual product development phase. This results in the desired quality of the part is achieved 

along with a noticeable reduction in time and cost. With the advent of rapid product 

development, additive manufacturing technologies have found their applications in almost all the 

industrial sectors. Enhanced visualization capabilities give the user a fair idea of looks and 

functionality of the final product by observing the working model in early design phase. 

Immediate feedback from users helps to find design flaws at early stages thus eliminating 

expensive errors. 

In an Additive manufacturing (AM) process, a part is built by laying down successive 

layers of material. A distinct advantage of AM processes over traditional subtractive 

manufacturing processes is that parts with complex geometries can be easily fabricated. 

Generally, in an AM process a 3-D model of the part is created using a CAD package. This CAD 

model is then tessellated using a Stereolithography (STL) file that has become the standard data 

input format for the AM industry. The STL file is then sliced into thin layers before sending it to 

an AM machine for layer-by-layer fabrication yielding a part that does not require any additional 

machining or tooling.  

There are several AM technologies in use today and some of them are shown in Table 1 
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along with materials used for these processes. 

 

Table 1: Types of AM technologies [1] 

Additive manufacturing technologies Base materials 

Selective laser sintering (SLS) Thermoplastics, metals powders, ceramic powders 

Direct metal laser sintering (DMLS) Almost any alloy metal 

Fused deposition modeling (FDM) Thermoplastics, eutectic metals 

Stereolithography (SLA) photopolymer 

Laminated object manufacturing (LOM) Paper, foil, plastic film 

Electron beam melting (EBM) Titanium alloys 

3-D Printing Plaster, Colored Plaster 

 

Figure 1 shows schematics for two popular AM technologies, selective laser sintering 

and fused deposition modeling. 

 

(a)                                                                       (b) 

Figure 1: (a) Selective laser sintering (b) Fused deposition modeling [2] 

http://en.wikipedia.org/wiki/Photopolymer
http://en.wikipedia.org/wiki/Titanium_alloy
http://en.wikipedia.org/wiki/Plaster
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1.1 Motivation for Research 

Additive manufacturing technologies have recently emerged as a chosen approach for 

rapid fabrication of 3-D products directly from a CAD system. Unfortunately, the layered 

fabrication of a part leads to staircase effect affecting the final quality of the part. As a result, the 

Geometric Dimensioning & Tolerancing (GD&T) requirements of parts thus manufactured using 

an AM process may not be satisfied. The requirement for simultaneous improvement in the two 

important aspects of AM methods, namely, the surface quality of a part, and build time have led 

to the development of different slicing algorithms. Uniform slicing technique, where a fixed 

layer thickness is used to slice the entire STL file, results in a tradeoff between the build time 

and the resulting part surface quality. On the other hand, adaptive slicing procedures offer a 

combination of improved part surface quality and reduced build time. Several approaches at 

adaptive slicing have been discussed in the literature, where the researchers have considered 

parameters such as part geometry, orientation, and cusp height for slicing of the CAD model. 

However, the proposed methods involve tedious computations demanding large computing space 

and time. In this research, an attempt has been made to efficiently slice an STL file 

(Stereolithography file) obtained from a CAD model into horizontal layers using variable slice 

thicknesses to achieve the desired surface quality of the part. Octree data structures [3], with 

their superior time and space requirements and innate simplicity, have been used to successively 

accomplish the adaptive slicing of the object. 

 

1.2 Objective and Impact of Research 

The objective of this research is to compute variable slice thicknesses for a part in an AM 

process so that it satisfies specific tolerance requirements. A unique algorithm for calculating 
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adaptive slices based on object geometry and AM machine parameters is proposed in this 

research. Existing adaptive slicing methods involve complex and time consuming computations. 

The present research considers a simple octree data structure and modifies it to represent surfaces 

of a given part. A methodology to decompose an STL file into a Modified Boundary Octree Data 

Structure (MBODS) is presented and an algorithm to compute adaptive slices based on the octree 

representation has been developed. The cubes in the octree data structure cubes are recursively 

divided until each cube satisfies certain predetermined criteria. This allows user control over the 

decomposition while maintaining the volumetric error of the object under a threshold value. To 

validate these methods, parts are virtually fabricated using these variable slice thicknesses to 

satisfy the geometric tolerances.  

 

1.3 Thesis Outline 

An introduction to AM technologies and their applications was discussed in the previous 

section. The objectives and possible impact of this research were also explained above. Chapter 2 

of this thesis focuses on a detailed review of the work that has been carried out in the fields of 

AM processes, files inputs for AM, slicing methods, decomposition of objects into octree data 

structure, virtual manufacturing and inspection. Chapter 3 explains the proposed methodology 

and steps involved in achieving the expected results. Chapter 4 contains several simulated test 

examples and results validating the proposed methodology. Chapter 5 includes the conclusions 

from the present research and possible avenues for future research in this field. 
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2. RELATED LITERATURE REVIEW 

 

This section reviews the work that has been performed in the field of additive 

manufacturing (AM) technology and octree decomposition. Areas relevant to this research are 

AM processes, file inputs for AM, slicing methods, octree data structures, virtual manufacturing 

and inspection. 

2.1 Additive Manufacturing (AM) 

In AM processes, CAD models are used as a direct or indirect input, to facilitate a layer-

by-layer fabrication of 3-D objects. Generally, a CAD model is tessellated before sending it to 

the AM process. The tessellated CAD model is then sliced into thin layers and the part is built 

one layer atop another.  

Research issues in an AM process focus on areas such as part build orientation, slice layer 

thickness, support structure, hollowing, workspace optimization, path planning, and material 

properties [4]. The various process-planning tasks which typically arise in an AM process such 

as slicing, orientation determination, support generation, and path planning were 

comprehensively reviewed by Kulkarni et al. [5]. Byun and Lee [6] aimed at achieving an 

optimal build orientation to reduce the surface roughness of a part by considering the support 

structures and build time as factors. Puduhai and Dutta [7] investigated the fabrication of a part 

at the optimal build orientation. Such an orientation yields a reduced build time with improved 

stability and surface quality by minimizing the contact area with the support structures. 

 

2.2 File input for AM 

A CAD model can be used with or without tessellation. When a CAD model undergoes 
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tessellation the surface of the object is approximated into a series of triangles, yielding an STL 

file that exists in binary and ASCII formats. Binary files are compact whereas ASCII files are 

easy to read [8]. ASCII and binary file formats of an STL file are shown in Table 2. 

 

Table 2: ASCII and binary file format of an STL file [9] 

 

As shown in Figure 2, each triangular facet has three vertices and a unit normal vector. 

The normal of every triangular facet always faces away from the object. Figure 3, shows a CAD 

model and the corresponding STL file. 

 

Figure 2: A triangular facet in an STL file 
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(a)                                                      (b) 

Figure 3: (a) CAD model (b) STL file of the CAD model 

 

As discussed earlier, STL file format has always been the industry standard for file input 

for AM processes. Recently, a new Additive manufacturing file (AMF) format has been 

developed by ASTM international [10]. AMF unlike STL file format supports color, texture, 

material, and constellations of the fabricated object. This file format can represent one or 

multiple objects and each of these objects are represented as a set of non-overlapping volumes. 

The color and the material of each volume can be specified using AMF file.  

 

2.3 Slicing of an STL File 

An STL file is sliced into thin layers before sending it to an AM process. Many 

approaches have been proposed and implemented to calculate the layer thicknesses used to slice 

an STL file.  The surface quality and build time are the two important factors which led to 

development of different slicing algorithms [11]. Existing slicing algorithms can be classified 
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into two groups, slicing with uniform slicing procedure and adaptive slicing procedure. The 

different slicing procedures are classified as shown in Figure 4. 

 

Figure 4: Classification of slicing procedures [11] 

 

In uniform slicing, a fixed layer thickness is used to slice the entire STL file. This 

approach presents a tradeoff between the surface quality of the part and the build time. Smaller 

slice thickness will increase the build time whereas larger slice thickness will affect the desired 

surface quality. 

In adaptive slicing, variable slice thicknesses are computed instead of a constant slice 

thickness.  These variable slice thicknesses are governed by part geometry, orientation and AM 

machine parameters. A combination of improved part surface quality as well as reduced build 

time can be achieved using adaptive slicing algorithms.   
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Layered fabrication of a part leads to staircase effect as shown in Figure 5(a) affecting the 

final quality of the part. This staircase effect can never be completely eliminated in any AM 

process. Dolenc and Makela [12] introduced the concept of maximum allowable cusp height as a 

solution to reduce the staircase effect in AM processes.  Local slice thicknesses are calculated by 

limiting the cusp height „C‟ as shown in Figure 5(b). 

 

 

 

Figure 5: (a) Staircase effect due to layer thickness (b) Cusp height [12] 

 

Stepwise uniform refinement procedure was proposed by Sabourin et al. [13]. This 

method is also based on limiting the cusp height. Initially, an STL file is sliced into uniform 

slices of maximum thickness allowed. Slices which do not satisfy the user defined cusp height 

are again divided into layers with smaller uniform thickness.  In another approach as shown in 

Figure 6, Sabourin et al. [14] came up with a method in which exterior of the part was built with 

thin layers to maintain surface accuracy while thick layers are used for the interior of the part. 

They claimed that accurate exterior and faster interior method could reduce build time by 50-80 

percent. 

(a) (b) 
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Figure 6: Slicing based on thick interior and accurate exterior [14] 

 

According to Cormier et al. [15], non-uniform cusp height is preferred instead of 

assuming a maximum allowable cusp height, since a part may have different cusp height 

requirements at different faces. Grouping of facets in a tessellated CAD model based on edge 

finding algorithm has also been reported. Jamieson and Hacker [16] adopted a direct slicing 

approach of the CAD model with a uniform slice thickness, thus avoiding the intermediate step 

of tessellation of the CAD model. With a boundary representation (B-Rep) of the model, they 

used the areas of the successive layers as a criterion for implementing adaptive slicing. 

For accomplishing adaptive slicing, researchers have generally focused on the cusp 

height for direct or indirect slicing of the CAD model.  These methods involve very complex and 

time consuming computations. In this research, the concept of decomposition of an object using 

an octree data structure will be explored to compute adaptive slices. 

 

2.4 Octree Data Structure 

In 1980, Jackins and Tanimoto [17] proposed an octree representation for the modeling of 

3-dimensional objects and space planning. In octree based models, eight array trees are generated 
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through the repeated subdivisions of the object into eight octants [18]. Each internal node of the 

tree has exactly eight children [19]. 

Figure 7 illustrates the recursive subdivision of a cube into eight children and the 

corresponding octree representation, and Figure 8 shows the CAD model of a valve with its 

corresponding octree representation. 

 

                               

                                        (a)                                         (b) 

Figure 7: (a) Recursive subdivision of a cube into octants (b) the corresponding octree 

representation [20] 

 

Meagher [18] demonstrated the applications of the octree representation in computer 

aided design and computer aided manufacturing by developing octree based algorithms for 

boolean and geometric transformations, interference detection, and the display of hidden 

surfaces. 
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Figure 8: (a) Solid model of a valve; and (b) octree representation [21] 

 

Samet [22] reported the use of hierarchical data structures such as quadtree and octree for 

representation of surfaces and space. Quadtree structures, where each internal node has four 

children, are mostly used to represent two dimensional spaces. Allada and Anand [23] had 

explored the applications of octree and quadtree in several areas such as robot task planning, 

tolerance and inspections, feature based designs, and assembly line. 

Ayala et al. [24] introduced an octree model with a new type of node called Edge node 

that contains only one edge of an object instead of just being termed as black, white or gray, 

which helped in reducing storage requirements. The presented algorithm was used for exact 

backward conversion from octrees to boundary representation of polyhedral objects. Ayala [25] 

also looked into the representation of surfaces composed of biquadratic patches using an 

extended octree data structure with vertex, edge and face nodes.  In an algorithm by Anand and 

Knott [26], the octree decomposition of an object is computed in four steps; intersection of 

(a)                                                               (b) 
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spheres enclosing the object and the cube, a bounding box check, point classification of cube 

vertices with the object, and the intersection of the object edges with the half planes of the cubes.  

Octree data structures have the ability to store an object‟s information without any 

complexity, since each child cube inherits the information from its parent cube. The resultant 

octree structure helps in identifying any cube based on its origin, vertices, and path address 

information and also provides means of computing other relevant data such as cube length, 

volume, parent cube, and type of cube. The octree derived cube data structure, presented below, 

has been used in this study and is found to be very efficient as it has a pronounced effect on the 

simplicity and speed of the algorithm. 

 

Cube Data Structure: 

- Cube path address (or Cube ID) 

- Cube Origin (vertex of a cube closest to universal origin (0, 0, 0) ) 

- Cube Vertices (8 vertices) 

- IDs of STL triangle facets intersecting with the cube 

The following information can be easily deducted using the structure: 

- Cube Length 

- Cube Volume 

- Cube Faces 

- Cube Edges 

- Intersecting triangle‟s Vertices 

- Intersecting triangle‟s Edges 

- Intersecting triangle‟s Normal  

- Intersecting triangle‟s Area 
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Octree data structure properties such as volume decomposition capability, computational 

ease, simplicity, and less storage space requirements are exploited in this work to compute 

adaptive slice thicknesses used in an AM process.  

 

2.5 Virtual manufacturing and Inspection 

Virtual Manufacturing (VM) is defined as, “an integrated, synthetic manufacturing 

environment exercised to enhance all levels of decision and control” [27]. The part fabrication 

process is simulated in a computer considering all the variables involved in an actual 

manufacturing environment. The benefits of VM include shorter product development cycle, 

optimization of cost and quality, early consideration of affordability, and producibility. In [28], 

Marinov classified the virtual manufacturing system into two groups: virtual prototyping and 

virtual manufacturing. The author analyzed the complete manufacturing cycle for a product and 

performed an analysis of the virtual modeling technique to simulate the actual manufacturing 

process. 

Volumetric error in an AM process can be defined as the difference between the volume 

of the final part and the volume of the CAD model. Masood and Rattanawong [29] considered 

the volumetric errors encountered in AM processes and presented an algorithm to develop a 

generic part orientation system of solid parts to determine the best part orientation for any given 

complex part. Such a part orientation can effectively control the staircase effect by minimizing 

the volumetric error. 

The profile error of a free form surface is an important metrology metric defining the 

quality of a part. The objective of evaluating the profile error of a surface is to compute the 

minimum distance between the manufactured points and the design surface [30]. Besl et al. [31] 
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presented the Iterative Closest Point (ICP) method to evaluate the profile error for any given free 

form surface. In their paper Gunnarson et al. [32], computed the closest points to establish a 

relation between design surface and manufacturing points. To calculate the transformation 

parameters, the sum of squared errors between the two surfaces was minimized. The algorithm 

for the design surface creates a dataset of points that are closest to measurement point dataset 

followed by calculations for optimal rigid body transformations. This minimizes the distance 

between the manufacturing points and related design surface dataset from the first step.  

Least square (LS) and Minimum zone (MZ) formulations are typically used to evaluate 

form tolerances such as circularity, flatness, and cylindricity. LS method deals with minimizing 

the sum of the square of the deviations between the observed and expected values. LS form 

tolerance is the difference between the furthest point locations on both sides with respect to the 

least square feature. The MZ algorithm minimizes the tolerance zone enclosed by two perfect 

profiles within which all the inspection data points should lie. Murthy et al. [33] developed linear 

and non-linear models using least square methods to evaluate cylindricity such that the square of 

perpendicular distances between the points in the dataset and the ideal cylinder axis is 

minimized. Shanmugam [34] also used the least square method for cylindricity evaluation 

through simplex search and presented a closed form solution to optimize the average cylinder 

deviation. Dhanish and Shanmugam [35] provided a quick but approximate solution to measure 

cylindricity, assuming that the axis of the cylindrical feature and that of the measuring device are 

aligned.  

Carr and Ferreria [36] formulated a sequential linear optimization problem where they 

transformed the least square method and minimum zone algorithm into a sequence of linear 

programs to evaluate cylindricity. Lai and Chen [37] converted the measured dataset of a 
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cylinder into a planar dataset using non-linear transformation. This is then used in the evaluation 

of the cylindricity error using the Control Plane Rotation Scheme (CPRS) technique developed 

by Huang et al. [38] for flatness. A series of inverse transformations is then used to compute 

cylindricity. Kovvur et al. [39] used minimax formulations to develop a particle swarm 

optimization approach which was then employed to evaluate form tolerances. Ramaswami et al. 

[40, 41] presented an algorithm to accurately evaluate size of cylindrical features using particle 

swarm optimization. 
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3. METHODOLOGY 

 

The present study focuses on a new approach of adaptive slicing to reduce the staircase 

effect encountered in an AM process, thus increasing the surface quality of the part. This is 

achieved by converting the STL file into a Modified Boundary Octree Data Structure (MBODS). 

The octree data structure explained earlier is modified to represent STL file facets through a 

recursive subdivision of the STL boundaries into eight cubes. The depth of division of the 

MBODS depends on three criteria as explained in the following sections. The MBODS of an 

STL file is then used to compute the adaptive slice thicknesses utilized in an AM process. The 

local slice thicknesses are computed based on the smallest cube size at each level and the AM 

machine parameters.  This chapter explains the algorithms involved in the computation of 

variable slice thicknesses using MBODS, and the subsequent virtual manufacturing of a part. 

Once the part is virtually manufactured it is inspected for volumetric, profile, and cylindricity 

errors.  

 

3.1 Decomposition of STL file into Modified Boundary Octree Data Structure (MBODS) 

The decomposition methodology of an STL file into MBODS is presented in this section. 

The general steps involved in the conversion algorithm are explained briefly and are discussed in 

detail later in this section. 

a) Universal Cube: A cube is created which encompasses entire object. This universal cube 

serves as the root node of the octree. The universal cube undergoes subsequent division into 

eight child cubes, and each of the child cubes undergo further division as seen necessary.                       

b) Intersection of a STL File Triangular Facet with a Cube: The cube and the triangular 
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facets of the feature STL file are checked for intersections. The following three tests are 

performed to determine the cube and triangle intersection: point in a cube test, cube edges-

triangle facets intersection test, and cube facets-triangle edges intersection test. 

If a cube does not intersect with any triangle then it is termed as a white node. White 

nodes are terminal nodes that are ignored since they do not have any significance in the surface 

representation of the object. If a cube intersects with one or more triangles then it is termed as a 

gray node and the information of all the intersecting triangles is stored in the gray node. 

c) Conditions for Further Division of Gray Nodes: Gray nodes are passed on to this stage to 

ascertain their eligibility for further division. The following three tests are performed for this 

purpose: (1) smallest allowable cube test, (2) geometry of the object inside a gray node test, and 

(3) desired level of accuracy (user defined volumetric tolerance) test. A gray node which satisfies 

any of the above three tests is not eligible for further division and is termed as a terminal black 

node. Gray nodes which do not satisfy these three conditions undergo sub-division resulting in 

eight child cubes. 

d) All gray child nodes are processed through steps b and c. 

At the end of this MBODS algorithm, the STL file is converted to terminal black nodes 

of different sizes.  Figure 9 shows the process overview of an STL file to MBODS conversion 

algorithm.  

 

3.1.1 Universal Cube 

Universal cube is the largest cube of the MBODS with its origin coinciding with the 

origin of the Cartesian coordinate system (0, 0, 0). This serves as the root node of the MBODS. 

It encloses entire STL file. Figure 10 gives a schematic representation of a universal cube. The 
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size of the universal cube depends upon the largest bounding box of the STL file and the 

minimum slice thickness of AM process. The creation of a universal cube is restricted to a set of 

conditions as discussed below. 

Cube and Triangle 
Intersection?

Divide the cube/
gray nide into 8 

child cubes

Satisfies further 
division conditions?

Gray Cube/NodeWhite Node

Black node

Cube
Triangle of STL file 

inside the parent cube

Next cube

NO

YES

NO

Store Info. of all 
intersecting triangle

YES

 

Figure 9: Process overview of STL file to MBODS conversion 

 

 

Figure 10: Universal cube encompassing STL file 

Universal cube 

STL file 
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3.1.1.1 Universal Cube Creation Conditions 

Condition 1: The vertex-coordinates of all the triangular facets of an STL file are known and 

have to be aligned with the origin (0, 0, 0) of the universal cube such that the STL file lies 

entirely in the first quadrant of the Cartesian coordinate system. To accomplish this, the smallest 

values for the X, Y and Z coordinates of all the vertices in the object are determined and 

organized into an array of minimum X, Y and Z values, [Min X, Min Y, Min Z]. This array is 

then subtracted from every vertex coordinate to nullify the offset value, such that the new vertex 

coordinates would be [X-Min X, Y-MinY, Z-Min Z].  

After nullifying the offset values, a single maximum value from the new coordinates is 

determined. For example, if the new vertex coordinates are represented as [X-Min X, Y-MinY, 

Z-Min Z], then the maximum value will be Max [Max(X-Min X), Max (Y-MinY), Max (Z-Min 

Z)]. The universal cube side will always be equal to or greater than this maximum value. 

 

Condition 2:  Each AM process has a minimum and maximum allowable slice thickness that is 

machine dependent. The minimum slice thickness of the given AM process is then used to 

finalize the dimension of the universal cube. In this algorithm, the side of the universal cube will 

always be a multiple of the minimum allowable slice thickness. 

If Tmin is the minimum allowable slice thickness, then L, the side of the universal cube is 

given by, 

                                                                L = Tmin x                          (1)                            

where, N is the depth of division. 

 

For example, if 9.5 mm is the maximum value obtained from condition 1 and 0.01mm is 

the minimum available slice thickness, then the dimension of the universal cube will be 10.24 

mm (i.e. 0.01 x 210). 
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A universal cube is always considered to be a gray node and is divided into 8 child 

nodes/cubes. These child nodes are then sent through the three intersection tests, discussed 

above, to determine whether a cube is white or black.  

 

3.1.2 Intersection of a Triangle with a Cube 

If a cube does not intersect with any triangle then it is termed as a terminal white node. 

White nodes are ignored since they do not have any significance in the surface representation of 

the object. If a cube intersects with one or more triangles then it is termed as a gray node and the 

information of the intersecting triangles is stored in the gray node data structure.   

The following tests are carried out to decide whether a cube is a gray node or a white node. It is 

important to note that a triangle is considered to be intersecting with a cube even under the case 

where it lies entirely inside the cube. 

 

3.1.2.1 Point in a Cube Test 

In this test, a cube is checked against the vertices of the triangles of the STL file. A child 

node is checked against only those triangles which intersect with its parent node. A cube is 

termed as a gray node if at least one of the vertices of the object lies inside or on the cube. 

Triangles which have at least one vertex inside or on the cube are considered to be intersecting 

triangles. Relevant data of all such intersecting triangles are stored in the cube structure data. The 

following algorithm is used to determine the location of a given point with respect to a cube. 

A point is inside a cube if it lies within the cube bound i.e. if all coordinates of that point lie 

within respective coordinates of vertices of that cube. For example as shown in Figure 11, 

consider a cube with origin at (X, Y, Z) and of sides L. A given point P(x, y, z) lies inside the 

cube if, X≤ x ≤ X+ L, Y≤ y ≤Y+ L and Z≤ z ≤ Z+ L.  
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Figure 11: Point P inside a cube 

 

If no vertex lies inside or on the cube then the cube is termed as “non-terminal white 

node”. This node will undergo the next test before it can be considered as terminal white node. 

A gray node will also undergo the next test to check for intersections with the remaining 

triangular facets from its parent cube.  

 

3.1.2.2 Cube Edges and Triangle Facets Intersection Test 

This test is performed after performing the point in a cube test. A white node from the 

previous test does not have any triangle vertex inside or on the cube. However, there may be a 

case where a triangular facet intersects with cube‟s edges while all the vertices and edges of the 

triangle lie outside the cube.                                                                     .                                                                                                                             

.      A simple line and plane intersection algorithm is used to find whether a triangular facet 

intersects with the cube edge. The cube edge and triangle facet intersection point should lie 

within the bounds of the triangle edge as well as the cube face. 
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Figure 12: Line and plane intersection 

 

For example, as shown in the Figure 13, the triangle T1T2T3 intersects the cube at four 

different points with all the triangle vertices and edges lying outside the cube. The intersection 

point „P‟ lies on the cube edge AB, and within the bounds of the triangle facet (T1T2T3 ). The 

intersection point is valid if it satisfies both the following conditions.  

 

Figure 13: Cube edge and triangle face intersection 
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Point „P‟ is intersection of the triangle facet T1T2T3 and the cube edge AB if, 

(a) As shown in Figure 14, the point P lies within the edge bound (AB) that is verified by, 

                                            Distance (AB) = Distance (AP) + Distance (PB)                                        (2) 

 

 

Figure 14: Line bound AB for a point P 

 

(b)  As can be seen in Figure 15, P lies within triangle facet bound (T1T2 T3) of the cube if, 

Mod [Area (∆ T1T2T3)] = Mod [Area (∆PT2T3)] + Mod [Area (∆T1PT3)] + Mod [Area (∆T1T2P)]         (3) 

 

 

Figure 15: Point P in a triangular facet bound 

 

A “non-terminal white node” from the previous point in a cube test is reclassified as a 

gray node if even one of the triangular facets of an STL file intersects with any of the cube faces. 

The corresponding intersecting triangle information such as the triangle‟s vertices and normal to 

the triangle is stored in the cube structure. All the gray nodes, irrespective of their classification 
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following the first two tests, will undergo the next test to check for the existence of triangle-edge 

cube-facet intersections. All the “non-terminal white nodes” are also passed onto the next test. 

 

3.1.2.3 Cube Facets and Triangle Edges Intersection Test 

This test follows the Cube Edges and Triangle Facets Intersection Test.  There is a 

possibility that there are no triangle vertices inside a cube and no triangle facet-cube edge 

intersections.  In such a situation, the previous tests will fail to detect any existing triangle-cube 

intersection. 

As shown in the Figure 16, the triangle T1T2T3 intersects with cube at four different 

points. The triangle passes through the cube faces without touching any of the cube edges such 

that all the triangle vertices lie outside the cube. Hence, the cube face and triangle edge 

intersection test is necessary to detect an intersection and to decide whether a cube is a gray node 

or a terminal white node. 

                         

Figure 16: Cube face and triangle edge intersection 
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A line and plane intersection algorithm, as discussed in the previous section, is used to 

find out the intersection point of a cube face and a triangle edge. If the intersection point satisfies 

the cube facet and triangle edge bounds then it is a valid intersection as discussed below.  

Point „P‟ is an intersection of cube face ABCD and triangle edge T1T2 if, 

(a)  P lies within bounds of T1 and T2 that is verified by, 

   Distance (T1T2) = distance (T1P) + distance (PT2)                             (4) 

(b) As shown in Figure 17, P lies within bounds of the face(ABCD) of the cube and is verified 

by, 

Mod [Area (□ABCD)] = (Mod [Area (∆APD)] +Mod [Area (∆DPC)] + Mod [Area (∆BPC)] .+ 

Mod [Area (∆ABP)])                 (5) 

 

Figure 17: Point P in a square facet bound 

 

If a cube has at least one such intersection point then the cube is a gray node and if it does 

not have a single valid intersection point then the cube is termed as a terminal white node. At the 

end of these three intersection tests, all cubes can be differentiated into gray and terminal white 

nodes. Gray nodes will hold the information of the respective intersecting triangles in their 

structure. Terminal white nodes are insignificant to represent the surface of an object and will be 
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ignored. The gray nodes will then be processed through three new tests to check for their 

eligibility for further division.  

 

3.1.3 Conditions for Further Division of a Gray Node 

Gray nodes thus obtained from the cube-triangle intersection detection tests may be a 

coarse surface representation of an object. These gray nodes are checked against three other 

conditions to decide their eligibility for further division. These conditions will help in 

decomposing an object up to the desired level of accuracy. 

 

3.1.3.1 Smallest Allowable Cube Test 

In an AM process, the layer thickness at a particular level cannot be less than the 

minimum allowable slice thickness for the AM machine and consequently the size of the 

smallest possible cube in the octree representation is equal to minimum allowable slice thickness. 

Min allowable slice thickness = Size of smallest possible cube in the octree representation 

The division of a gray node is terminated if its size matches the smallest cube size 

calculated above, and such gray nodes are termed as terminal black nodes. AM machine 

parameters and the smallest possible cube are the factors used to predetermine the depth of cube 

division in an octree representation.  

 

3.1.3.2 Geometry of the Object inside a Gray Node Test 

Gray nodes larger than the smallest possible cubes will undergo a second test. In this test, 

the geometry of the object (i.e. geometry of intersecting triangular facets of the STL file) inside a 

gray node is checked. As mentioned earlier, every cube has information about the list of triangles 

intersecting that cube. This information is used to describe the geometry of the object inside the 
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cube. Surfaces that are parallel or perpendicular to the build direction (positive Z axis) do not 

contribute to staircase effect. If all the intersecting triangles are parallel and/or perpendicular to 

Z-axis then the gray node is not divided further and is termed as a terminal black node. In Figure 

18, all the intersecting triangles are either parallel or perpendicular to cube faces, and hence the 

cube represented becomes a terminal black node. 

 

Figure 18: Cube and STL file of a cuboid with two slots 

 

The scalar product of the triangle surface normal stored in the STL file, and the unit 

positive Z-axis is used to determine its orientation inside a cube. If the value of the scalar product 

is 0 then the triangle is parallel to the Z-axis and if the absolute value of the scalar product is 1 

then the triangle is perpendicular to the Z-axis. In both these cases, the cubes will be deemed as 

terminal black nodes. 

All the other remaining gray nodes are larger than the smallest possible cube and have 

intersecting triangles at an inclined angle to the Z-axis therefore necessitating the performance of 

a third test to determine whether these gray nodes are to be divided further.  
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3.1.3.3 Desired Level of Accuracy (User Defined Volumetric Tolerance) Test 

A gray node intersects the STL file such that a portion of the cube is inside the STL file 

and the remaining portion is outside. In this test, the volume of a cube outside the object is 

computed. The user can control the volume of the cube outside the object, termed as the 

volumetric tolerance for the cube. If a gray node satisfies this user defined volumetric tolerance, 

it is stored as a terminal black node, else it is divided into 8 child cubes. This provides a mean of 

controlling the resolution of the octree based on volumetric error at each node. The algorithm to 

calculate volume of a cube outside an object is explained in detail below.  

 

3.1.4 Volume of a Cube outside an Object 

A ray casting algorithm [42] is used to calculate the volume of a gray node outside the 

object. For the purpose of the algorithm, the top face of the cube is divided into „nxn‟ number of 

squares. The center points of these squares are termed as grid-points. Rays are extended from 

these grid points to the opposite face of the cube, parallel to the negative Z axis, as shown in 

Figure 19. 

 

Figure 19: Grid-points and casted rays in a cube 
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An algorithm is presented that categorizes the grid points as being either outside or inside 

of a given STL object. Rays shot from the grid points of a cube may intersect with the object 

present inside the cube at various points. Valid intersection points are to be determined for every 

triangular facet of the object inside the cube. Valid intersection points lie within the bounds of 

both the cube height and the triangle facet. Intersection points lying outside the ray or the 

triangle facet are discarded. Sometimes a ray may lie in the same plane as a triangle, intersecting 

with the triangle at infinite points. All such intersections will be neglected. 

For each ray, the normal of the first intersecting triangle is the key factor in determining 

the grid point‟s position with respect to the STL file facets. In an STL representation of the 

object, the normals of all the triangles face outwards and therefore, if the face normal of the first 

intersecting triangle is in general opposite to the ray direction, then the grid-point is outside the 

object, or else it is considered to be inside the object.  

From Figure 20, it is clear that the ray from the grid point P is directed opposite to the 

normal of the first intersecting triangle and therefore the grid point „P‟ lies outside the green 

colored object. 

                       

Figure 20: Intersection of a casted ray and triangles inside the cube 
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Some grid-points may cast rays that do not intersect with any of the triangles inside the 

cube. Positions of such grid-points can be decided using grid-points with known locations. As 

shown in the Figure 21, the ray from grid point Q does not intersect with any of the triangles 

inside the cube. To determine location of such a grid point, another ray is extended from Q to P, 

whose location is known. If there is an even number of intersections or no intersections with the 

triangles then the point Q is also outside the object. If there is an odd number of intersections 

then the point Q is inside the object. 

                    

Figure 21: Location of grid point A1 with respect to object inside the cube 

 

At the end of the test, all the grid points are separated into those that lie within the object 

and those that lie outside the object.  

 

3.1.4.1 Special Case: Intersection at a Common Edge or a Common Vertex  

If a ray shot from a grid point intersects with two or more triangles at a common vertex or 

a common edge then the grid point is shifted in the same plane by a very small value 'δ' (relative 

to the grid size). This resolves the issue of more than one intersecting triangle with normals in 
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different directions.  In Figure 22, the ray shot from the grid point P intersects with two different 

triangles at point P1 at a common edge. Grid point P is shifted by a very small distance „δd‟ in 

the same plane to avoid the multiple intersecting triangles. This process is repeated until the rays 

intersect triangles at distinct points. 

 

Figure 22: Ray intersecting at a common edge or a common vertex of triangles 

 

3.1.4.2 Segment of a Ray Outside the Object 

For a casted ray, once valid intersections with the triangles inside a cube are calculated, 

in the next step the segments of the intersecting rays lying outside the object are computed. The 

segment preceding the first intersection will always be outside for a ray casted from a grid point 

lying outside the object. Following the first intersection every alternate segment will lie outside 

the object. In Figure 23, the green polygon is a two-dimensional representation of the object 

while the square represents the intersecting cube. The grid point P lies outside the object and 

hence the segment from the grid point to the first intersection, P-P1, is outside the object. Again 

the segment from the second intersection to the third intersection, P2-P3, lies outside the object 
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and so on. A ray from a grid point outside the object that does not intersect with any triangle lies 

totally outside the object.  

 

Figure 23: Section view of a cube, STL file and a casted ray from outside grid point 

 

Similarly, for a grid point lying inside an object, the segment between the first and 

second intersections and every alternate segment thereon lie outside the object. The grid point Q 

in Figure 24 is inside the object and the ray segment between the first and second intersections, 

Q1-Q2, is outside the object and so on.  

 

Figure 24: Section view of a cube, STL file and a casted ray from inside grid point 

 

The algorithm thus computes all the segments of every ray that lie outside the object 

which are then used to calculate the volume of the cube which remains empty. 
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3.1.4.3 Volume of a Cube outside an Object 

With the knowledge of all the ray segments lying outside the object, the following 

formula is used to calculate the volume of the cube outside the object. 

 

% volume of a cube outside an object = 
                                                                                               (6) 

 

The percentage volume of the cube outside an object is multiplied by total volume of the 

cube to calculate the volume of the cube outside the object, as given below. 

Vol. of a cube outside an object = Cube vol. x Percentage vol. of the cube outside the object   (7) 

The volume of the cube inside an object is calculated by subtracting the total cube 

volume from the above derived empty cube volume, as given below. 

Vol. of a cube inside an object = Cube vol. – Vol. of the cube outside the object   (8) 

Volume of cube outside the object is then compared to the user defined volumetric 

tolerance. The volumetric tolerance is the maximum volume of a gray node that may remain 

outside the given object. It is a user desired value for the entire octree representation. If a given 

gray node satisfies the volumetric tolerance provided by the user, then it is termed as a terminal 

black node, else it is further divided into 8 child cubes. These child cubes then undergo the entire 

series of processes that its parent cube was subjected to.  

In the case that the volume of the object lying within a given cube is less than the 

volumetric tolerance, the cube is discarded, since the removal of that cube from the octree 

representation does not significantly affect the surface quality of the object.                                                       

At the end of this MBODS algorithm, the STL file is converted to terminal black nodes 

of different sizes. These terminal black nodes are then utilized to compute the slice thicknesses at 

different levels.  
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3.1.4.4 Volume of the Cube outside an STL file: examples 

  The ray casting algorithm is used to determine the volume of any gray node outside an 

STL file. Two examples are presented below to explain and validate the algorithm.   

Example 1: An object, as shown in Figure 25, is modeled using a CAD package (SolidWorks) 

and exported as an STL file. A cube is created encompassing the STL file. The top face of the 

cube is divided into a square matrix with the centers being grid points and rays are extended 

from these grid points, parallel to the negative Z axis, reaching the bottom face of the cube.  

Part specifications: 

• Side of the cube = 1 mm 

• Volume of the cube  = 1  mm3 

• Actual volume of the CAD object = 0.37 mm3 

• Actual volume percentage of the cube outside the object = 63% 

 

(a)                                                          (b) 

Figure 25: (a) CAD model (b) STL file with grid points for example 1 

 

  The ray casting algorithm is then applied several times to the object and the cube, by 

varying the number of grid points each time. The corresponding results are presented in Table 3. 
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Table 3: Volume of cube outside STL file for example 1 

No of grid points 
% by which the cube is empty 

(using ray casting method) 

Actual % by which the cube is 

empty 

9 57.974 

63 
25 60.542 

36 61.6287 

64 61.8148 

 

  It is clear from Table 3 that the degree of accuracy in calculating the volume of a given 

cube outside an object increases as the number of grid points increases. With 9 grid points, there 

is a volumetric error of 7.97% whereas the error reduces to 1.88% for 64 grid points. 

  As can be gathered from the graph in Figure 26 the accuracy in computing the cube‟s 

unoccupied volume percentage increases steeply as the grid size increases. As the number of 

grid points increases beyond a certain level, the predicted value asymptotically approaches the 

actual fraction of the cube‟s empty volume.  

 

Figure 26: Percentage volume by which the cube is empty against the number of grid points for 

example 1 

Number of grid points 
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Example 2: A section of a sphere, in the first quadrant of the Cartesian coordinate system is 

used as the second test case. The test object is modeled in SolidWorks and exported as an STL 

file. A cube is then created enclosing the entire object. 

Part specifications: 

• Sides of the cube = 1 mm 

• Volume of the cube  = 1  mm3 

• Actual volume of the  object = 0.52 mm3 

• Actual volume % of the cube outside the object = 48% 

  Figure 27 shows the STL file of the test object in the first quadrant enclosed within a 

unit cube. The ray casting algorithm is used to calculate the unoccupied volume of the cube. 

This calculated value is then compared to the actual volume the cube that is empty.  

 

Figure 27: STL file with grid points for example 2 

 

  The top face of the cube is divided into different number of grid points and the ray 

casting algorithm is applied to the different grid sizes. The results are presented in Table 4. 
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Table 4: Volume of cube outside STL file for example 2 

No of grid points 
% by which the cube is empty 

(using ray casting method) 

Actual % by which the cube is 

empty 

9 58.248 

48 
25 52.365 

36 50.459 

64 49.636 

 

  Data from Table 4 confirms that the accuracy of the ray casting algorithm increases as 

the number of grid points is increased. For 9 grid points, there is a 21 % error in accuracy 

between the calculated and the actual volumes of the empty space in the cube, whereas there is 

only a 3.4% error in the accuracy when 64 grid points are used. The variation of the cube‟s 

unoccupied volume percentage with the grid size exhibits trends similar to those observed in the 

previous example, as illustrated in Figure 28.  

 

Figure 28: Percentage volume by which the cube is empty against the number of grid points for 

example 2 
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3.2 Computation of Slice Thicknesses from the MBODS 

The terminal black nodes obtained from the MBODS algorithm present an approximation 

of the STL file based on volumetric error. Their information is utilized to compute the local slice 

thicknesses which are employed in building the part.  The overall approach is that the local slice 

thickness at a particular level is decided based on the size of the smallest cube at that level. The 

steps involved in the calculation of the slice thickness are presented below:  

Step 1: A cube, having the smallest size amongst the terminal black nodes derived from the 

MBODS algorithm is selected. There may be many such cubes which satisfy this criterion and 

any of these cubes may be initially selected. The slice thicknesses at each cube‟s level are then 

fixed within the „Z‟ coordinates of the selected cube. In this algorithm, all the terminal black 

nodes are arranged in the ascending order of their size. An array with the terminal black nodes 

structures in ascending order is shown below. 

Terminal cube ascending order = [Smallest black nodes …… Largest black nodes] 

The first smallest cube is selected and the slice thickness at that level is fixed between the 

two Z coordinates of the specific cube. For example, if a cube‟s origin is located at (x1, y1, z1) 

and its height is T, then the local slice thickness is fixed between z1 and z1+ T. 

z1 ≤ Local slice thickness ≤ z1+T 

 

Step 2:  As mentioned previously, the AM machine has specific layer thickness parameters, 

namely, minimum allowable slice thickness (Tmin) and maximum allowable slice thickness 

(Tmax). Slice thickness at any level has to be within this range. If size of the selected cube lies 

within Tmax and Tmin then the cube height is selected to be the slice thickness for that level. In 

Figure 29, the size of the selected cube „T‟ lies within the minimum and maximum range and 

therefore T is chosen to be the slice thickness at that level. There are three cases to consider. 
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 Case 1: Tmin ≤ T ≤ Tmax ; Final slice thickness = T 

 

Figure 29: Slice thickness at level z1 for case 1 

 

If the selected cube has a height greater than Tmax then it is divided into two parts, a 

multiple of Tmax, and the residual height. As shown in Figure 30, the cube height is greater than 

twice the value of Tmax. The corresponding slice thicknesses would be Tmax, Tmax and the residual 

height of the cube. In this case the residual slice would be greater than Tmin and less than Tmax. 

 Case 2: Tmax ≤ T; Residual slice ≥ Tmin; Final slice thicknesses = Tmax, Tmax and the 

residual slice 

 

Figure 30: Slice thickness at level z1 for case 2 

 

If the residual slice is less than Tmin, its dimension is changed to match with Tmin and 

corresponding changes are applied to the thickness of the preceding slice. For the example 

shown in Figure 31(a), Tmin is 0.03 mm and Tmax is 0.13 mm and the residual slice thickness is 
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0.01 mm which is less than Tmin. Thus, as shown in Figure 31 (b), the residual slice thickness is 

changed to 0.03 mm (Tmin) and the thickness of the prior slice before that is modified with a 

corresponding value.  

 Case 3: Tmax ≤ T; Tmax = 0.13 mm and Tmin = 0.03 mm; Initial slice thicknesses = 0.13 

mm, 0.13 mm and 0.01 mm;  Residual slice = 0.01 mm ≤ Tmin; Final slice thicknesses = 

0.13 mm, 0.11 mm and 0.03 mm 

 

 

(a)       (b) 

Figure 31: Slice thickness at z1 for case 3; (a) In-correct slice thicknesses computation (b) 

Correct slice thicknesses computation 

 

In a similar manner, slice thicknesses are determined over a range (z1 to z1+T in the given 

example) of the selected cube. 

Step 3: Once the slice thicknesses are fixed for the level ranging from z1 to z1+T, the second 

smallest cube from the array is selected. The Z coordinates of this cube are checked and the cube 

is neglected if it lies within the same level (z1 to z1+T). For example, in Figure 32, the levels 

from 20 to 25 are fixed using the red colored cube and yellow cube is neglected from the 

algorithm since that level is already fixed using red cube. If the Z coordinates of the cube are at a 
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different level than that determined above, then step 2 is repeated for this cube too. Then the next 

smallest cube is selected and the process is repeated until the slice thicknesses for the entire 

object height are determined. 

 

Figure 32: MBODS; X-Z view of an object for case 1 

 

Special cases  

There may be some cases where the selected cube has some portion of its height 

overlapping with an already fixed slice level. In this case, the overlapping portion is neglected 

and the remaining portion is considered to compute the slice thicknesses. There are two such 

cases in which the Z coordinates of the selected cube may overlap an already fixed slice levels.  

Case 1: In this case, as illustrated in Figure 33, slice thicknesses from Z1 to Z1+T1 are already 

fixed using a smallest cube at that level and the next smallest cube has a portion of its height 

overlapping with previous smallest cube. This overlapped part is neglected and only the 

remaining part of the current smallest cube is considered. That is, only the slice thicknesses from 

Z1+T1 to Z1+ (T2– T1) are decided at that stage. 

Z1+T1 ≤ Local slice thickness ≤ Z1+ (T2 – T1) 

Z 

X 
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Figure 33: X-Z view of two terminal black nodes for case 1 

 

Case 2:  As in the previous case, the slice thicknesses from Z1 to Z1+T1 are already fixed and the 

next smallest cube has a portion of its height overlapping with previous smallest cube, as 

illustrated in Figure 34. This overlapped part is neglected and only the slice thicknesses from Z1 

to Z2 are decided at this stage. 

Z2 ≤ Local slice thickness ≤ Z1 

 

 

Figure 34: X-Z view of two terminal black nodes for case 2 

 

There is yet another condition where a cube may contain the topmost part of the object as 

shown in Figure 35. If the object‟s height is lesser than the upper Z coordinate of that cube, then 

the slice thickness is decided based on the object‟s height within. In this case, only the portion of 

the cube from Z1 to Z2 is considered for slice thickness.   
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Z1 ≤ Local slice thickness ≤ Z2 

 

Figure 35: X-Z view of an object tip in a terminal black node 

 

The object is checked against the summation of all the adaptive slice thicknesses 

computed over the entire algorithm and the algorithm is terminated when all the slice thicknesses 

sum up to the height of the object. The slice thicknesses thus obtained are used in the subsequent 

AM process. 

 

3.3 Virtual Manufacturing (VM) of STL file 

As mentioned, parts manufactured by AM processes exhibit a staircase effect, thus 

compromising on the surface quality. Typically, manufactured parts that do not satisfy the 

tolerance requirements are rejected and rebuilt. Virtual manufacturing plays an important role in 

identifying and correcting these wastes. A part is fabricated only when it successfully passes 

through all the inspection tests in the VM phase. Virtual adaptive manufacturing of the part is 

used to verify part tolerances for the part built with MBODS algorithm.  

For the virtual manufacturing of a part its CAD model is extracted as an STL file. 

Adaptive slice thicknesses, calculated from the MBODS algorithm presented in the previous 

section, are used in the virtual manufacturing of the object. In VM, the slicing planes are always 

perpendicular to the Z-axis of the AM machine. At a given slice level, the slicing plane intersects 
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the triangles of the STL file. These intersection points are designated to be the contour points of 

that particular level. Figure 36 shows the contour points obtained by slicing the STL file using a 

slicing plane at a particular height.  

 

Figure 36: Contour points for a particular slicing plane at height Z  

 

The contour points of a slicing plane are projected on a plane parallel to the slicing plane 

by an offset value equal to the slice thickness at that level, as illustrated in the Figure 37. 

Therefore, two sets of points are obtained for any particular slice level. The contour points and 

their projected counterparts from all the slicing levels are collected in a simulated manufacturing 

point dataset and are utilized for virtual manufacturing of the object. 

 

Figure 37: Projected contour points 

Slicing plane at height ‘Z’ 

Z= Vertical distance where 

the slice thickness starts 
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Figure 38 shows an STL file and the contour points for all the corresponding slices 

(designated as red dots). Green points in the figure are projections of these contour points on 

parallel planes offset by the slice thicknesses at the respective levels. 

      

                                        (a)                                                                    (b) 

Figure 38: (a) STL file (b) Simulated virtual manufacturing point dataset 

 

3.4  Evaluation of Errors 

In this section, the procedure for evaluating the volumetric error and the profile error of a 

given part are discussed. The simulated manufacturing point dataset, evaluated previously is used 

to calculate the volumetric error of a part. Further, the shortest distances between every point in 

the simulated point dataset and the CAD surface of the object are calculated which are then used 

to evaluate the profile error. 

 

3.4.1 Evaluation of Volumetric Error 

The volumetric error is defined as difference between the actual volume of an object and 

the volume of the manufactured object [43]. In the present research, since the object is virtually 
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manufactured, the volume of the virtually manufactured part is subtracted from the volume of the 

actual part to calculate the volumetric error.… 

As shown in Figure 39, the contour points from each slicing level are used to calculate 

the hatching area for that level. At every level, the entire hatching area is then extended by a 

value equal to the slice thickness at the respective level.The process is then repeated for all the 

available slice thicknesses and the object is virtually manufactured layer by layer. The formula to 

calculate the volumetric error for a given STL file is explained below [43].      

………….  

         (a)                                                                     (b) 

Figure 39: (a) Variable slice thicknesses (b) Contour created by first slice 

 

If n is the number of slice thicknesses or number of slicing planes; V, the actual volume 

of the object; T1,  T2, …, Tn, the adaptive slice thicknesses obtained from slice thickness 

algorithm and A1, A2,…,An, the hatching areas created by the contour points at the respective 

slicing levels, then, 

                    Volume of the VM object, Vm = (A1T1) + (A2T2) +…+ (AnTn) =                   (9)                          

.                                      

                                Volumetric error in virtual manufacturing = V – Vm                       (10) 
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3.4.2 Evaluation of Profile Error 

An STL file, as explained in section 2.2, is an orderly arrangement of triangular facets. In 

other words, the surfaces of a CAD model are approximated by a series of triangles. As a first 

step in calculating profile error, the  triangles of an STL file related to a particular CAD surface 

are to be identified. The facet isolation algorithm, developed by Navangul [44] to identify the 

STL triangles related to a particular surface of an object is used for this purpose. In the next step, 

the contour points and the offset points obtained during VM of the part corresponding to the 

selected part surfaces are determined. These points are termed as selected point dataset. Then, 

the shortest distance between every point in the selected point dataset and the CAD surface is 

determined using Newton‟s method [31, 45-47].  

In Figure 40, the profile error di is the minimum distance between the ith  point in selected 

point dataset and the corresponding CAD  surface „C‟. Let Pi(Xi ,Yi, Zi) represent the points in 

the selected database and Qi, the corresponding closest points on the design surface. 

 

 

Figure 40: Minimum distance of an offset contour point from object surface 

 

The profile error problem is a constrained non-linear optimization problem in u and v. 

The initial starting point Qg(ui,vi) that is closest to point dataset Pi is determined using a coarse 
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optimization algorithm [44]. A grid constructed from the points  Q(X,Y,Z) is obtained for 

different u and v values. „Qg‟, the closest point to Pi is then determined from the grid. The 

corresponding  u and v values of the point Qg  are used as the initial starting values in Newton‟s 

method to find di, the shortest distance to the CAD surface. The formulation of Newton‟s method 

is as follows [44]. 

di = Pi – Qg(u,v) 

Minimize: ∑(di)
2
 

Constraints:  0 ≤ u ≤ 1 , 

  0 ≤ v ≤ 1 

where, „Pi‟ is the point from the selected point database, and „Qi‟ is the final closest point on the 

design surface that can be calculated using the (u,v) values obtained from the optimization. The 

profile error in the part is then evaluated using the following formula. 

 

Profile error = Maximum (di)                                     (11) 

where 'di' is the shortest distance to the CAD surface for all selected dataset points  associated 

with that surface. 

 

3.4.3 Evaluation of Cylindricity 

 As per ASME Y14.5, 1994 [48], cylindricity tolerance is defined as: “Cylindricity is a 

condition of a surface revolution in which all points of the surface are equidistant from a 

common axis.” “Cylindricity tolerance specifies a tolerance zone bounded by two coaxial 

cylinders within which the surface must lie.” [48].  

As show in Figure 41, two coaxial cylinders, an inscribed cylinder and a circumscribed 

cylinder, are the boundary limits for all the point dataset of the cylindrical feature. Any perfect 
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cylinder description needs the location of the axis and its orientation in space. This perfect 

cylinder is used as a reference feature to evaluate cylindricity.  

 

Figure 41: Cylindricity tolerance zone [49] 

 

From Figure 42, let Qk be a point on the least square axis of the coaxial cylinders and P, 

the unit direction vector of the axis. Qi is the manufacturing point dataset from the virtually 

manufactured part. 

 

Figure 42: Evaluation of MX cylindricity (adapted from [40]) 

 

As explained in section 2.6, the least square and the minimum zone algorithms are 

usually used for the evaluation of cylindricity. In their cylindricity problem formulation, Carr 
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and Ferreira [36] used the least square algorithm as an input for the minimum zone algorithm. 

The contour points on a cylindrical surface and the related offset points from the simulated 

dataset are selected to evaluate the cylindricity tolerance zone. Contour points and the related 

offset points of the flat surfaces of the cylinder are insignificant and thus neglected. In this 

research, the cylindricity formulation developed by Ramaswami [50] is used to evaluate the 

cylindricity error of a part. 

Let, R1 and R2 be the radii of the inner (inscribed) cylinder and the outer (circumscribed) 

cylinder respectively, P (Px, Py, Pz) is a unit vector along the axis of cylinder, Qi (Xi,Yi,Zi) are 

points in the dataset for i=1, 2, 3,.., n and Qk (XkYk,Zk) is a point on the axis of the inner and 

outer cylinders. The starting point Qk for the algorithm is obtained from the least square axis. The 

objective is to find the axis of two concentric cylinders such that all the points in the measured 

dataset (Qi) lie between the outer and inner cylinders with a minimal radial difference between 

the two cylinders. 

The formulation of the problem can be written as [44, 50]. 

Minimize (R2-R1) 

Constraints:   di (Qk, P) ≤ R2,   for i =1, 2, 3…n 

  di (Qk, P) ≥ R1,   for i =1, 2, 3…n 

Where, di (Qk, P) = | P x (Qi – Qk) |,   for i=1, 2, 3…n 

 The first constraint ensures that all the points are on or inside the outer cylinder. The 

second constraint ensures that all points are on or outside the inner cylinder. The output of this 

formulation is cylindricity tolerance of the feature.  

 

                                            Cylindricity tolerance zone = (R2 – R1)                                     (12)      
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4. RESULTS 

 In this chapter the MBODS algorithm is applied for different examples and the results for 

volumetric, profile and cylindricity error are tabulated. 

4.1 Modified Boundary Octree Representation and Evaluation of errors of Object 1 

The first test object chosen for this research, termed as „object 1‟, has a complex structure 

with a curve surface. The model is created in SolidWorks and exported in an STL file format.  

The part, AM machine specifications and process parameters are as follows: 

Part specifications: 

1) Height = 1.5mm 

2) Width = 1mm 

3) Breadth = 1 mm 

4) Actual volume of the object = 1.16mm3 

AM machine specifications: 

1) Minimum slice thickness = Tmin  =  0.01 mm 

2) Maximum slice thickness = Tmax =  0.1 mm 

Process parameters: 

1) Predefined Volumetric tolerance for MBODS = 0.0003 mm3 

  Figure 43 shows the CAD model of object 1 and the corresponding STL file that was 

extracted. The STL file of object 1 is converted using the MBODS algorithm. Figure 44  shows 

the MBODS model of the STL file of object 1.  

4.2.1 Effect of MBODS on Volumetric Error of Object 1 

Once the adaptive slices are computed from MBODS of the STL file, it is virtually 

manufactured. A simulated manufacturing point dataset is obtained using the algorithm 
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mentioned in the earlier chapter. This simulated dataset is used as an input in the computation of 

the volumetric error, as described in section 3.4.1.  For a comparison, the virtual manufacturing 

process is repeated for different uniform slice thicknesses. The comparison between the different 

slicing approaches are presented in Table 5. 

 

(a)                                                                   (b) 

Figure 43:  (a) CAD Model (b) STL File for object 1 

 

Figure 44: MBODS of STL for object 1 
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  Three different uniform slice thicknesses are used in this test: 0.025 mm, 0.05 mm and 

0.1 mm. A total of 60 slices are required with 0.025 mm uniform slicing approach as compared 

to adaptive slicing, which requires only 48.  The percentage volumetric error for adaptive slices 

is less than that of 0.025 mm uniform slicing. This result validates that a combination of 

improved build time (reduced number of slices) and better part quality (reduced volumetric 

error) can be achieved using the adaptive slicing approach described in this research.  

 

Table 5: Volumetric error for adaptive and uniform slicing methods for object 1 

Slicing method 

Adaptive slice thicknesses 

by MBODS 

Uniform slice thickness 

0.025 mm 0.05 mm 0.1 mm 

Number of slices 48 60 30 15 

Volume of CAD file 1.16 1.16 1.16 1.16 

Volume of VM part 1.1426 1.1392 1.1206 1.078 

% Volumetric error 1.501 1.7966 3.3959 7.0663 

 

  Figure 45 compares the percentage volumetric errors of the different slicing approaches 

used above. It is clear from the graph that the adaptive approach has a clear advantage over the 

uniform slicing method.  Table 6 shows a comparison between the two slicing approaches 

utilizing the same number of slices, 48. The corresponding slice thickness in the uniform slicing 

method is calculated to be 0.03125 mm. As can be seen, the volume of the virtually 

manufactured part differs from the volume of the CAD files by 1.501 % and 1.933 % for 

adaptive and uniform slicing methods respectively, resulting in a smaller volumetric error for 

the former approach as compared to the latter. 
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Figure 45: Comparison of percentage volumetric error vs slice thicknesses for object 1 

 

Table 6: Volumetric error for adaptive and uniform slicing methods using same number of slices 

Slicing method 

Adaptive slice thicknesses by 

MBODS 

Uniform slice thickness of 

 0.03125 mm 

Number of slices 48 48 

Volume of CAD file 1.16 1.16 

Volume of VM part 1.1426 1.1376 

% Volumetric error 1.501 1.933 

 

4.2.2 Effect of MBODS on Profile Error of Object 1 

  For the purpose of evaluating the profile error encountered in the VM of object 1, only 

the curved portion of the object is being considered as shown in Figure 46. The facet isolation 

algorithm [44] mentioned in chapter 3 is used to identify the triangles related to this surface. 
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The contour points and the corresponding offset points related to this surface are separated from 

the simulated manufacturing database obtained during the virtual manufacturing of the object. 

 

Figure 46: Selected surface of a CAD model of object 1 

 

  Figure 47 shows the STL file and the point database corresponding to the curved 

surface. 

 

Figure 47: Selected surface from STL file for object 1 

   

Then, the minimum distance between each point of the selected database and the CAD surface 

is determined using algorithm described in section 3.4.2 [44]. The maximum of all the above 

evaluated minimum distances gives the profile error for the curved surface of the object. Once 

again the same profile error is evaluated for different values of uniform slice thicknesses.  The 
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results are compared to MBODS adaptive slicing, presented in Table 7. The profile error for 

adaptive slicing is seen to be less than that for the uniform slicing method with slice thicknesses 

of 0.025 mm, 0.05 mm and 0.1 mm. 

 

Table 7: Profile error for adaptive and uniform slicing methods for object 1 

Slicing method 

Adaptive slice thicknesses 

by MBODS 

Uniform slice thickness 

0.025 mm 0.05 mm 0.1 mm 

Number of slices 48 60 30 15 

Profile Error 0.032 0.036 0.06 0.11 

   

  It can be seen from Figure 48 that the profile error is much more for 0.1 mm uniform 

slicing than for that of adaptive slicing. Even the errors encountered as the uniform slice 

thicknesses decrease to 0.05 mm and 0.025 mm are seen to be higher than the corrspconding 

error in adaptive slicing.  

 

Figure 48: Comparison of profile error vs slice thicknesses for object 1 
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As seen from Table 8, the profile error resulting from the application of the two slicing 

methods with the same number of slices is seen to be smaller for the MBODS based adaptive 

slicing approach than the uniform slicing approach by 30.43%.  

 

Table 8: Profile error for adaptive and uniform slicing methods using same number of slices 

Slicing method 

Adaptive slice thicknesses by 

MBODS 

Uniform slice thickness of 

 0.03125 mm 

Number of slices 48 48 

Profile Error 0.032 0.046 

 

4.3 Modified Boundary Octree Representation and Evaluation of Errors of Object 2 

  For the second test, an object with flat surfaces, termed as object 2, is modeled using 

SolidWorks. The object is exported as an STL file and the CAD to STL conversion in this case 

does not have any geometry distortion as the object is devoid of any curved features. The part 

specifications, AM machine specifications and process parameters are as follows: 

Part specifications: 

1) Height = 1.2 mm 

2) Width = 1 mm 

3) Breadth = 1.5 mm 

4) Actual volume of the object = 1.12 mm3 

AM machine specifications: 

1) Minimum slice thickness = Tmin     =  0.025 mm 

2) Maximum slice thickness = Tmax   =  0.1 mm 
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Process parameters: 

1) Predefined Volumetric tolerance for MBODS = 0.0003 mm3   

  Figure 49 shows the extracted STL file from the CAD object. The STL file is converted 

using the MBODS algorithm and the resulting representation of the STL file is depicted in 

Figure 50.  

 

(a)                                                                     (b) 

Figure 49: (a) CAD model (b) STL file for object 2 

 

 

Figure 50: MBODS of STL for object 2 
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4.3.1 Effect of MBODS on Volumetric Error of Object 2 

  The adaptive slice thicknesses used in the additive manufacturing of the object 2 are 

computed in the MBODS algorithm.  The simulated manufacturing point dataset used in the 

VM of object 2 is obtained by slicing the STL file and the volumetric error calculations are 

completed using the formulae described in section 3.4.1.   

  The object 2 is then virtually manufactured using three different uniform slice 

thicknesses of 0.025 mm, 0.05 mm and 0.1 mm, respectively, and the results are compared in 

Table 9. A total of 32 slices are required with the adaptive slice thicknesses computed using 

MBODS, with resulting volumetric error of 1.9375%. A tradeoff between the number of slices 

(build time) and part surface quality (with increased volumetric error) can be seen for the 

uniform slicing approach.  

 

Table 9: Volumetric error for adaptive and uniform slicing methods for object 2 

Slicing method 

Adaptive slice thicknesses by 

MBODS 

Uniform slice thickness 

0.025 mm (Tmin) 0.05 mm 0.1 mm 

Number of slices 32 48 24 12 

Volume of CAD file 1.12 1.12 1.12 1.12 

Volume of VM part 1.0983 1.1073 1.073 1.065 

% Volumetric error 1.9375 1.137 4.188 4.876 

 

  As can be gathered from Figure 51, a volumetric error of less than 2% can be achieved 

using the adaptive slicing approach using the MBODS algorithm. A uniform slice thickness of 

0.025 mm, with a 50% increment in the number of slices, and the associated manufacturing 

time, has a lesser volumetric error than the adaptive approach.  
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Figure 51: Comparison of percentage volumetric error vs slice thicknesses for object 2 

 

Table 10 shows a comparison between the two slicing approaches utilizing the same 

number of slices, 32. The corresponding slice thickness in the uniform slicing method is 

calculated to be 0.03750 mm.  

 

Table 10: Volumetric error for adaptive and uniform slicing methods using same number of 

slices 

Slicing method 

Adaptive slice thicknesses 

by MBODS 

Uniform slice thickness of 

0.03750mm 

Number of slices 32 32 

Volume of CAD file 1.12 1.12 

Volume of VM part 1.0983 1.0852 

% Volumetric error 1.9375 3.107 
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As can be seen, the volume of the virtually manufactured part differs from the volume of 

the CAD files by 1.9375 % and 3.107 % for adaptive and uniform slicing methods respectively, 

resulting in a smaller volumetric error for the former approach as compared to the latter. 

 

4.3.2 Effect of MBODS on the Profile Error of Object 2 

In the current case, the evaluation of the profile error is based on the STL surfaces, as 

they do not differ from the original CAD surface due to the lack of any CAD to STL conversion 

errors. The manufacturing point dataset, related to the selected STL surfaces as shown in Figure 

52, is extracted and the minimum distance between every point in the database and the selected 

profile is determined.  The maximum of all these minimum distances gives the profile error for 

the selected surfaces of object 2. 

  Figure 52 shows the STL file of object 2 and the extracted manufacturing point database 

corresponding to the selected profile. Once again the profile error is evaluated for different 

values of uniform slice thicknesses and MBODS based adaptive slice thicknesses and 

compared. The results are presented in Table 11. 

 

Figure 52: Selected surface from STL file for object 2 
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 Results from the Table 11 confirm the efficiency of adaptive slicing since only 32 slices 

are required as compared to 48 slices utilized in the 0.025 mm uniform slice thickness approach. 

A profile error of 0.045 mm is observed when the adaptive approach is applied whereas larger 

profile errors of 0.07 mm and 0.14 mm are observed with uniform slicing approaches of 0.05 

mm and 0.10 mm respectively. A graphical comparison of the profile errors for different slicing 

approaches is presented in Figure 53. 

 

Table 11: Profile error for adaptive and uniform slicing methods for object 2 

Slicing method 

Adaptive slice thicknesses 

 by MBODS (mm) 

Uniform slice thickness 

0.025 mm (Tmin) 0.05 mm 0.1 mm 

Number of slices 32 48 24 12 

Profile Error (mm) 0.045 0.033 0.07 0.14 

 

 

Figure 53: Comparison of profile error vs slice thicknesses for object 2 
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As seen from Table 12 given below, the profile error resulting from the application of the 

two slicing methods with the same number of slices is seen to be smaller for the adaptive slicing 

approach than the uniform slicing approach by 11.76%  

 

Table 12: Profile error for adaptive and uniform slicing methods using same number of slices 

Slicing method 

Adaptive slice thicknesses by 

MBODS 

Uniform slice thickness of  

0.03125 mm 

Number of slices 
32 32 

Profile Error 0.045 0.051 

 

4.4 Modified Boundary Octree Representation and Evaluation of Errors of Object 3 

   Another complex part, termed as object 3, is selected as the next test case in validating 

the algorithms developed in this study. The part is modeled in SolidWorks and then exported as 

an STL file. The CAD to STL conversion tolerance is maintained at low levels to reduce the 

chord error during the conversion. The number of STL triangles increased with the complexity 

of the part thus utilizing larger computational time and resources. The part specifications, AM 

machine specifications and process parameters are presented below. 

Part specifications: 

1) Height = 0.9147 mm 

2) Width = 0.9 mm 

3) Breadth = 0.9 mm 

4) Actual volume of the object = 0.37 mm3 

AM machine specifications: 
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1) Minimum slice thickness = Tmin     =  0.01 mm 

2) Maximum slice thickness = Tmax   =  0.1 mm 

Process parameters: 

1) Predefined Volumetric tolerance for MBODS = 0.00003 mm3 

Figure 54 shows the extracted STL file from the CAD model of the object 3. Figure 55 

depicts the MBODS of the STL file.  

 

Figure 54:  (a) STL file (b) MBODS of STL for object 3 

 

Figure 55: MBODS of STL for object 3, (a) X-Z view  (b) 3-D view 
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4.4.1 Effect of MBODS on Volumetric Error of Object 3 

  Adaptive slices are computed in a similar way as mentioned in above test cases and the 

variable thicknesses are used to slice the STL file. The contour area of each layer is calculated 

and the areas of all the layers and the corresponding slice thicknesses are used to compute the 

volume of the virtually manufactured part. The object is virtually manufactured using different 

uniform slice thicknesses as well.  

  A comparison of the number of slices required for different slicing approaches and the 

corresponding percentage volumetric error is presented inTable 13. The percentage volumetric 

error reduces as the uniform slice thickness decreases from 0.1 mm to 0.025mm accompanied 

by an increase in the number of slices from 10 to 37. Thus there is always a compromise 

between the build time and the surface quality of a part for the uniform slicing approach. The 

adaptive slicing approach on the other hand has the least volumetric error with a lesser number 

of slices as compared to the 0.025 mm uniform slicing.  

 

Table 13: Volumetric error for adaptive and uniform slicing methods for object 3 

Slicing method 

Adaptive slice thicknesses by 

MBODS 

Uniform slice thickness 

0.025 mm 0.05 mm 0.1 mm 

Number of slices 31 37 19 10 

Volume of CAD file  0.37 0.37 0.37 0.37 

Volume of VM part 0.3688 0.3681 0.367 0.365 

% Volumetric error 0.3247 0.51351 0.899 1.358 

 

 The graph in Figure 56 gives a visual interpretation of the comparison of the volumetric 

errors. 
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Figure 56: Comparison of percentage volumetric error vs slice thicknesses for object 3 

 

Table 14: Volumetric error for adaptive and uniform slicing methods using same number of 

slices 

Slicing method 

Adaptive slice thicknesses by 

MBODS 

Uniform slice thickness of 

0.02950 mm 

Number of slices 31 31 

Volume of CAD file 0.37 0.37 

Volume of VM part 0.3688 0.3678 

% Volumetric error 0.3247 0.5946 

 

4.4.2 Effect of MBODS on the Profile Error of Object 3 

  Figure 57 shows the highlighted portion of object 3, the profile error of which will be 

evaluated in this section. The facet isolation algorithm [44] is used to extract triangles related to 

the selected design surface from the STL file. 
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Figure 57: Selected surface of a CAD object for object 3 

 

Figure 58 shows the corresponding points separated from the simulated manufacturing 

point database. The profile error for the surface is evaluated using the algorithm explained in 

section 3.4.2. A comparison of the MBODS based adaptive slicing and uniform slicing 

approaches is presented in Table 15. 

 

Figure 58: Selected surface from STL file for object3 
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Table 15: Profile error for adaptive and uniform slicing methods for Object 3 

 Slice method 

Adaptive slice thicknesses 

by MBODS 

Uniform slice thickness 

0.025 mm 0.05 mm 0.1 mm 

Number of slices 31 37 19 10 

Profile Error 0.0113 0.0127 0.024 0.049 

 

  The results in Table 15 confirm the trend seen in the other tests. A balance between the 

optimum number of slices and enhanced part quality is achieved using adaptive slicing. The 

profile error for uniform slices increases as the uniform slice thickness is increased from 0.025 

mm to 0.1 mm. Once again the error is least in the adaptive approach compared to any of the 

uniform slicing methods. A graphical comparison of the error results are shown in Figure 59. 

 

Figure 59: Comparison of profile error vs slice thicknesses for object 3 

 

As can be seen from Table 16, the profile error resulting from the application of the two 

slicing methods with the same number of slices is seen to be smaller for the case of adaptive 

slicing approach than the uniform slicing method by 23.64%. 
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Table 16: Profile error for adaptive and uniform slicing methods using same number of slice 

Slicing method 

Adaptive slice thicknesses by 

MBODS 

Uniform slice thickness of 

0.02950mm 

Number of slices 31 31 

Profile Error 0.0113 0.0148 

 
  Thus, the robustness of the STL-MBODS conversion, volumetric error evaluation, and 

profile error evaluation algorithms developed in the present study have been validated using 

three different test objects of varying complexity. 

 

4.5 Effect of MBODS on Cylindricity Error of a Cylindrical Feature at Different 

Orientations 

  Two different orientations of a cylinder inclined at 45o and 15o respectively, with the 

cylinder axis along positive Z-axis are modeled using SolidWorks. The two CAD models are 

exported as STL files. The STL files are then converted into MBODS and the corresponding 

adaptive slice thicknesses are computed using the algorithms developed in the previous 

chapters. The manufacturing point dataset is then obtained for each cylinder by virtual 

manufacturing. Only the contour points on the curved surface of the cylinders and the related 

offset points are selected to evaluate the cylindricity tolerance zone. The following model 

specifications, AM machine specifications and model orientations are used. 

Model specifications: 

For all models 

1) Cylinder length = 2mm 

2) Cylinder radius = 0.5 mm 
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AM machine specifications: 

1) Minimum slice thickness = Tmin     =  0.025 mm 

2) Maximum slice thickness = Tmax   =  0.1 mm 

Model orientations: 

 1) Model 1; Angle of the cylinder axis with the Z-axis = 45o 

 3) Model 2; Angle of the cylinder axis with the Z-axis = 15o 

  Figure 60(a) shows the STL format of the cylindrical feature at a 45o angle with the Z-

axis. This STL file is converted into MBODS and then sliced using adaptive slices in 

accordance with the explained algorithm. Figure 60(b) illustrates the manufacturing point 

dataset used for the evaluation of cylindricity. The dataset contains the contour points on the 

cylindrical surface and the corresponding offset points.    

 

(a)                                                                    (b) 

Figure 60: (a) STL format of cylinder with 45o the Z-axis (b) Points dataset for cylindricity 
evaluation 

 

  This point dataset is then used in the algorithm explained in section 3.4.3 and the 

cylindricity tolerance for the object is obtained. Subsequently, the entire procedure is repeated 
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with uniform slice thicknesses (0.025 mm, 0.05mm and 0.1 mm) and the corresponding 

cylindricity tolerance zones are computed using the algorithm developed by Ramaswami [50]. 

The process is repeated again for the cylinder that is oriented 15o with the Z-axis and the 

corresponding results are documented in Table 17. 

 

Table 17: Comparison of cylindricity of a cylindrical feature at different orientations 

Model 

Orientati

on of 

cylinder 

axis 

Unit 

direction 

vector 

along 

cylinder 

axis 

Cylindricity error 

Adaptive slice 

thicknesses by 

MBODS (mm) 

No. of 

slices for 

MBODS 

Uniform slice thickness 

0.025 

mm 

(Tmin) 

# 

slices 

0.05 

mm 

# 

slices 

0.1 

mm 

# 

slices 

Model_1 45
o
 

(0.5,  0.5, 

0.707) 
0.0631 55 0.0647 57 0.0841 29 0.0994 15 

Model_2 15
o
 

(0.183, 

0.183, 

0.966) 

0.0289 71 0.0317 78 0.0463 39 0.0632 20 

 

  Thus the robustness of the algorithm developed in this research is supported by the 

cylindricity results for a cylindrical feature at different orientations. The adaptive slicing based 

on the MBODS algorithm results in consistently lesser value of cylindricity error with reduced 

number of slices. 
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5. CONCLUSION AND FUTURE SCOPE 

 

  A novel approach to accomplish adaptive slicing using the Modified Boundary Octree 

Data Structure (MBODS) of a part in AM processes has been developed and presented. Several 

beneficial features of octree data structures such as space decomposition capability, the ability 

to store object information, simplicity, and ease of computation prove to be advantageous while 

evaluating the variable slice thicknesses using the MBODS algorithm. This algorithm converts 

STL file of a part to boundary octree data structure. A subsequent algorithm computes the 

variable slice thicknesses using the MBODS representation of the part and virtually 

manufactures the part utilizing the calculated slice thicknesses. AM machine parameters and 

user defined volumetric tolerance values are applied in the algorithm which ensures that the 

fabricated part satisfies the required geometric tolerances. This research presents several test 

cases which were successfully converted into MBODS using the conversion algorithm. These 

parts were virtually manufactured using the computed slice thicknesses and then inspected for 

the volumetric, profile and cylindricity form errors. It is observed that the required geometric 

tolerances have been met by using the variable slice thicknesses obtained from the MBDOS 

algorithm. Results reported in this study shows that the MBODS method appears to be more 

efficient and accurate over other approaches used for slicing a part in additive manufacturing. 

  As opposed to using the STL file, future research may involve a direct conversion of the 

CAD object surface to MBODS or a different boundary representation to compute adaptive 

slice thicknesses. While the ray casting algorithm has been used to calculate the volume of a 

given cube outside the STL file in the present study, other approaches with voxels or maximum 

distance between a cube „s facets and its intersecting triangular facets as a criterion can be used 

to limit the depth of division of an octree representation. 
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