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Abstract: Since there are usually parameter uncertainties and influence of the 
exogenous disturbances on the dynamic model of a four-wheel omni-directional 
mobile robot (FOMR), the traditional strategy for motion control has not good 
performance. A sliding mode control based on an adaptive approach and a filter 
(AFSMC) is presented in this paper. First, according to identifying the reaching 
gain by a Radial Basis Function based neural network, and combining a filter, 
AFSMC can reduce the inherent impact that is produced by the normal sliding 
mode control. Second, the adaptive approach is applied to deal with the 
uncertainties and the influence of exogenous disturbances. Numerical simulations 
are carried out to assess the performance of the controller. All the simulation 
results indicate that the proposed control strategy is efficient to solve the problem.  

Keywords: Four-wheel drive, omni-directional mobile robot, adaptive sliding mode, 
filter. 

1. Introduction 

The omni-directional mobile robot can move in any direction without changing any 
position and posture. The omni-directional mobile robot has been widely applied to 
human production and life practice in recent years due to the special motion 
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advantages. The control problems of the motion and regulation have been 
extensively studied and have attracted the interest of many control researchers in 
the field of omni-directional mobile robotics [1-3]. 

As usual, it is common the motion control problems of the omni-directional 
mobile robotics to be addressed, taking into account the kinematical equations [4]. 
Considering its kinematical model only, several control strategies have been 
proposed. A back-stepping controller with global stability based on Newton 
mechanics model is designed in [5]. In [6] the authors have solved the motion 
control problem with a nonlinear back-stepping controller for a three-wheel omni-
directional mobile robot and the control values have been optimized by the sum of 
squares technology. The studies above mentioned are based on neglecting the 
uncertainties of the model and the assumption that the robot is working in ideal 
conditions. However, good motion control for a mobile robot with its kinematical 
model needs to track the designed velocity perfectly, which is impossible in a 
practical application. That is why a number of contributions have been focused on 
the dynamic representation of the omni-directional mobile robot [7, 8]. For the 
trajectory tracking control of an omni-directional wheeled robot for lower limbs 
rehabilitative training, in [9] the control problem and the interference rejection are 
translated into L2 control design problem, and a tracking controller is presented 
considering the back-stepping strategy. In the same aspect, a dynamic model of the 
mobile robot is considered in order to study the slipping effects between the wheels 
of the vehicle and the working surface [10]. In order to deal with the parameter 
uncertainties and the influence of the exogenous disturbances existing in the 
dynamic model, a sliding mode variable structure approach is presented [11-14]. In 
[12], based on the linearized system, an integral sliding mode control is designed 
for trajectory tracking control of an omni-directional mobile robot. But it has 
inherent deficiency, which needs computing the upper boundness of the system 
dynamics and may cause high noise amplification. A robust neural network NN-
based sliding mode controller, which uses an NN to identify the unstructured 
system dynamics directly, is further proposed to overcome the disadvantages of the 
integral sliding mode control in [12] and reduce the online computing burden of the 
conventional NN adaptive controllers [13]. A path tracking control method based 
on an adaptive approach and neural dynamics for a wheeled mobile robot is 
presented, which can ensure the robot velocity asymptotically approaching to the 
desired velocity in uncertain system dynamics [14]. However, this implies 
computing more parameter values and can also cause high control costs. 

In order to deal with model uncertainties and exogenous disturbances in the 
dynamic equations of a four-wheel omni-directional mobile robot, a variable 
structure control based on an adaptive approach and a filter is presented. The 
stability of the closed-loop system and the convergence of the adapting process are 
strictly demonstrated by Lyapunov stability theory. The simulation results show that 
this method has good tracking robustness and high control precision, simple 
achievement and efficiently eliminated buffeting. 
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2. Dynamic model of a four-wheel omni-directional mobile robot 

Four-wheel robots are of the type robots models, which are used in many domains. 
They are omni-directional with four wheels and have the ability to move in any 
direction at any time (they are holonomic mobile robots, in other words). Fig.1 
shows the scheme of a four-wheel robot, the angles and directions of the four 
wheels. 

2.1. A kinematic model 

According to the geometric relationship of Fig. 1, the robot posture (position and 
orientation) in the robot coordinate frame is expressed as Xm=(x y θ)T, and the robot 
posture can be presented in the world coordinate frame as Xw=(X Y θ)T, the 
relationship between Xm and Xw is  
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Fig. 1. Wheel placement of a mobile robot 
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where XOY is the world coordinate frame for the robot, xoy  is the robot own 
coordinate frame, Wi, i=1, 2, 3, 4, denotes the moving direction of the robot, 
denoting every wheel,  iδ  denotes the angle between the wheel and axis 
respectively, iV  denotes the velocity of each wheel, its positive direction is 
anticlockwise,  l is the distance between the center of the robot body and that of 
each wheel. 

The kinematic model of a mobile robot can be constructed as 



 143

(2)  

1 1 1

2 2 2

3 3 3

4 4 4

sin( ) cos( )
sin( ) cos( )
sin( ) cos( )
sin( ) cos( )

v l
X

v l
r Y

v l
v l

ω δ θ δ θ
ω δ θ δ θ
ω δ θ δ θ

θ
ω δ θ δ θ

1

2

3

4

− +        +      ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜− −     − −     ⎜ ⎟ ⎜ ⎟ ⎜ ⎟=  ⋅ =  ⎜ ⎟ ⎜ ⎟ ⎜ ⎟   +     − +     
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝   −        −     ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

&

&

&

⎞
⎟

⎜ ⎟
⎜ ⎟

⎠

, 

where iv denotes the linear velocity and iω  is the angular velocity of each wheel, r  
is the radius of each wheel, 
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2.2. A dynamic model 

To deal with the model uncertainties and exogenous disturbances of the four-wheel 
omni-directional mobile robot, firstly we must derive its dynamic equations from 
the drive motor model. 

By applying the Newton’s second law in the robot coordinate frame, the force 
acting on the robot can be derived as  

(3)  ,).(T
w fgXM θ=&&  

where M=diag{m, m, J} is the total mass of the robot, J  is the total inertia for the 
robot rotation, and  f = (f1  f2  f3  f4)Tis the tangential force generated by DC motors 
at each wheel. 

The dynamics of the armature current of each DC motor can be described by  

(4)  ,bsaa
a

a ϕ&nKuViR
dt
diL −=+  

where Vs is the battery voltage, [ 1,1]u ∈ −   is the normalized control input and La is 
the reactance of the motor, Ra is the armature resistance, Kb is the back-emf 
constant, n is the gear ratio and ϕ  is the angular of each wheel. 

Since the electrical time constant of the motor is very small compared to the 
mechanical time constant, we can neglect the inductance of the motor electric 
circuit and describe the generated torque of each motor τ  as  

(5)  ),(1
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a
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where Kt is the torque constant. 
The dynamic equation of the velocity for each wheel is  

(6)  ,vw iiii rfFJ −=+ τϕϕ &&&  
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where Jw is the inertia at the center of the wheel about the vertical axis and Fv is the 
viscous friction factor in the drive line. 

Then the dynamic formulation produces the system representation, which is 
described by  

(7)  ,)( τBqqCqD =+ &&&&  

where q = Xw, τ = (τ1 τ2 τ3 τ4)T, T( ) (0)B R gθ= , 
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For describing conveniently and computing simply, the dynamic equations 
with disturbances can be rewritten in the standard form 

(8)  ( ) ( )Dq C q q E t T+ + =&& & & , 

where the virtual control is T Bτ= , and ( )E t is the total parameter of uncertainties 
and exogenous disturbances, which is bounded. 

3. Sliding mode control based on an adaptive approach and a filter 

3.1. Sliding mode control law based on a filter 

According to the theory of the sliding mode control and a filter, if a low pass filter 
is added to the output port of the variable structure controller, whose output is the 
input of the robot, then the inherent buffeting caused by the variable structure 
control may be reduced or eliminated. Considering of the low pass filter is 
expressed by 

(9)  ( ) i

i i

Q s
s

λ
λ

=
+

 , 

where 0iλ > , 1,2, ,i k= L , k is the number of the control input T . 
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According to formulas (8) and (9), belonging to the low pass filter and the 
virtual control, the relationship between the outputs and inputs is as follows: 

(10) T AT Au+ =& , 

where 1 2diag{ , , , }kA λ λ λ= L . 
Introducing (8) into (10), we obtain 

(11)  ( ) ( ) ( )Dq C q q C q q E ADq AC q q AE Au+ + + + + + =& &&&& & && & & && & & . 

Supposing that there is a feasible smooth bounded reference trajectory qd(t), 
and the tracking error is e(t) = q(t) – qd(t), for all trajectories starting at q(t0)= qd(t0) 
we have designed the sliding mode switching function  

(12)  1 2( )s t e A e A e= + +&& & , 

where 1 2diag{ , , , }i i i ikA λ λ λ= L , 0ijλ > , i = 1, 2,   j = 1, 2, …, k. 
Now choosing the following Lyapunov function candidate as  

(13)  T1
2

V s D s=    

the time derivative of Lyapunov function is  

(14)  T T1 ( )
2

V s D s s D s=  +  & & & . 

In (11) D  is a constant symmetric, positive definite matrix, then 
T Ts Ds s Ds=& & . Equation (14) can be rewritten as 
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where 1 2( ) ( ( )) ( ( ) ( )) ( ) ( )dH D A e A e q AD C q q AC q C q q AE t E t= + − − + − + − −& &&& & &&& & && & & & . 

By the sliding mode and Lyapunov theory, if the closed-loop system is stable, 
the control law is  

(16)  1 1[ sgn( )]u A T T A H sη− −= + = − +  & , 

whereη  is the switch gain, then from (15) and (16) we have 

(17) T sgn( ) 0V s s sη η= − = − ≤& . 

The control law (16) is the variable structure control law based on a filter. By 
the variable structure control theory, it means that considering system (8) in a 
closed loop with the control law in (16), then the tracking error ( )e t is globally 
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asymptotically stabilized to zero. However, the parameters of H must have been 
confirmed before the control law is applied. If the parameters are not exactly known 
or changed for some reasons, the control performance might get worse. 

3.2. Adaptive approach 

As above described, the controller, whose representation is given in (16), is applied 
usually by the expression of H  exactly known. However, this is impossible in 
practical application. 

Defining the estimated value of H as Ĥ , using that instead of H , the estimated 
error is ˆH H H= −% , and assuming that the parameters of H  are slow time variables, 
we have the new Lyapunov function candidate as follows: 

(18) T T
1

1 1 , 0
2 2

V s Ds H H σ
σ

= + >% % . 

Similarly, the time derivative is given by 

(19) T T T T T
1

1 1ˆ ˆ ˆ( ) ( ) .V s Au H H H s Au H H s H H
σ σ

= + − = + + −& && % % %   

According to the sliding mode theory, if we choose the new control law as  

(20)  1 ˆ[ sgn( )],u A H sη−= − +   

and the adapting law of Ĥ is 

(21)  ˆ ,H sσ= ⋅&   

then we have 

(22)  T
1 sgn( ) 0.V s s sη η= − = − ≤&   

In the same way, it means that considering system (8) in a closed loop with the 
new adaptive controller (20) and the adapting law of Ĥ in (21), then the tracking 
error ( )e t is globally asymptotically stabilized to zero, even when the parameters are 
not exactly confirmed. 

3.3. RBF based reaching law sliding mode control 

The switching gainη in the control law must be exactly known, as the compensation 
of the boundness of the model uncertainties and exogenous disturbances is usually 
bigger and may cause high noise amplification and high control cost, particularly 
for the complex dynamics of the omni-directional mobile manipulator system. 
Therefore, in order to improve the dynamic quality and to raise the speed of 
reaching the sliding surface 0s = , the reaching law is presented as 

(23)  1 sgn( )s s sη ε= − −& ,  
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where the constants 1 0η >  and 0ε > . 
Taking in mind equations (11), (12), (20) and (21) into (23), we have the new 

control law 

(24)  1
1

ˆ[ ( sgn( ) )].u A H D s sη ε−= − + +   

The control law can be rewritten as two parts 

(25)  u = ueq + usw,  

where ueq = –A–1 ,Ĥ  usw = –A–1(ηsgn(s) + κs), 1,Dη η=  .Dκ ε=  
The reaching control part usw is very important for the performance of the 

whole control system, a Radial Basis Function based Neural Network (RBFNN) is 
used to identify and approach the reaching gains η  and κ . Using the learning 
ability of RBFNN, it can co-ordinately control the omni-directional mobile robot 
with different dynamics efficiently. By taking the sliding mode switching function 
s  as an input of RBFNN, and the reaching gains as its outputs, taking η  as an 
example, we obtain 

(26)  ( ) ,WR sη =  

where 2 2( ) exp( / )R s s c b= − −  is the Gauss function,  W is a matrix of weights 
between the hidden layer and the output layer, c is the center vector and b  is the 
width vector of the Radial Basis Function. 

The weight adapting performance index is ),()(p tstsJ &=  then the net 
parameters are 
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where the constant (0,1)α ∈  is the inertial ratio. 
The weight-updating equations are: 
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4. Numerical simulation 

To assess the performance of our controller, some numerical simulations are carried 
out tracking a straight path and a sinusoidal path separately. The values of the 
parameters correspond to a laboratory prototype built in our institution and they are 
presented in Table 1. 

Table 1. Parament values of the robot 
Parameters Values Parameters Values 

Fv 1.86 (N.m)/(rad/s) Jw 0.8 g.cm2 
Kt 0.0259 (N.m)/A Vs 24 V 
Kb 0.0259 V/(rad/s) m 23 kg 
n 22 L 0.225 m 
Ra 0.611 Ω r 0.1 m 
J 33.3 g cm2   

In the numerical simulations, supposing that the total disturbances and 
uncertainties in the tracking process are  

T( ) [ sin(2 ) cos(2 ) sin(2 )] ,E t t t tπ π π=  2   1.5   3  
the initial posture is T(0) [ 0.5 0.5 0.5] .dq =        

The learning ratios of RBFNN are mw= 0.05, mc= 0.3, mb= 0.3, 0.05α = , the 

initial values of the parameters are 
0.25 0.25 0.25
0.25 0.25 0.25

W
      ⎡ ⎤

= ⎢ ⎥      ⎣ ⎦
, 3c = , 

T[0.5 0.5]b =    0.5   . The adapting weight is 30σ = , and the matrixes  
A1 = diag{15, 15, 15}, A2 = diag{45, 45, 45}, A = diag{3.5, 3.5, 3.5},  

η = diag{41, 94, 50}. 
Firstly, we let the robot to track a straight path, when the parameters in Table 1 

are exactly known, the trajectory tracking results and the practical control inputs on 
X axis are shown in Fig. 2 (a) and Fig. 2 (b). When the parameter m  in Table 1 is 
changed from 23 kg to 12 kg, the results of the trajectory tracking and the torque 
signals in X axis are shown in Fig. 2 (c) and Fig. 2 (d). The left column figures in 
Fig. 2 show the results considering the robust Neural Network based Sliding Mode 
Controller (NNSMC) in [13] and the right column figures are connected with the 
control strategy proposed in this paper  (AFSMC). The numeric comparison 
between NNSMC and AFSMC is given in Table 2. 

Table 2. Numeric comparison when tracking a straight path 

Time Approaches Tracking  
time (s) 

Means of 
input (N) 

Variances of 
input 

Before m changed 
NNSMC 1.65 0.2745 3.2447 

AFSMC 1.20 0.0664 1.2142 

After m changed  
NNSMC ∞  0.1583 2.1153 

AFSMC 1.43 –0.0791 1.2598 
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(a) Trajectory tracking results with exact parameters 
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(b) Control torque signals on X axis with exact parameters 
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(c) Trajectory tracking results on X axis when m  is changed 
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(d) Control torque signals on X axis when m  is changed 

Fig. 2. Simulation results for tracking a straight path 
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From Table 2 and Fig. 2 (a), when the parameters are exactly confirmed, 
NNSMC can make the robot tracking the path quickly with a smaller tracking error, 
and the tracking time of AFSMC is 1.20s , which is smaller than 1.65s . But in Fig. 2 
(b) there is strenuous vibration of the control input with NNSMC, the variance of 
the input is 3.2447 , which is 2.6  times more than that of AFSMC. When the 
parameters are not exactly confirmed, m is changed from 23 kg to 12 kg, in Fig. 2 
(c) and Fig.2 (d), NNSMC can not track the reference path quickly, and the tracking 
errors become bigger and bigger, and its control input is shaken acutely. However, 
AFSMC can still make the robot track its desired path with good performance and 
smooth input, because the adaptive approach, RBFNN and a filter can eliminate the 
chatter efficiently. 

In order to test the performance when the path is variable, we let the robot 
track a sinusoidal path, the tracking results are shown in Fig. 3. The left column 
figures in Fig. 3 show the results when NNSMC is considered and the right column 
figures are for the control strategy AFSMC. The numeric comparison between 
NNSMC and AFSMC is given in Table 3. 

Table 3. Numeric comparison when tracking a sinusoidal path 
 Approaches Tracking 

time(sec) 
Means of 
input(N) 

Variances of 
input 

Before m changed 
NNSMC 2.25 –1.2043 3.2447 
AFSMC 1.35 0.5580 1.1933 

After m changed 
NNSMC ∞  –0.3014 2.4094 

AFSMC 1.50 –0.3593 1.3220 

 
When the parameters are exactly confirmed, from Table 3 and Fig. 3 (a) it 

follows that AFSMC can make the robot track the path quickly with a smaller 
tracking error, but the response speed is slower at the initial time when using the 
NNSMC. In Fig. 3 (b) the control input with NNSMC is drastically shaken, but the 
input with AFSMC, except for a bit of buffeting, is smoother. It is because the 
chatter can be efficiently reduced by AFSMC. When the parameters are not exactly 
confirmed, from Fig. 3(c) and Fig. 3 (d) is obvious that NNSMC cannot track the 
reference path, it even loses the desired path, and its input is still not smooth. 
However, AFSMC can make the robot track its desired path with good 
performance, and Table 3 shows that the variance of the input is only 1.3220 , that is 
54.9% of that with NNSMC. 

In conclusion, as shown in Figs 2 and 3, the trajectory tracking results have 
shown that the properties of the closed-loop system have better performance than 
the control obtained by NNSMC, whether or not the parameter is constant or 
changed. The inherent buffeting has been reduced efficiently when AFSMC is 
considered. However, NNSMC has caused high noise amplifications and high 
control costs. 
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 (a) Trajectory tracking results with exact parameters 
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 (b) Control torque signals on X axis with exact parameters 
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 (c) Trajectory tracking results on X axis when m  is changed 
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(d) Control torque signals on X axis when m  is changed 

Fig. 3. Simulation results for tracking a sinusoidal path 
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5. Conclusion  

The motion control with a model of a four-wheel omni-directional mobile robot 
considering its dynamic model uncertainties and exogenous disturbances, has been 
addressed and solved by means of an adaptive variable structure control based on a 
filter. The asymptotic stability of the closed loop system has been formally proved. 
Numerical simulations have been proposed to illustrate the properties of the closed-
loop system showing a better performance than the control obtained by NNSMC. It 
has shown that the control system with AFSMC has better tracking performance of 
the motion control and the results have shown that this method has good tracking 
robustness and high control precision, simple achievement and efficiently 
eliminated buffeting. 
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