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Abstract: A filtering algorithm is proposed that accurately extracts ground data from 

airborne light detection and ranging (LiDAR) measurements and generates an estimated 

digital terrain model (DTM). The proposed algorithm utilizes planar surface features and 

connectivity with locally lowest points to improve the extraction of ground points (GPs). A 

slope parameter used in the proposed algorithm is updated after an initial estimation of the 

DTM, and thus local terrain information can be included. As a result, the proposed 

algorithm can extract GPs from areas where different degrees of slope variation are 

interspersed. Specifically, along roads and streets, GPs were extracted from urban areas, 

from hilly areas such as forests, and from flat area such as riverbanks. Validation using 

reference data showed that, compared with commercial filtering software, the proposed 

algorithm extracts GPs with higher accuracy. Therefore, the proposed filtering algorithm 

effectively generates DTMs, even for dense urban areas, from airborne LiDAR data. 

Keywords: airborne LiDAR; filtering; slope variation 

 

1. Introduction 

Three-dimensional (3D) urban building models are used in various applications, and the data 

necessary for modeling, such as building height estimates, can be generated by using airborne light 

detection and ranging (LiDAR). Airborne LiDAR measures laser light reflected from the surface of 

objects, and a digital surface model (DSM) is generated by interpolating the discrete LiDAR data. 

During preprocessing of the 3D models, ground points (GPs) in the LiDAR data are separated from 

non-GPs. This process is called filtering, and a digital terrain model (DTM) can be generated by 
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interpolating the extracted GPs. The heights of objects, such as trees and buildings, are then estimated 

by examining the differences between the DSM and the DTM. The accuracy of DTM estimation, 

therefore, affects the accuracy of the building models. 

Sithole and Vosselman [1] classified approaches to airborne LiDAR data filtering as slope-based 

[2,3], block-minimum [4,5], surface-based, and clustering/segmentation [6]. Slope-based and  

block-minimum filters are straightforward to implement. In clustering/segmentation approaches, 

mathematical morphology—which is widely used in image processing—has been applied in the 

filtering process [7,8]. Meng et al. [9] pointed out that LiDAR ground filtering algorithms make 

different assumptions about ground characteristics to differentiate between ground and nonground 

features, and listed eight features that confound ground filtering algorithms: (1) shrubs, (2) short walls 

along walkways, (3) bridges, (4) buildings with different size and shape, (5) hill cut-off edges, 

(6) complex mixed covering, (7) areas combining low and high-relief terrains, and (8) lack of reliable 

accuracy assessment [9]. Sithole and Vosselman [1] presented experimental results that assessed the 

different types of filters. The performance was analyzed qualitatively and quantitatively by using 

datasets that included terrain with steep slopes, vegetation, buildings, ramps, underpasses, tunnel 

entrances, bridges, a quarry, and data gaps. Their performance assessment showed that the greatest 

challenges for filters appear to be complex cityscapes and discontinuities in the bare earth, and 

therefore tailoring the algorithms for these areas may improve categorization results [1]. 

My interest is in efficient, automatic generation of 3D models in dense urban areas from airborne 

LiDAR for civil engineering applications, for example, earthquake damage assessment. In such 

applications, 3D models should have geolocational accuracy of approximately 30–50 cm. Prior to 3D 

modeling, however, a filtering algorithm applicable to dense urban areas is necessary. Among the 

features mentioned above, filtering for dense urban areas requires dealing with steep slopes, 

vegetation, buildings, bridges, and rivers. Narrow streets and numerous buildings are found in dense 

urban areas, and therefore filtering of airborne LiDAR data is more challenging because data sampling 

has not been tuned to the level of information to be extracted. In addition, when areas are hilly, GP 

detection may fail because of height variations. Another problem encountered in filtering of dense 

urban areas is that a river running through the area may lower DTM accuracy. This may be partly 

because GPs on or near bridges over the river are not extracted accurately, and partly because 

erroneous GPs are selected near the river and bridges when generating the DTM by interpolation. 

DTMs in urban areas have been estimated by using the morphological approach [8] and a hybrid 

conditional random field [10]. Yuan et al. [11] proposed a filtering algorithm that combines slope-

based and region-growing methods, and applied their algorithm to urban areas. However, their results 

suggest that this combined approach is not guaranteed to function well in dense urban areas. In 

addition, the slope angle in slope-based morphological filtering [2,3] is defined as the relative angle 

with the ground inclination subtracted. This slope setting may extract more points on objects, 

especially in dense urban areas. 

Tuning the parameters used in filters is among the most important issues for efficient filtering. 

Sithole and Vosselman [1] addressed an ideal case of automatic filter selection and tuning because the 

optimal filter algorithm may vary according to the landscape. Zhang et al. [7] pointed out that filtering 

parameter selection has a considerable impact on the removal of non-GPs. They suggested tuning 

parameters by analyzing terrain and nonterrain measurement data. In another example, Yuan et al. [11] 
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stated that the slope threshold used in their algorithm was empirically selected and instead should be 

self-adaptively selected.  

To tune the parameters, iterative filtering approaches has been reported [12–14]. For instance, 

Axelsson [13] proposed a filtering algorithm to generate sparse triangular irregular networks (TINs) 

from seed points and to densify them through an iterative process. This example is pertinent here 

because Axelsson’s algorithm is embedded in the widely used commercial filtering software, 

TerraScan [15], which is used for performance validation in this paper. Threshold parameters for 

distances to TIN facet planes and angles to TIN nodes are computed from data at each iteration. 

However, these thresholds are common to the entire study area. In a preliminary examination using a 

similar method, GPs were poorly extracted in a study area where relatively flat and hilly areas were 

mixed. This poor extraction may occur because the slope parameter was set to a common value for 

both flat and hilly areas. Although algorithms that use adaptive slope thresholds [16,17] and a 

parameter-free algorithm [18] have been proposed, it is not assured that such algorithms perform 

satisfactorily in dense urban areas where narrow streets and numerous buildings are found. 

Therefore, I propose a filtering algorithm using an adaptive slope threshold that accurately 

distinguishes GPs from non-GPs even in dense urban areas. The performance of the proposed 

algorithm is compared with existing algorithms using data obtained from a study area and publicly 

available datasets. The rest of this paper is structured as follows. Section 2 describes the new filtering 

algorithm. Features of the employed data and the study area are described in Section 3, and 

experimental and validation results are reported in Section 4. Conclusions are given in Section 5. 

2. Algorithm 

This paper focuses on a filtering algorithm for estimating a final DTM. The proposed algorithm 

assumes that grid data are used, since using grid-based data is better than irregularly distributed point 

clouds in terms of algorithm efficiency and calculation time. When more than one data point is 

available within a pixel, the lowest data point is selected. However, the original xy coordinates are 

recorded in the pixels. 

The proposed algorithm utilizes information on whether a point is contained in a plane for filtering, 

and the algorithm can be classified as a slope-based morphological filtering approach. Sithole and 

Vosselman [6] and Tovari and Pfeifer [19] proposed segmentation based on planar surface information 

prior to filtering. Segmentation is also implemented on planar surface information in the proposed 

algorithm, but planar surface information in flat and almost flat areas is used to generate initial GPs only. 

Another challenge is the automatic updating of parameters. For example, the slope-based approach 

requires setting a maximum slope parameter to extract GPs from inclined streets. However, a fixed 

slope parameter is not suitable for areas where flat and hilly areas are interspersed. The proposed 

approach extracts wide rather than narrow streets first. Narrow streets are then extracted by 

considering their connectivity with the wide streets. Through this approach, focus is placed on the 

planar nature of wide streets in dense urban areas. In addition, the slope parameter in the proposed 

algorithm is automatically updated. After an initial DTM is generated with an initial slope parameter, a 

local maximum slope is calculated. The slope parameter given to each cell of the grid data is updated 

by considering local terrain. Then, the DTM generation process is repeated using the updated 
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parameter. During the interpolation procedure when generating the DTM, bodies of water are masked 

to prevent incorrect GP selection near rivers and bridges. 

Figure 1 shows the flowchart of the algorithm. Step (1) selects a large area without data, including 

the null pixels connected to this area, as an initial body of water. In Step (2), locally lowest points 

(LLPs) are selected by searching elevation data within a window. Step (3) extracts planar areas by 

estimating the planes that minimize the root mean square error (RMSE). The planar equation is 

expressed as: 

,0 dczbyax      (1) 

where a, b, c, and d are coefficients. The minimum eigenvalue, and thus the minimum eigenvector, of 

the matrix: 
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is then calculated, where x , y , and z  are the means of x, y, and z, respectively. The minimum 

eigenvector is equivalent to the optimal vector )ˆ,ˆ,ˆ( cba  in Equation (1). Step (3) checks whether the 

RMSE of each optimal plane is less than a given threshold. 

Figure 1. Flowchart of proposed algorithm to generate a DTM. 

 

The calculation is conducted using all the points in a window, and is repeated for regions within 

windows that include a target pixel. The plane with the lowest RMSE is selected. If the RMSE is 

(2) Find locally

lowest points (LLP)

(4) Determine ground point (GP)

(3) Estimate plane

Start

Initial slope

parameter

(5) Determine new GPs 

using GP planes

(6) Estimate DTM

End

(8) Update

slope

parameter
1st  loop?

No

Yes

(7) Determinate new GPs 

by using DTM

New GPs?
Yes

No

Iteration

To Step (6)

From Step (5)
(1) Extract bodies of water
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smaller and the distance between the pixel and the plane is shorter than the designated thresholds, the 

pixel is regarded as having a planar surface. At this stage, ground data in addition to roof data for 

buildings are selected. “Minimum vertical component of the planar normal” is used to extract streets. 

The estimated planes include streets and building roofs. To exclude the roofs, especially pitched roofs, 

and to retain hilly streets, normals to the plane whose vertical component is within a small tilt range in 

any direction are accepted. 

In Step (4), if data selected above are connected with a LLP within designated vertical distance and 

slope angle thresholds, they are labeled as GP. The slope angle i  is defined as 

,
)()(

tan
22

1


















 

tgtitgti

tgti

i
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zz
      (3) 

where xi, yi, and zi are the x, y, and z coordinates of point i, respectively, and xtgt, ytgt, and ztgt are the x, y, 

and z coordinates of the target ground point, respectively (Figure 2). When calculating the slope, the 

original xy coordinates of the LLP are used. Others data are temporarily labeled as non-GP candidates. 

Step (5) adds more GPs. If non-GP candidates within the same window size as Step (3) are closer to 

the GP plane than a designated threshold (as indicated in Figure 2), they are labeled as GPs. Although 

some of the actual GPs are not extracted in Step (4), more are extracted at this stage. 

Figure 2. Searching for new GPs by using planes. A new GP is added when the distance 

between the point and plane calculated at the target ground point is within a threshold, and 

the horizontal distance between the point and target ground point is within another threshold, 

“Window size”. 

 

Step (6) estimates the DTM by using neighboring GPs. In the present research, inverse distance 

weighted (IDW) interpolation is employed because of its simple implementation. The weights of the 

data available for the interpolation are assigned such that they are inversely proportional to the distance 

from the target point. When at least three GPs are available within a threshold distance along four 

directions, the elevation of a non-GP is interpolated by using the elevations of GPs. The search along 

any direction is terminated when a water body pixel is found to prevent the result from being affected 

by the elevation at the river. Two patterns of four directions are examined. This interpolation is 

repeated for the entire area. If a pixel does not have at least three available GPs, its elevation is set as 

the average elevation of its eight neighboring pixels. 

Step (7) filters non-GPs a second time by calculating their distances from the DTM. If the distance 

is within a designated threshold, the non-GPs are added to the set of GPs. When a new GP is added, 

Step (6) is repeated after completion of Step (7). If no new GPs are added during the first loop, the 

dist_max

dh

Target ground

pointPlane
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slope
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slope parameter is updated by referring to the maximum slope derived from the DTM. Then, the 

second loop is conducted (Step (8)). 

3. Data Characteristics  

Kyoto is famous for being the former capital of Japan, and still has many traditional houses and 

landscapes. Higashiyama Ward and Nakagyo Ward of Kyoto were selected as study areas. 

Higashiyama is hilly and contains traditional temples and shrines. Nakagyo has a commercial district 

and a large number of multistoried buildings. Both areas have narrow streets, which are approximately 

5–6 m in width. Details of the airborne LiDAR data for these areas are listed in Table 1. 

In total, two LiDAR datasets were available for this research: one for Higashiyama Ward and one 

for Nakagyo Ward. These datasets were classified into two categories: “hilly” (Higashiyama dataset) 

and “flat with rivers” (Nakagyo dataset).  

Table 1. Details of airborne LiDAR. 

Measurement date June 2002 to February 2003 

Measurer Aero Asahi Corporation 

Density  

(calculated as valid pixels divided by all 

pixels of the area) 

Approx. 0.68 points/m2  

0.70 for Higashiyama, and  

0.66 for Nakagyo 

Altitude 900 to 1,000 m 

Horizontal accuracy ±50 cm 

Vertical accuracy ±15 cm 

4. Experiments 

4.1. Results 

From the original point clouds, 1 m grid data were generated. In this experiment, the parameters 

were set to the values listed in Table 2. Results had greater sensitivity to “Window size” in Step (2), 

“Maximum slope” in Steps (4), (5), and (8), and “Window size for mean of DTM” in Step (8) than the 

other parameters. Those parameters were empirically set through several preliminary experiments. 

Among the parameters, the slope parameter, which is the most important, is addressed here. Its value 

was fixed at 3.0° in the first loop. In Step (8), a 21 m × 21 m window was selected for the mean DTM 

calculations. Then, local maximum slopes were obtained by examining the eight neighboring pixels of 

target pixels. If the local maximum slope was ≥4.5°, “Maximum slope” in Steps (4) and (5) was 

updated to 4.5°; otherwise, it was kept at 3.0°. The DTM was then regenerated with this updated slope 

parameter.  

To save computation time, the criterion to repeat Step (6) after Step (7) was that ≥30 points were 

added and the number of iterations in Steps (6) and (7) was ≤30. Figure 3 shows the results in hilly 

areas (Higashiyama), and Figure 4 shows the results in flat areas with rivers (Nakagyo). Note that the 

aerial photographs were acquired in 2007, and LiDAR data were acquired from 2002 to 2003.  
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Table 2. Parameters in the proposed algorithm and values used for experiments. 

Process Parameter Value Used 

Step (1): River extraction 
Window size for initial area detection 7 m × 7 m 

Minimum area to accept water body 100 m2 

Step (2): Finding locally 

lowest points (LLPs) 
Window size 60 m × 60 m 

Step (3): Planar surface 

calculation 

Window size (used also in Steps (4) and (5)) 5 m × 5 m 

Minimum data number to calculate 6 points 

Maximum root mean square of errors (RMSE) to 

accept plane 
0.1 m 

Maximum distance to plane (used also in Step (5)) 0.1 m 

Minimum vertical component of planar normal 0.9 

Step (4): GP determination 

Maximum slope 

(used also in Steps (5) and (8)) 

1st loop: 3° 

2nd loop: 3° or 4.5°s 

Maximum height difference to determine as GP (used 

also in Step (7)) 
0.5 m 

Step (6): DTM estimation 

Maximum distance of the closest point (same as 

“Window size” in Step (2)) 
50 m 

Maximum distance of other points 100 m 

Window size for mean of DTM 21 m × 21 m 

Figure 3. Generation of DTM for Higashiyama: (a) aerial photograph, (b) original airborne 

LiDAR data, (c) points extracted as planar surface areas, (d) GPs after first iteration of first 

loop, (e) GPs after iteration ended in first loop, (f) GPs after iteration ended in second loop, 

(g) final DTM with GPs, (h) “Maximum slope” of final DTM, and (i) comparison between 

results obtained by using the proposed algorithm and those obtained by using TerraScan. 

In (g), black pixels denote GPs. In (h), black and white pixels denote 3.0° and 4.5° 

maximum slopes, respectively. In (i), black pixels denote GPs extracted by both the 

proposed algorithm and TerraScan, red pixels denote GPs extracted by using only the 

proposed algorithm, and blue pixels denote GPs extracted by using only TerraScan. Central 

latitude: 34°59′56′′N; Central longitude: 135°46′42′′E. 

  

(a)                                                                   (b) 
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Figure 3. Cont. 

  

(c)                                                                  (d) 

  

(e)                                                                  (f) 

  

(g)                                                                  (h) 
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Figure 3. Cont. 

 

 

500 m 

 

 

(i)  

Figure 4. Generation of DTM for Nakagyo: (a) aerial photograph, (b) original airborne 

LiDAR data, (c) final DTM with GPs, (d) “Maximum slope” of the final DTM, and 

(e) comparison between results obtained by using the proposed algorithm and those 

obtained by using TerraScan. Explanations for (d) and (e) are the same as those for Figure 

3(h,i), respectively. In DTM images, bodies of water are shown in white. Central latitude: 

34°59′56′′N; Central longitude: 135°45′′57′′E. 

  

(a)                                                                   (b) 

  

(c)                                                                   (d) 

82 m 31 m 
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Figure 4. Cont. 

 

 

500 m 

 

 

(e)  

Table 3. Comparison of filtering errors of TerraScan, Mongus and Žalik’s algorithm 

(Mongus) [18], and the proposed algorithm for ISPRS benchmark datasets. 

Sample Algorithm Total (%) Type I (%) Type II (%) 

11 

TerraScan 16.14  26.66  2.00  

Mongus 11.01  7.32  15.98  

Proposed 18.62  21.87  14.24  

12 

TerraScan 11.55  21.49  1.12  

Mongus 5.17  4.23  6.15  

Proposed 7.08  8.45  5.64  

21 

TerraScan 11.56  14.30  1.95  

Mongus 1.98  0.01  8.87  

Proposed 8.50  0.60  36.17  

22 

TerraScan 10.78  14.51  2.56  

Mongus 6.56  4.97  10.09  

Proposed 7.29  2.82  17.13  

23 

TerraScan 8.01  12.92  2.54  

Mongus 5.83  4.38  7.45  

Proposed 8.42  11.14  5.39  

24 

TerraScan 12.97  16.38  3.98  

Mongus 7.98  5.69  14.04  

Proposed 6.71  5.24  10.59  

31 

TerraScan 4.85  8.36  8.97  

Mongus 3.34  0.21  7.00  

Proposed 2.74  0.38  5.51  

41 

TerraScan 13.15  25.10  0.74  

Mongus 3.71  3.39  4.03  

Proposed 3.93  2.84  5.01  

42 

TerraScan 2.55  8.00  1.39  

Mongus 5.72  0.06  8.06  

Proposed 3.26  6.97  1.72  

43 m 26 m 
B1 

B2 
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4.2. Validation 

4.2.1. Validation Using ISPRS Benchmark Data 

The proposed algorithm was validated by using benchmark datasets provided by the International 

Society for Photogrammetry and Remote Sensing (ISPRS) Commission III/WG3. Sithole and 

Vosselman [1] have compared several filtering algorithms using these datasets. Because the focus here 

is on urban areas in particular, the urban datasets (samples 11, 12, 21, 22, 23, 24, 31, 41, and 42) were 

used. The accuracy of the algorithm was evaluated in terms of type I error (rejection of bare-earth 

points), type II error (acceptance of object points as bare earth), and total error. Table 3 shows a 

comparison of the filtering errors of the commercial filtering software TerraScan [15], Mongus and 

Žalik’s algorithm [18], and the proposed algorithm for the ISPRS benchmark datasets. The errors of 

the proposed algorithm were determined in this work, whereas the errors in the other cases were taken 

from [18]. A 0.5 m grid was used in the calculations in order to minimize the number of pixels with 

multiple data. Almost all the parameter values used for the benchmark data were the same as those 

used for the study areas, whereas the grid resolution was set to 0.5 m and “Window size” in Step (3) 

was set to 3.5 m × 3.5 m instead of 5 m × 5 m. 

4.2.2. Comparison with TerraScan Using Study Area Data 

Next, GPs extracted by the proposed algorithms were qualitatively validated through a comparison 

with GPs extracted by TerraScan. The parameters of the “Classify ground” function are listed in the 

central column of Table 4, and were set to the values in the right-hand column of the table. Note that 

the parameter “Iteration angle” is defined as the angle to the plane, which is different from “Maximum 

slope” in the proposed algorithm. When “Iteration angle” was set to 4.5°, many points were incorrectly 

extracted as GPs around two-story parking structures where a slope links the roof (second story) with 

the ground. As a result, “Iteration angle” was set to 3.0°. For Higashiyama and Nakagyo, respectively, 

Figure 3(i,e) shows the GPs extracted by both the proposed algorithm and TerraScan, GPs extracted by 

only the proposed algorithm, and GPs extracted by only TerraScan. 

Table 4. TerraScan parameters and values used in experiments. 

Process Parameter Value Used 

Classify ground 

Max building size 60 m 

Iteration angle 3.0° to plane 

Iteration distance 0.5 m 

[Option] Reduce iteration angle  Off 

[Option] Stop triangulation Off 

5. Discussion 

5.1. Qualitative and Quantitative Assessment 

First, Table 3 shows that the accuracy of the proposed algorithm is higher than that of TerraScan for 

most of samples, and almost equal to that of Mongus and Žalik’s algorithm. The accuracy of the 
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proposed algorithm was lowest for sample 11 because it extracted many vegetation points as GPs. In 

other samples, the proposed algorithm functioned effectively to extract GPs. Almost all the parameter 

values used for the benchmark data were same as those used for the study areas except the grid 

resolution and “Window size” in Step (3). GP extraction results were found to be sensitive to “Window 
size.” Mongus and Žalik proposed a parameter-free filtering algorithm [18]. In contrast, “Window size” 

must be tuned for the proposed algorithm because the optimal size may depend on the density of the 

points. However, tuning of the other parameter values may not be necessary, and thus this issue is not 

considered critical. 

Second, Figure 3(i,e) shows that the proposed algorithm extracted a greater number of GPs on 

narrow streets than TerraScan did. In addition, TerraScan extracted considerably fewer GPs in 

graveyards. This shortcoming of TerraScan was found for the majority of the graveyards in 

Higashiyama. In the case of dense urban areas, the overall classification accuracy of the proposed 

algorithm was approximately equal to or higher than that of TerraScan. This difference in accuracy 

was independent of terrain, but a larger accuracy difference was found for narrow streets. 

The proposed algorithm was also successful in extracting GPs on bridges and riverbanks, as shown 

in Figure 4(e). Note that the proposed algorithm extracts GPs from bridges, whereas TerraScan does 

not because it treats them as nonground features. The proposed algorithm utilizes information on the 

connectivity with LLPs and considers planar surface information. In addition, the algorithm updates 

the local slope parameter (which is discussed in Section 4.2). These factors lead to successful GP 

extraction on bridges and riverbanks.  

5.2. Effect of Updating Slope Parameter 

The proposed algorithm starts with planar surface estimation. In actuality, points extracted from 

planar surface areas (Figure 3(c)) are too sparse to estimate a DTM. However, utilization of the planar 

surface features and connectivity with LLPs improved GP extraction. This is a type of region-growing 

technique. The LLP image had low accuracy because outliers with elevations less than 0.5 m were not 

excluded and such outliers were selected as LLPs. However, because the parameters for determining 

connections with LLPs (Step (3)) were set to 0.5 m, the effect of the outliers was lessened. LLPs are 

part of the initial data used to extract GPs. Therefore, the quality of LLP images is not of high 

importance in the proposed algorithm.  

“Maximum slope” in Steps (4), (5), and (8) has an effect on the final DTMs of the study area. In a 

preliminary examination, the slope parameter was fixed. A low value, for example, 3.0°, was used for 

flat areas and a higher value, for example, 4.5° or 5.0°, was used for hilly areas. This approach worked 

in general, but not for riverbanks in flat areas (Nakagyo). When a higher slope value was applied in 

such flat areas, GP extraction and DTM estimation around the riverbanks were improved, but some 

points on the roofs of buildings were incorrectly extracted. Therefore, the approach was taken to begin 

with a common low value for the slope parameter, and then repeat processing after updating the value 

by calculating the local maximum slope from the tentatively estimated DTM. In Figure 3(d), few GPs 

were extracted after the first iteration in the first loop, and GPs on hilly areas were poorly extracted. 

However, by the end of the process, GPs were extracted even from the hilly areas. Figure 4(c,e) shows 

that the proposed algorithm also extracted GPs along riverbanks.  
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“Maximum slope” for the final DTMs of Higashiyama and Nakagyo is shown in Figures 3(h) and 

4(d), respectively. Black and white pixels in the right-hand images denote 3.0° and 4.5° maximum 

slopes, respectively. Hilly and flat areas are mixed in Higashiyama, and it was found that hilly areas 

were given maximum slope values of 4.5°. An experiment was also conducted using data on Fushimi 

Ward, Kyoto, which has flat terrain, as well as rivers and canals. Although the results are not included 

in this paper, they showed that the areas around rivers, including river banks and inclined roads, were 

given maximum slope values of 4.5°. It was verified that the updated “Maximum slope” represents 

local terrain and contributes to improving GP extraction in the second loop. In contrast, TerraScan, 

which uses a constant slope parameter, extracted fewer GPs. 

Note that “Maximum slope” has a considerably weaker effect on the final DTMs of the ISPRS 

benchmark datasets than those of the study area. This may be because different degrees of slope 

variation are interspersed in the study area. 

5.3. Definition of Slope Angle 

The slope angle in the proposed algorithm given by Equation (3), is different from that in slope-

based morphological filtering [2,3], which is defined as the relative angle with the ground inclination 

subtracted. Because this relative slope angle was judged to extract more points on objects, absolute 

slope angles were used in the proposed algorithm. 

In Figure 4(e), B1 denotes a commercial building, and B2 denotes a two-story parking structure 

where a slope links the roof (second story) with the ground. The blue pixels in B1 and B2 show that 

TerraScan incorrectly extracted points on the high building and the parking structure as GPs, while the 

proposed algorithm avoided such incorrect extraction. Similar results were found for the Fushimi Ward 

data (not shown). Therefore, the slope angle as defined in the proposed algorithm provides higher 

accuracy than that in existing algorithms. 

5.4. Effect of Water Body Mask 

Figure 5 shows four images of bridges over the Kamo River, Nakagyo Ward. Figure 5(a,c) was 

generated by the proposed algorithm with its water body mask, and Figure 5(b,d) wasgenerated by the 

proposed algorithm without the mask. GPs were successfully extracted by the proposed algorithm with 

and without a water mask. However, Figure 5(b,d) shows that the elevations of water body pixels with 

null LiDAR data were overestimated with respect to the elevation of the bridge. In Figure 5(a,c), such 

overestimation was prevented by masking the river.  

In the present algorithm, when at least three GPs were available within a threshold distance along 

four directions, the elevation of a non-GP was estimated using inverse distance weighted interpolation. 

In a preliminary examination to find flat areas with rivers, DTMs for buildings along rivers were found 

to be underestimated because points were selected from the riverbed or on the other side of riverbank. 

Therefore, a decision was made to mask bodies of water. Converting LiDAR data into grid-based data 

is quite useful for this purpose because the labeling of null pixels as bodies of water can be achieved 

by using a conventional image-processing algorithm. This approach prevented underestimation of 

DTMs along rivers. In this regard, a promising avenue of research would be to merge raster image 

processing and point data processing techniques for LiDAR data handling. 
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Figure 5. Effect of water body mask for Nakagyo dataset: (a), (c) final DTMs with GPs 

generated by proposed algorithm with water body mask, and (b), (d) final DTMs with GPs 

generated by proposed algorithm without water body mask. 

  

(a)                                                            (b) 

Central latitude: 34°59′45′′N, Central longitude: 135°46′05′′E 

  

(c)                                                            (d) 

Central latitude: 35°00′07′′N; Central longitude: 135°46′16′′E 

 

5.5. Computation Time and Limitations 

Overall, the proposed filtering algorithm can effectively generate a DTM from airborne LiDAR 

data, even for dense urban areas. The algorithm utilizes connectivity with streets for GP extraction. 

This calculation is efficiently implemented by converting original LiDAR data into grid-based data. 

However, the computation time is relatively long. While TerraScan processed a dataset (approximately 

930 m × 1140 m) within several seconds, the proposed algorithm took approximately 80–90 s using a 

personal computer with an Intel Core i7 (3.20 GHz) processor and 6 GB memory. The majority of this 

computation time was to execute the iterations in Steps (6) and (7). In the experiment, the criterion to 

continue the iteration was that ≥30 points were added and the number of iterations for Steps (6) and (7) 

was ≤30. When the number of iteration was set to 5 in order to save computation time, the proposed 

algorithm failed to extract GPs from several narrow streets on hilly areas and from a flat schoolyard in 

Higashiyama. The missed schoolyard was greater than 30 m away from a road, the GPs of which were 

43 m 26 m 
100 m 
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mostly extracted in the first iteration of the first loop (Figure 3(d)). Extraction of such isolated GPs 

requires a certain number of iterations. Therefore, a future task is to reduce the computation time, 

while retaining the accuracy of GP extraction. 

Although the algorithm can work effectively when streets are available, whether the algorithm is 

applicable to forests where planar surfaces are limited is uncertain. However, if only part of the study 

area is forest, as in the eastern part of Higashiyama in Figure 3, the algorithm is effective. As Figure 

3(c–e) indicate, GPs can be extracted from urban and forest areas along streets. In addition, existing 

algorithms applicable to forests are available, for example, Kobler et al. [14] and Bretar and 

Chehata [20]. 

6. Conclusions 

A filtering algorithm was proposed that is applicable to areas where flat and hilly areas are 

interspersed. The proposed algorithm is based on a slope-based morphological filtering approach. A 

slope parameter used in the proposed algorithm is updated after an initial estimation of the DTM, and 

thus local terrain information can be included. Because of this update, extraction of GPs and the final 

DTM are improved. During the interpolation procedure when generating the DTM, bodies of water are 

masked to prevent incorrect GP selection near rivers and bridges. Validation of the results against the 

ISPRS benchmark datasets indicated that the accuracy of the proposed algorithm is greater than that of 

TerraScan for most samples, and is almost equal to that of Mongus and Žalik’s algorithm. Qualitative 

comparison using the study area data show that the proposed algorithm extracted a greater number of 

GPs on narrow streets than TerraScan did. In the case of dense urban areas, the overall classification 

accuracy of the proposed algorithm was approximately equal to, or higher than, that of TerraScan. 

Therefore, it is concluded that the proposed filtering algorithm performs GP extraction and DTM 

generation effectively for urban areas. In future work, the 3D modeling of buildings in dense urban 

areas will be reported, based on the proposed filtering algorithm. 
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