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ABSTRACT
In this paper a new class of filters designed for the removal
of impulsive noise in color images is presented. The pro-
posed filter class is based on the nonparametric estimation of
the density probability function of pixels in a sliding filtering
window. The comparison of the new filtering method with
the standard techniques used for impulsive noise removal, in-
dicates good noise removal capabilities and excellent struc-
ture preserving properties.

1. INTRODUCTION

During image formation, acquisition, storage and transmis-
sion many types of distorsions limit the quality of digital
images. Transmission errors, periodic or random motion of
the camera system during exposure, electronic instability of
the image signal, electromagnetic interferences from natural
or man-made sources, sensor malfunctions, optic imperfec-
tions, electronics interference or aging of the storage material
all disturb the image quality, [8].

Table 1: Kernel functions used for the soft-switching
scheme, x = 〈−1,1〉, h = 〈0,∞).
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In many practical situations, images are corrupted by the
so called impulsive noise caused mainly either by faulty im-
age sensors or due to transmission errors resulting from man-

made phenomena such as ignition transients in the vicinity of
the receivers or even natural phenomena such as lightning in
the atmosphere.

In this paper we address the problem of impulsive noise
removal in color images and propose an efficient technique
capable of removing the impulsive noise noise and preserv-
ing important image features.

2. VECTOR MEDIAN BASED FILTERS

Mathematically, a N1×N2 multichannel image is a mapping
Z

l → Z
m representing a two-dimensional matrix of three-

component samples (pixels), xi = (xi1,xi2, . . . ,xim) ∈ Z
l ,

where l is the image domain dimension and m denotes the
number of channels, (in the case of standard color images,
parameters l and m are equal to 2 and 3, respectively). Com-
ponents xik, for k = 1,2, . . . ,m and i = 1,2, . . . ,Q, Q = N1·N2,
represent the color channel values quantified into the integer
domain.

The majority of the nonlinear, multichannel filters are
based on the ordering of vectors in a sliding filter window.
The output of these filters is defined as the lowest ranked vec-
tor according to a specific vector ordering technique, [1, 9].

Let the color images be represented in the commonly
used RGB color space and let x1, x2, . . ., xN be N samples
from the sliding filter window W , with x1 being the central
pixel in W . Each of the xi is an m-dimensional multichannel
vector, (in our case m = 3). The goal of the vector ordering
is to arrange the set of N vectors {x1,x2, . . . ,xN} belonging
to W using some sorting criterion.

In [9, 13] the ordering based on the cumulative distance
function R(xi) has been proposed: R(xi) = ∑N

j=1ρ(xi,x j),
where ρ(xi,x j) is a function of the distance among xi
and x j. The increasing ordering of the scalar quanti-
ties {R1,R2, . . . ,RN} generates the ordered set of vectors
{x(1),x(2), . . . ,x(N)}.

One of the most important noise reduction filter is the
vector median, [1]. Given a set W of N vectors, the vector
median of the set is defined as x(1) ∈W satisfying

∑ j

∥∥x(1) − x j
∥∥ ≤∑ j

∥∥xi −x j
∥∥ , ∀ xi,x j ∈W . (1)

The orientation difference between two vectors can also
be used as their dissimilarity measure. This so-called vector
angle criterion is used by the Basic Directional Filter (BDF),
to remove vectors with atypical directions, [14]. Other tech-
niques combine the distance and angular criteria to achieve
better noise suppression results, Directional Distance Filter
DDF, [10, 14].
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Figure 1: 2D plots of the kernel functions: L-laplacian, G-Gaussian, C-Cauchy, T-Triangle, E-Epanechnikov, B-Biweight
function, see also Tab. 1.

3. PROPOSED FILTERING DESIGN

The well known local statistic filters constitute a class of lin-
ear minimum mean squared error estimators, based on the
non-stationarity of the signal and the noise model, [3, 4, 6].
These filters make use of the local mean and the variance of
the input set W and define the filter output for the gray-scale
images as

y = x̂+α (x1 − x̂) = αx1 +(1−α)x̂ , (2)

where x̂ is the arithmetic mean of the image pixels belonging
to the filter windowW cantered at i and α is a filter parameter
usually estimated through, [5, 8, 12]
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where ν2 is the local variance calculated from the samples
in the filter window and σ2

n is the estimate of the variance of
the noise process. If ν 	 σn, then α ≈ 1 and practically no
changes are introduced. When v < σn, then α = 0 and the
central pixel is replaced with the local mean. In this way, the
filter smooths with the local mean, when the noise is not very
intensive and leaves the pixel value unchanged when a strong
signal activity is detected. The major drawback of this filter
is that it fails to remove impulses and leaves noise in the
vicinity of high gradient image features. Equation (2) can be
rewritten as, [12]

y = αx1+(1−α)x̂ = (1−α)(ψ1x1+x2+. . .+xN)/N, (4)

with ψ1 = (1−α +Nα)/(1−α) , and in this way the local
statistic filter (2) is reduced to the central weighted average,
with an adaptive weighting coefficient ψ1.

The structure of the proposed filter called Kernel based
VMF (KVMF) is similar to the presented above approach.
However, as our aim is to construct a filter capable of remov-
ing impulsive noise, instead of the mean value, the VMF out-
put is utilized and the noise intensity estimation mechanism
is accomplished through the similarity function, which can
be viewed as kernel function, known from the nonparametric
probability density estimation, (Tab. 1, Fig. 1).

In this way the proposed technique is a compromise be-
tween the VMF and the identity operation. When an im-
pulse is present, then it is detected by the kernel K =
f (‖x1−x(1)‖), which is a function f of the distance between
the central pixel x1 and the vector median x(1), and the output
yi is close to the VMF. If the central pixel is not disturbed by
the noise process then the kernel function is close to 1 and
the output is near to the original value x1 of the central pixel.

Figure 2: The output vector yi lies on the line connecting the
vector xi and x(1) in the RGB space.

If the central pixel in W xi is denoted as x1 then:

yi = x(1) +K
(
x1,x(1)

) · (x1 −x(1)
)

, (5)

yi = K x1 +(1−K )x(1) , K = f
(‖x1 −x(1)‖

)
, (6)

which is similar to (2) and the filtering operation can be sum-
marized as {

K = 1 ⇒ yi = x1 ,
K = 0 ⇒ yi = x(1) .

(7)

If
{
x(1),x(2), . . . ,xi, . . . ,x(n)

}
denotes the ordered set of pix-

els in W , then the weighted structure corresponding to (4) is:{
(1−K )x(1),x(2), . . . ,K x1, . . . ,x(N)

}
.

In this way the proposed structure can be seen as a modi-
fication of the known techniques applied for the suppression
of Gaussian noise. In the proposed technique we replace the
mean of the pixels in W with the vector median and such an
approach proves to be capable of removing strong impulsive
noise while preserving important image features like edges,
corners and texture.

It is interesting to observe that the filter output yi lies on
the line joining the vectors xi (x1) and x(1) and depending on
the value of the kernel K it slides from the identity operation
and the vector median, (Fig. 2).



4. EXPERIMENTAL RESULTS

The noise modelling and evaluation of the efficiency of noise
attenuation methods using the widely used test images allows
the objective comparison of the noisy, restored and original
images.

In this paper we assume a noise model, [9–11] which re-
flects well the signal corruption and allows to simulate the
correlation among noisy image channels. The sample distor-
tion is given by

xi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

oi, with probability 1− p,
{vi,oi2 ,oi3}, with probability p1 p,
{oi1 ,vi,oi3}, with probability p2 p,
{oi1 ,oi2 ,vi}, with probability p3 p,
{vi,vi,vi}, with probability p4 p,

(8)

where o is the original signal, p is the sample corruption
probability and p1, p2, p3 are corruption probabilities of each
color channel, so that∑4

1 pk = 1. The impulses vi are random-
valued variables in the range [0,255] and pk = 0.25.

The efficiency of the proposed filtering approach is sum-
marized in Tab. 2 and also presented graphically in Fig. 3. As
can be seen the dependence on the kind of the kernel function
is not, as expected, very strong. However, the main problem
is to find an optimal bandwidth parameter h, as the proper
setting of the bandwidth guarantees good performance of the
proposed filtering design.

The experimentally found rule of thumb for the value of h
called hest is: hest = γ1/

√
σ̂ , where σ̂ is the mean value of the

approximation of variance, [2, 7] calculated using the whole
image or some randomly selected parts, and γ1 is the coeffi-
cient taken from Tab. 1. The comparison of the efficiency of
the proposed scheme in terms of PSNR for the optimal val-
ues of h and estimated by the rule of thumb is shown in Tab.
2 and in Fig. 4. Practically the hest yields the best possible
impulsive noise attenuation.

The illustrative examples depicted in Fig. 5 show that
the proposed filter efficiently removes the impulses and pre-
serves edges and small image details. Additionally, due to
its smoothing nature it is also able to suppress slightly the
Gaussian noise present in natural images.

5. CONCLUSION

In the paper an adaptive soft-switching scheme based on the
vector median and similarity function has been presented.
The proposed filtering structure is superior to the standard
filtering schemes and can be applied for the removal of im-
pulsive noise in natural images. It is relatively fast and the
proposed bandwidth estimator enables automatic filtering in-
dependent of noise intensity.
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Figure 3: Dependence of the PSNR on the h parameter for the KVMF with the L and T kernels in comparison with the VMV
for p ranging from 1% to 5%.

Figure 4: Dependence of the PSNR on the h parameter of the
L and T kernel, for p = 1−5% in comparison with the stan-
dard VMF. The dashed lines indicate the optimal value of the
KVMF filter (blue) and VMF (red). In the corner the magni-
fied parts of the plots, which show the excellent performance
of the proposed bandwidth estimator are presented.

TEST p = 3% VMF

KVMF (L) BDF DDF

TEST p = 3% VMF

KVMF (L) BDF DDF

Figure 5: Comparison of the filtering efficiency of the pro-
posed filter with the Laplace kernel with the VMF, BDF and
DDF.
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