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Adaptive Sliding Mode Control of Autonomous 
Underwater Vehicles in the Dive Plane 
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Abstmct-The problem of controlling an Autonomous Underwater 
Vehicle (AUV) in a diving maneuver is addressed. The requirement for 
having a simple controller which performs satisfactorily in the presence 
of dynamical uncertainties calls for a design using the sliding mode 
approach, based on a dominant linear model and bounds on the non- 
linear perturbations of the dynamics. Both nonadaptive and adaptive 
techniques are considered, leading to the design of robust controllers that 
can adjust to the changing dynamics and operating conditions. Also, the 
problem of using the observed state in the control design is addressed, 
leading to a sliding mode control system based on input-output signals 
in terms of dive-plane command and depth measurement. Numerical 
simulations using a full set of nonlinear equations of motion show the 
effectiveness of the proposed techniques. 

I. INTRODUCTION 

ANEUVERING in the dive plane, depth changing and M depth keeping are essential performance requirements 
for any Autonomous Underwater Vehicle (AUV). Vehicle re- 

sponse depends heavily on its particular design and configu- 
ration, operating conditions, and environmental forces. While 

questions pertaining to fluid-body interaction and reliable pre- 

diction of hydrodynamic forces are still the subject of current 
research, design and installation of AUV controllers is a mat- 

ter of immediate need. This is in response to AUV’s being 
recognized as an alternative to manned submarines for a va- 

riety of underwater missions at minimal capital and no man- 
power expense. 

Any automatic controller design for an AUV must satisfy 
two conflicting requirements: First, it has to be sophisticated 
enough to perform its mission in the realm of complicated 

and ever-changing vehicle/environment interactions; secondly, 

it has to be simple enough so that on-line implementation is 

possible by the onboard vehicle computer at a sufficiently high 

sample rate. 
This paper attempts an attack at the problem of the AUV 

dive-plane response. Section I presents two dynamical models 
for the AUV response in the vertical plane. A simple, linear 

model is used for control law design, whereas a more com- 
plicated nonlinear model is reserved for visual simulation and 

demonstration. The difference between the models simulates 

the differences that exist between any vehicle model and the 

real world. Section I1 is devoted to the control design using 
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sliding modes, while Section I11 presents an adaptive version 
which compensates for uncertainties of the linearized dynam- 

ics. The issue of designing a sliding mode controller using 
estimated states is presented in Section IV. Numerical sim- 

ulation results from a three-dimensional real-time simulation 

of the AUV are given in Section V, where vehicle motion is 
dynamically simulated from the complete set of equations of 

motion. 

II. EQUATIONS OF MOTIONS 

An exact set of equations of motion for a rigid body mov- 

ing in an ideal fluid can, at least in principle, be derived 
from the Kelvin-Kirchhoff hydromechanical equations. Such 

a formidable formulation, invaluable as it may be for force 
prediction and motion analysis, presents some technical draw- 

backs from the point of view of on-line control system design. 

Namely, the required computational time is so extensive that 
with today’s technology it is not possible that the necessary 

calculations could be performed by the onboard vehicle com- 
puter at a sufficiently high sample rate. For this reason, various 

simplified models have been developed and used in the study 

and control of motions of underwater bodies. Assuming that 
the vehicle motions are relatively slow, an assumption which 
is valid for almost all usual maneuvers, the dynamics of the 

AUV can be described by a set of 12 nonlinear, coupled, 

first-order differential equations with constant coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11. 

Several studies at the Naval Postgraduate School (NPS) [2] 
were based on a similar nonlinear model of the Swimmer De- 

livery Vehicle (SDV) designed at NCSC (Naval Coastal Sys- 
tems Center) for which a complete set of hydrodynamic 

derivatives exists [3]. 
Restricting our attention to the dive plane, the equations of 

motion of a symmetrical body with horizontal plane-control 

surfaces at zero become: 

U.S. Government work not protected by U.S. copyright 



CRISTI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: ADAPTIVE SLIDING MODE CONTROL OF AUV IN THE DIVE PLANE 153 

where the standard notation of [ l ]  is adopted, and ZHEAVE 

and MPITCH represent the cross-flow drag terms [3]. Although 
these equations can be significantly simplified [4], they appear 

still to be very complex for this study. 
Control of plants with such nonlinear and coupled models 

has been traditionally accomplished by linear controllers that 

may or may not be gain-scheduled. Recent work with slid- 

ing mode control [5] has been extremely promising because 

of added robustness inherent in the method. The most well- 

established approach is based on a canonical form of the plant 

dynamics and nonlinear state feedback. However, a difficulty 
arises in the direct application of the approach in [5] to (l), 
since these equations are coupled, nonlinear, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot in the 

canonical form: 

x " ( t )  = f ( X " - ~ , . . . , X 1 , X ,  t ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU)  

on which most of the sliding mode control approaches [ 5 ] ,  [6] 

are based. 

A way to circumvent this problem while maintaining the ro- 

bustness features of the sliding mode controller is to base the 

design on an approximate model, linearized around nominal 

flight-operating conditions. Assuming that the vehicle main- 
tains forward motion (as opposed to the hovering mode of 

ROV operations), nominal conditions are determined on the 

basis of the nominal speed 00, pitch rate q, pitch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 ,  and depth 

z signals. For the submersible under consideration, the heave 

velocity w has a negligible effect on q and 8 and can be con- 
sidered as a disturbance acting on the depth z. Extensive water 

testing [9] confirmed the validity of this assumption. 
As a consequence, we can separate the dynamic model (1) 

into its linear component and nonlinear state-dependent dis- 

turbance as 

where the termf(x) denotes the deviation from linearity. The 

linear part of the model is shown in Fig. l(a), where the 
feedback term K accounts for the restoring hydrostatic moment 

of the centers of gravity and buoyancy being displaced by a 

change in the pitch angle. 

The parameters of a linear model can now be estimated by 

a standard recursive least squares or an instrumental variable 
algorithm by assuming an ARX discrete time model: 

SECOND zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAORDER DNE SYSTEM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ip. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.p la 
(PI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAii 1 1 .  (b) 

Fig. 1 .  (a) Linear model. (b) Pitch rate (actual and modeled). 

A ,  B being polynomials in the time-delay operator 
(q- 'y (kT)  = y(kT - T ) ,  T being the sampling interval), 

and e a random error sequence, possibly colored. The out- 

put of the linear (estimated) and nonlinear models' pitch rate 
is shown in Fig. l(b) for a twin screw vehicle of 17.4 ft in 

length, weighing 1200 lbs, and operating at 500 rpm. Also, 

the estimated dynamics at different operating conditions in 
terms of estimated poles and zeros in the z plane are shown 

in Table I. The effect of the restoring moment (gain K )  being 

more dominant at lower speeds can be seen from the poles 

becoming complex. 

111. SLIDING MODE CONTROL DESIGN 

It is evident from the discussion in Section I1 that any ve- 
hicle description based on a set of differential equations of 

motion can only be approximate in nature. 

The necessity of coping with uncertainties in the model calls 
for a robust control input U of the form: 

where 6 is determined on the basis of the nominal model, 
while il compensates for deviations from ideal performances 

due to uncertainties. 

In current approaches to the control of a wide class of non- 
linear plants, the nominal control term zi is determined by the 
full nonlinear model, in our case equation (1). This is the case 

found in computed torque techniques applied to the control of 
mechanical manipulators [7]. A similar approach of interest to 

our work has been presented for the control of submersibles 

In our research, by contrast, the nominal model is based 
r51, ~ 1 .  
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Dire hlodel Parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
aI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1.613 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb, = -0.0024 

500 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArpm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0, = -0.624 b, = 0.0402 

0, = 1.745 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-0.001 
300 rpm 

0, = -0.756 b, = -0.u16 

IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 15, NO. 3, JULY 1990 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H ( r )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(2 + 16.5) 

( z  - 0.967)(: - 0.645) 

( L  + 15.9) 
(I - 11 94)(: - 03)  

(z + 3.56) 
0, = 1.922 6, = -0.0006 

(2  - 0.961 0.072,) 
I00 rpm 

a, = -0.92s 6, = -0,0023 

on the linearized dynamics around the operating conditions of 

the vehicle and changes with nominal speed. Several reasons 

are at the basis of this choice: (i) Computer simulations [8] 
and experimental verification in water testing [9] show that at 

constant speeds the linear model is indeed a good approxima- 
tion of the nonlinear dynamics; (ii) for a linear model, the 
nominal control input U can be determined using robust lin- 
ear control techniques such as pole placement and LQG; (iii) 

when the state signals are not available, they can be estimated 

by an observer based on the linear dynamics, as discussed in 

a later section and in a forthcoming paper [lo]. 
The term U coping with model uncertainties can be de- 

termined on the basis of a sliding mode control [ l l ] ,  [12] 
approach. It is well known that sliding mode control provides 

effective and robust ways of controlling uncertain plants [ 1 11, 
[13] by means of a switching control law which drives the 

plant's state trajectory onto a user-chosen surface (the slid- 

ing surface) in the state space. The plant's state trajectory is 

maintained on this surface for all subsequent times. 

The only restriction on the choice of the sliding surface 

a(x) = 0 (4) 

is that it has to be associated with stable dynamics in the sense 
that 

a(x(t)) = 0, for all t > t o  + limx(t) = 0 (5) 

for any initial conditionsx(t0). The choice of a linear sliding 
surface: 

t-cc 

a(x) =sTx (6 )  

for some vectors E R3 allows the use of pole-placement tech- 
niques in the design of the nonlinear controller. 

By defining the Lyapunov function: 

V(x) = $J(x)]' (7) 

we guarantee that the sliding surface a(x) = 0 is reached in a 
finite amount of time by the condition: 

Since a(x) =s'x, we can use (8) and (2) to get: 

~ ' (AX S b u  +f) = -qi(x)sign(a). (9) 

By knowing a bound v on the nonlinearity such that 

for all x ,  the condition (8) with 7: = q2 -sTf is satisfied by 

chosing the control input: 

U = -(s'b)-'s'~x - q2(s'b)-' sign (a )  or 

u = U + u .  (11) 

As mentioned at the beginning of this section, it is important 

to recognize that the feedback control law U is composed of 

two parts. The first, 

U = -(s'b)-'s'Ax (12) 

is a linear feedback law based on the nominal model (1.2), 
whereas the second, 

U = -q2(sTb)-' sign (a)  (13) 

is a nonlinear feedback with its sign toggling between plus and 

minus according to which side of the sliding plane the system 
is located in. Two comments are in order here: First, since 

U has to change its sign as the system crosses a(x) = 0, the 

sliding surface has to be a hyperplane (dimension of one less 

than the state space). Secondly, it is U which is mainly respon- 
sible for driving and keeping the system onto the sliding plane 
a(x) = 0 (where U = 0 as well). Provided that the gain v2 has 

been chosen large enough, U can provide the required robust- 

ness due to momentary disturbances and unmodeled dynamics 

without any compromise in stability. 

The linear feedback law (12) is designed such that the sys- 

tem has the desired dynamics on the sliding plane. Since 

a(x) = 0, in this case: 

U = U = -(s'~)-'s'Ax 

and the closed-loop dynamics are given by 

x' = [A -b(s'b)-'s'A& (14) 

or 

i =(A -bk)r (15) 

where the gain vector k can be found from standard methods 
such as pole placement. The closed-loop dynamics matrix 

has eigenvalues specified for the desirable response. It should 
be mentioned that one of the eigenvalues of A c must be speci- 

fied to be zero. This is consistent with our decomposition (1 1). 
The linear feedback U provides the desired dynamics on the 
sliding plane only. Therefore, U has no effect in a direction 

perpendicular to a(x) = 0. With A c  specified and k com- 
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puted from pole placement, we can determine zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs as follows: 

From (14) and (15): 

k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (sTb)-'s*A 

and 

s T ( ~  -bk)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= O  or s T ~ c  =o .  (17) 

Therefore sT is found as a left annihilator of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA c, or s is a 

right eigenvector of (A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc)*, which corresponds to the zero 

eigenvalue. With this choice of s, the sliding plane s*x = 0 
and the feedback control law (1 1) are completely determined. 

It should be pointed out that, in applications, the states X I ,  

x2, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxg are to be interpreted as errors between the actual 

values of q, 8, and z and their set points. 
The aforementioned procedure can be easily extended to 

the case of nonlinear systems, linear in the control effort of 

the form: 

1 =f(x) +b(x)u. (18) 

Design of the sliding-surface coefficients can be based on the 

linearized version of (18) as in (17). Then the nonlinear feed- 

back control law, 

U = -(sTb(x))-'s*f(x) - q2(sTb(x))-' sign (a) (19) 

should replace (11). In this work we designed and imple- 

mented the control law as in (1 1) based on the linear model, 
as if no information regarding nonlinear characteristics of the 

vehicle dynamics existed. This approach clearly constitutes a 
"worst case scenario" and enhances the demonstration of the 

robustness properties of the design. 

IV. SLIDING MODE WITH ADAPTIVE CONTROL 

In the previous section we addressed the problem of de- 
signing a robust controller for diving maneuvers based on 

dominant linear dynamics with known coefficients and knowl- 

edge of bounds on the uncertainties. However, the linearized 
behavior of the AUV (expressed by the A , b matrices in the 

dynamics (2)) has characteristics changing with operating con- 

ditions such as speed and depth. This uncertain behavior can 
easily be included in the perturbationf by increasing the mag- 

nitude of the coefficient q2 of the nonlinear control term ii. 
From a different perspective, we can make use of adaptive 

control techniques to compensate for the linear uncertainties 

while not affecting the nonlinear perturbation term f and the 

switching effort 1'. 
Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-a1 -CY2 -a3 

A m = [ ;  -"U, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: I ,  b = [ / ]  (20) 

represent the desirable or nominal closed-loop dynamics of 

the system, with U forward velocity, assumed to be known. 

Then the dynamics of the AUV in the vertical motion can be 

written as 

1 = A d  +b(6 +KTx) +f (21) 

with K depending on the actual vehicle dynamics. On the 
basis of this model we can design an adaptive controller which 

yields a closed-loop stable behavior for any uncertainty on the 
vehicle dynamics. In particular, we can show the following: 

a) Let (A, sT)  be a pair of real eigenvalue (A) and corre- 
sponding left eigenvector of the matrixA in (20) such 

that sTb # 0 (assume sTb > 0). The existence of s is 

guaranteed by the pair (A m ,  b )  being completely con- 

trollable [ 141. 
b) Let a bound 1' on the nonlinearityf be defined by 

c) Let bounds on the coefficientsK in (21) be defined by 

KY < Kj < K y  (23) 

with Ki ,  i = l , . . . , n  the elements of K = 

[G , - ,Kn lT .  

Then the control input: 

with 

a ( t )  =sTx(t) 

and the adaptive gains 

m = -y(&t)) - p ( t ) a ( t )  (26) 

with [15] 

if Kim < Ki < K y  

yj(r i)  = a(ki(t> - K?), ifKi(t) < KT (27) 

{ O '  a ( k i ( t )  - K r ) ,  if Ki( t )  > KY 

a being a positive constant, is such that the closed-loop system 

is exponentially stable and 

limx(t) = 0 (28) t - 03  

for any initial conditions. 

Proo$ From (24) and (25) we can write (21) as 

+(t) + Aa(t) =sTbK(t)TX(t) +xrf(x) 

-sTb$(x) sgn(a(t)) (29) 

withK(t) = K  -K(t)  the parameter error. Define the Lya- 

punov function: 

and its time derivative along the trajectories of (29) can be 

computed as 

V ( u , K )  = -~a( t ) '  - (sTbq2(x) -s'f(x>sgn(u(t)))la(t)l 

sTb 
- -K( t )T  y ( I t (  t ) )  

P 
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It is easy to see from the definition of y in (29) that the 

right-most term in (31) is such that: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m T y ( m )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 (32) 

which yields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 5 0. Therefore R(t), a ( t )  are uniformly 

bounded, and furthermore, a ( t )  E L2, the set of signals 

square integrable. This fact and the boundedness of the 

derivative u(t) implies that a( t )  - 0 as t 4 W. Finally, 
x ( t )  + 0 is guaranteed by the choice of a stable sliding 

surface. 

The control law (24) is basically analogous to (11) with 
the addition of the adaptive gains zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx(t) adjusted on-line on 

the basis of (26). They guarantee the convergence of the state 
vector to the sliding surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsTx = 0 in spite of uncertainties 

of the linear part of the vehicle dynamics. Notice that the 
nonlinear control part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU is not affected by this uncertainty and 

is identical to (13). 

V. SLIDING MODE CONTROL WITH ESTIMATED STATES 

The control structures addressed thus far require the signals 

in the state vector to be available for measurements. In terms 
of the dive maneuver of the AUV, this implies that pitch rate 

and pitch angle signals are measured by the respective gyros, 
while depth is measured by a pressure cell. 

In some cases it might be desirable to design a control sys- 

tem based on the measurements of a restricted set of signals. 

This is typically the case in two situations: (a) When we want 

to reduce the number of sensors (gyros in this case), or (b) to 

improve the reliability of the system by the design of a con- 
troller which is robust in the presence of failures of some of 

the sensors. 
Most approaches to the sliding mode control available in the 

literature are based on the assumption of full state feedback. In 
this section we address the problem of designing a controller 

based on the observed state, and we show that global stability 

can still be guaranteed for a class of nonlinearities of interest. 

Consider still the system in (2) and assume we measure the 

signal y (say, the depth error (z - z d ) )  in the form: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 =Ax +bu +f 

(33) 

with (A ,  b )  a controllable pair, and (A ,  c) an observable pair, 

and the perturbationf(x) having a finite L ,  norm [16] as 

i y =cx 

where we define the L ,  norm: 

P f  I = SUP llx(7)Il. (35) 
r g  

In this section we show that given an observer for (33): 

=Ax^ +bu + K ( y  -CA?) (36) 

with (A -Kc) having eigenvalues in the stable region, we can 

design a sliding mode controller which guarantees global sta- 
bility and x ( t )  + 0, provided that the perturbationf satisfies 

(34) with IH1 I small enough. In particular: (a) Let x^ be the 

estimated state defined by (36); (b) let: 

u(t)  = -~x^( t )  - T~ sgn (sTx^(t)) (37) 

be the sliding mode control designed on the basis of the sys- 

tem, 

P =Ax^ +bu +f (38) 

withf such that: 

f = ( A  - K c ) f + f  

f = Kcx". 
(39) 

Note that since the linear mapping (39) is known and exponen- 

tially stable, if we know a bound on f we can easily determine 
a bound onf in (38) and design a sliding mode controller for 

(38); (c) letf satisfy (34); Then there exists an H* such that: 

limx(t) = 0 
t-, 

provided thatf is such that IH1 I < H*.  

Proof [lo]: In order to show the results, define the state 

estimate error, x" = x  -x^. Then it is easy to see that (38) 
and (39) are an equivalent state-space representation of the 

system (33) and its observer (36). Also, by the arguments 

in Section I1 applied to the system (39), the control input u 
in (37) ensures that the estimated state x^ tends to the sliding 
surfacesT$ = 0 and then: 

limx^(t) = 0. 

Therefore we can look at the mapping (39) as a feedback 
connection as in Fig. 2, with Ho representing the linear 

mapping Ho: f  -f in (39), and H I :  x + f the nonlin- 
ear perturbation. By the small gain theorem [16] we can 

see that the system x^ +x is BIB0 stable, provided that 

IHoIIH1 I < 1 ,  which proves the results. 

This result shows that a control system designed on the 

sliding mode approach using an estimated state is still stable 
provided that the perturbations in its dynamics are "small 

enough" in their L ,  norm. Greater degrees of robustness 
can be achieved by the use of robust observers such as the 

class introduced in [17], provided that the entry point of the 
perturbations is known. This is the case, for example, of a 

system with dynamical equations: 

f -03 

1 =Ax +b(u  + f )  i y =cx. 

In this case it will be shown in a forthcoming paper [lo] that a 
class of observers can be constructed with an arbitrary degree 

of robustness. 

VI. SIMULATION RESULTS 

The sliding mode compensator was designed along the lines 
of Section I1 based on the nominal linear model (33) and for 

the nominal speed of 6 ft/s. Closed-loop poles -0.25 and 

-0.27 were selected for the system on the sliding plane with 
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Fig. 2. Error model for the vehicle with observer. 

the third pole at zero. The poles chosen for the observer were 

-4.5, -4.75, and -4.95. Equation (17) then determined the 
sliding plane, and (1 1) the control law: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -5.1429q + 1.07146 + k ,  satsgn(a) (40) 

where 

k ,  = ~ ~ ( s ' b ) - ~  (41) 

is the nonlinear gain, and we use 

+1, if U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

satsgn(a) = -1, if a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 4 (42) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI a/4, if - 4 < u  < 4  

instead of the pure switch sign (a) in order to avoid numerical 
chattering. Another saturation function was introduced to limit 
the total dive plane angle between -0.4 and +0.4 rad. Sim- 

ulated responses for both the linearized and nonlinear model 

under sliding mode control using (k , ,  4) = (4, 0.4) are shown 
in Fig. 3 for a depth command of 100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAft. Further details can 

be found in [ 181. 
Comparison of the two responses demonstrates the expected 

ability of the sliding mode compensator to handle unmodeled 

nonlinearities. It is interesting to note that since the nonlinear 

vehicle experiences speed loss while diving, it switched its 
dive planes from +0.4 to -0.4 earlier than the linear model. 

The next test for the compensator was its robustness to 

parameter variations and unmodeled dynamics. Sliding mode 
controllers are expected to outperform more conventional lin- 

ear state feedback schemes with respect to their robustness. 

This is true for the following two reasons: First, choosing q2 
sufficiently large will guarantee that the system approaches the 

sliding surface even for the off-design case. Secondly, since 
at the final stage the system evolves in a lower dimension 
state space (the sliding surface), it is naturally more robust 

than the original higher dimensionality system. Fig. 4 shows 

a comparison of actual depth responses for the following sets 
of pitch dynamics: 

Case (a) : q = -0.7q - 0.030 - 1.00 x 0.0356 

Case (b) : q = -.07q - 0.030 - 0.50 x 0.0356 

Case (c) : q = -0.7q - 0.030 - 0.25 x 0.0356 

Case (d) : q = -0.7q - 0.030 - 6.00 x 0.0356. 

Control design was based on the nominal case (a) with 

(k,, 4) = (5, 0.2), closed-loop poles at (0, -0.65, -0.69), 

and observer poles at (-6.57, -6.85, -7.13). As can be seen 

from Fig. 4, even under a 24:l change in the coefficient of 
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Fig. 3. Dynamic responses of the linear and nonlinear models. 
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Fig. 4. Robustness test for the linear system. 

the b matrix the vehicle response remains stable, faster, or 

slower as expected. 
Analogous robustness tests were performed by applying the 

nominal control law (40) to the nonlinear vehicle model under 

a wide variation in certain essential hydrodynamic and hydro- 

static parameters. Simulation results are presented in Figs. 
5-7 for the following system/model mismatch cases: 

Fig. 5: Ma x 2.0 

Fig. 6: M ,  x 0.5, 

Fig. 7: (ZG - za) x 0.25. 

Ms x 0.5, (ZG - ZB) x 0.5 

These coefficients were selected in view of their significance in 

the vehicle dynamic response. The rotary damping coefficient 
M ,  affects the hydrodynamic moment of the vehicle in the 
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Fig. 5. First robustness test for the nonlinear system. 
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Fig. 6. Second robustness test for the nonlinear system. 

vertical plane. The center of gravitykenter of buoyancy sep- 

aration ZG - ZB represents the hydrostatic restoring moment. 
The hydrodynamic coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMS is proportional to the pitch 

moment generated by the dive planes and is directly related 
to the gain margin of the system. As can be seen from the 

simulation results, the compensator provided stable response 

and performed consistently at different parameter values and 

coefficient mismatch. 

The adaptive algorithm presented in the previous sections 

has been simulated in several diving maneuvers, using the 

model developed in [2], [3], [12]. Figs. 8 and 9 compare 
actual and desired depth at 500 and 300 rpm, together with 
the adaptive gains and the signal (T =sTx in (25) driving the 

controller. From these and various simulations it can be seen 

that the tracking of the depth signal is obtained for different 

operating conditions. The adaptive gains provide the necessary 
stabilizing action, together with the variable structure input. 
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Fig. 7. Third robustness test for the nonlinear system. 
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Fig. 8. Vehicle depth and adaptive gains at 500 rpm. 
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Fig. 9. Vehicle depth and adaptive gains at 300 rpm. 

VII. CONCLUSIONS 

A control algorithm for the diving maneuver of a sub- 

mersible vehicle has been presented. Its main feature is that it 

combines the adaptivity of a direct adaptive control algorithm 

with the robustness of a sliding mode controller. At the same 
time, its implementation is simple enough to be attractive for 

on-line realization using commercial microprocessors. Also, 

it is shown that the controller presented in its nonadaptive 

form can be combined with a standard Luenberger observer 

designed on the basis of a nominal dynamic model. 
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