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One way of simplifying neural networks so they generalize better is to add 

an extra t.erm 10 the error fUll c tion that will penalize complexit.y. \Ve 

propose a new penalt.y t.erm in which the dist rihution of weight values 

is modelled as a mixture of multiple gaussians . C nder this model, a set 

of weights is simple if the weights can be clustered into subsets so that 

the weights in each cluster have similar values . We allow the parameters 

of the mixture model to adapt at t.he same time as t.he network learns. 

Simulations demonstrate that this complexity term is more effective than 

previous complexity terms. 

1 Introduction 

A major problem in training artificial nellral network:> is to ellsure t.hat they wIll 

gel/eraiIze well to ra .. .,f'~ thaI they h(lvl> 1I0t been tralHeu OIl. SUIlle recellt t.heuretical 

results (Baurn anu Iiallssier. 10S~I) Itave :,.ug,g,e~teU that ill order to guaralltee goou 

generalizatioll Ilw <IIIIOllnl of lllforillatiull requireJ te. dlr"L"t1~ "p~ 'c if~ Ihe Ulltput 

vectors of all t.he t rallllng casps ll11l..;t he considerahly larg,t>r than t hI' lllllTlber of 

independellt weight:,. III the ll t' twork III 1I1any practIcal problt'lllS there IS only 

a small amount of labelled data available for traming and this creates problellls 

for any approach that uses a large. homogeneous network with many indepeIldent 

weights. As a result. there has been much recent int.erest in techniques that can 

train large networks wil h relatively small amounts of labelled data and still provide 

good generalization performance. 

In order to improve generalization, t.he number of free parameters in the network 

must be reduced. Olle of the oldest and simplest approaches to removing excess 

degrees of fr eedolll from a net work i~ to add an ext fa term 10 the error [Ullct 1011 
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that penalizes complexity: 

cost = data-misfit + A complexity (1) 

During learning, the network is trying to find a locally optimal trade-off between 

the data-misfit (the usual error term) and the complexity of the net. The relative 

importance of these two terms can be estimated by finding the value of A that 
optimizes generalization to a validation set. Probably the simplest approximation 

to complexity is the sum of the squares of the weights, Li w;. Differentiating 

this complexity measure leads to simple weight decay (Plaut, Nowlan and Hinton, 

1986) in which each weight decays towards zero at a rate that is proportional to its 

magnitude. This decay is countered by the gradient of the error term, so weights 

which are not critical to network performance, and hence always have small error 
gradients, decay away leaving only the weights necessary to solve the problem. 

The use of a Li'IV; penalty term can also be interpreted from a Bayesian 

perspective. l The "complexity" of a set of weights, ALi w;, may be described 

as its negat.ive log probahilit.y dellsit.y under a radially symmetric gaussian prior 

distribution on the weights. The distribution is centered at the origin and has vari

ance 1/ A. For multilayer networks, it is hard to find a good theoretical justificatioll 
for this prior, but Hinton (1987) justifies it empirically by sllOwiug tllat it greatly 

improves generalizat.ioll on a very difficult, task. MOI'e recently, Mackay (1991) has 

shown that even better generalization can be achieved by using different values of 

A for the weights in different layers. 

2 A more conlplex measure of network complexity 

If we wish to eliminate small weights without forcing large weights away from the 

values they lleed to model the data, we can use a prior which is a mixture of a 
narrow (n) and a broad (b) gaussian, both centered at zero. 

1 -5 1-6-
p(w) = trn yI2; e 2"n + trb ~ e b 

27rl1n 27rl1b 

(2) 

where trn and trb are the mixing proportions of the two gaussians and are therefore 

constrained to sum to l. 

Assuming that. the weight values were generated from a gaussian mixture, the con

ditional probability that a particular weight, Wi, was generated by a particular 

gaussian, j, is called the responsibility of that gaussian fOI' the weight and is: 

(3) 

where Pj(Wj) is the probahilit.y density of Wi under gaussian j. 

When the mixing proportions of t.lw two gatlssians are comparable, t.he llal'l'OW gaus

sian gets most of the responsibilit.y for a small weight. Adopting the Bayesiall per

spective, the cost of a weight under the narrow gaussian is proportional to w 2 /2l1~. 

As long as l1n is quite small there will be strong pressure to reduce the magnitude 

1 R. Szeliski, personal communication, 1985. 
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of small weights even further. Conversely, the broad gaussian takes most of the 

responsibility for large weight values, so there is much less pressure to reduce them. 

In the limiting case when the broad gaussian becomes a unifonTI distribution, there 

is almost no pressure to reduce very large weights because they are almost certainly 

generated by the uniform distribution. A complexity term very similar to this limit

ing case is used in t.he "weight elimination" technique of CWeigend, Huberman and 

Rumelhart, 1990) to improve generalization for a time series prediction task. 2 

3 Adaptive Gaussian Mixtures and Soft Weight-Sharing 

A mixture of a narrow, zero-mean gaussian with a broad gaussian Or a uniform allows 

us to favor networks with many near-zero weights, and this improves generalization 

on many tasks. But practical experience with hand-coded weight constraints has 

also shown that great improvements can be achieved by constraining particular 

subsets of the weights t.o share the same value (Lang, '-\Taibel and Hinton, 1990; Le 

Cun, 1989). Mixtures of zero-mean gaussians and uniforms canllot implement this 

type of symllletry constraint. If however, we use multiple gaussians and allow their 

means and variances to adapt as t.lw lIetwol·k learns, we call implemellt a "soft" 

version of weight.-sharing III which the leawing algoritlllll decides for itself which 

weights should be t.ied together. (We may also allow the lllixillg, proportiolls to 
adapt so that. we are 1I0t assulllillg all sets of tied weights al·e the sallle size.) 

The basic idea is t.hat a gallssiall which takps responsibility for a subset of the 

weights will squeeze those weight.s t.ogether since it can then have a lower variance 

and assign a higher probability dellsit.y t.o each weight. If t.he gaussialls all start 

with high variallce, the initial division of weights into subsets will be very soft . As 

the variances shrink and the network learns, the decisions about how to group the 
weights iuto subsets are influenced by the task the network is learning t.o perforul. 

To make t.hese intuit.ive ideas a bit more concrete, \ve may define a cost function of 

the general form given in (1): 

(4) 

where 0"; is the variance of the squared error and each Pj (wd is a gaussian density 

with mean /1j and standard deviation O"j. \Ve optimize this function by adjusting 

the Wi and the mixture parameters 1fj, /1j, and O"j, and O"y.3 

The partial derivative of C with respect to each weight is the sum of the usual 

squared error derivative and a term due to the complexity cost for the weight: 

(5) 

2See (N owl au, 1991) for a precise descri pt iOll of t.he rela.tionshi p bet.weeu rni xture models 

and the model Ilsed by (Weigend. Huherman a.nd Rllmelltart. 1990). 

Jl/a~ lllay be tlLOUgltt of as playillg tlte sallle role a.s A ill equatiou 1 ill detcrminiug a 

trade-off between the misfit. auo complexity costs . K is a 1I0rlllaiiting factor ba.sed 011 it 

gaussia.u error LLlude!. 
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Method Train % Correct Test % Correct 

Vanilla Back Prop. 100.0 ± 0.0 67.3 ± 5.7 
Cross Valid. 98.8 ± 1.1 83.5 ± 5.1 
Weight Elimination 100 .0 ± 0.0 89.8 ± 3.0 
Soft-share - 5 Compo 100.0 ± 0.0 95.6 ± 2.7 
Soft-share - 10 Compo 100.0 ± 0.0 97.1 ± 2.1 

Table 1: SUllllllal'y of generalization performance of 5 different training techniques 

on the shift detection problem. 

The derivative of the complexity cost term is simply a weighted sum of the difference 

between the weight value and the center of each of the gaussians. The weighting 

factors are the responsibility measures defined in equation 3 and if over time a 
single gaussian claims most of the responsibility for a particular weight the effect 

of the complexity cost t.erm is simply to pull the weight towards the center of the 
responsible gaussian. The strength of this force is inversely proport.ional to the 

variance of the gaussian. 

In the simulations described below, all of the parameters (Wi, Pj, (Jj, 7rj) are updated 

simultaneously using a conjugate gradient descent procedure. To prevent variances 

shrinking too fast or going negative we optimize log (Jj rather than (Jj. To ensure 

that the mixing proportions sum t.o 1 and are positive, we optimize Xj where trj = 
exp(xj)/ L exp(x/,;). For furtiter details see (Nowlan and Hinton, 1992). 

4 SilTIulation Results 

V>le compared the gelleralization performance of soft weight-tying to other tech
niques on two different. problems. The first problem, a 20 input., one output shift 

detection !letwork, vvas chosell because it was biJlary problem for which solutiotls 
which generalize well exhibit a lot. of repeat.ed weight structure. The generalizatioll 

perfOrlllallCt· of lwtworks trailled using, the co:st Cl"it.erion giveJl ill equation 4 was 

compared to Ilet.works t.rained in three other ways: No cost term to penalize com

plexity; No explicit complexity cost. term, but use of a validat.ion set to terminate 

learning; Weight elimination (Wf'igelld, Huberman a.nd Rumelhart, 1990)4. The 

simulation results art' sllmmarized in Table 1. 

The network had 20 input units, 10 hidden units, and a single output unit and 

contained 101 weights. The first 10 input units in this network were given a random 

binary pattern, and the second group of 10 input units were given the same pattern 

circularly shifted by 1 bit left or right. The desired output of the network was +1 

for a left shift. and -1 for a right shift. A data set of 2400 patterns was created by 

randomly generating a 10 bit string, and choosing with equal probability to shift 
the string left or right. The data set was divided into 100 training cases, 1000 

validation cnses, and 1 :WO t.est. cases. The training :set was deliberat.ely chosen to 

be very small « 5% of possible patterns) to explore the region in which complexity 
penalties should have the largest. impa.ct . Ten simulations were performed with each 

4With a fixed value of >. chosen by cross-validation. 
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Figure 1: Final mixture probability density for a typical solution to the shift de

tection problem. Five of the components in the mixture can be seen as distinct 

bumps in the probabilit.y densit.y. Of the remaining five components, two have been 

eliminated by having their mixing proportions go to zero and the other three are 

very broad and form the baseline offset of the density function. 

method, starting frolll ten difl·erent. initial weight sets (t.e. each method used the 

same ten initial weight. configurations). 

The final weight distl'ihlltiolls discovered by the soft weight-tyiug technique are 

shown in Figlll'e 1. There is no significant component with mean O. The classical 

assumpt.ioll t.hat. the nt't.work collt.aiw; a large lIulllber of illessellt.ial weight.s which 

can be eliI1IilIated to ililprove generalizatioll is lIOt appropriate COL' this problelll aBd 

network arcilitecture. Tilis may explaiu why the weight elimination model used 

by 'Veigend ef af ('Veigend, Huberman and Rumelhart, 1990) performs relatively 
poorly in this si tuation. 

The second task chosen to evaluate the effectiveness of our complexity penalty was 

the prediction of the yearly sunspot average from the averages of previous years . 

This task has been well studied as a time-series prediction benchmark in the statis

tics literature (Priestley, 1991b; Priestley, 19910.) and has also been investigated by 

(Weigend, Huberman and Rumelhart, 1990) using a complexity penalty similar to 

the one discllssed in section 2. 

The network archit.ect.me Llsed was identical to the one used in the study by VVeigend 

et af: The Iwtwork had 1 L input. unit.s which represent.ed the yearly average from til<-' 

preceding lL years, 8 hidden unit.s, and a silIgle lillear output unit which represented 

the predictioll for tlw averagl' Illllllhu' of SllIlSPOt.S ill t.he current year. Yearly 

sunspot dat.a from l700 to uno wa:-; lIsed to train the lIetwork to perform this OllC

step prediction task, aud t.he evaluation of the network was based on data from 
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Method Test arv 

TAR 0.097 

RBF 0.092 

\VRH 0.086 

Soft-share - 3 Compo 0.077 ± 0.0029 

Soft-share - 8 Compo 0.072 ± 0.0022 

Table 2: Summary of average relat,ivp variance of 5 different models on the one-step 

sunspot prediction problelll. 

1921 to 1955.5 The evaluation of prediction performance used the aver·age relative 

variance (ar·v) measure discussed in (Weigend, Huberman and Rumelhart, 1990). 

Simulations were performed using the same conjugate gradient method used for the 

first problem. Complexity measures based on gaussian mixtures with;) and 8 com

ponents were used and ten simulat.ions were performed with each (USillg the same 

training data but different initial weight configurations). The results of these simu

lations are summarized in Table 2 along with the best result obtailled by Weigend et 

at (Weigend, H ubermall and RUlllelhart, 1990) (HI RH), the bilinear auto-regression 

model of Tong and Lim (Tong ano Lim, 1980) (T A R)6, and the multi-layer RBF 

network of He and Lapeoes (lIe alld Lapedes, 1991) (RBF). All figure:::; represent 

the arv on t.he t.est set. For the mixture complexity models, this is the average over 

the ten simlllations, plus or minus one standard deviation. 

Since the results for the models ot.her than the mixture complexity trained networks 

are based on a single simulation it is difficult to assign statistical signifigance to the 

differences shown in Table 2. We may note however, that the difference between 

the 3 and 8 component mixture complexity models is significant (p > 0.95) and the 

differences bet.ween t.he 8 componellt. model and the other models are much larger . 

Figure 2 shows an 8 component mixture Blodel of the fillal weight distribution. It is 
quite unlike t.he distribution ill Figure 1 and is actually quite close to a mixture of 

two zero-meall gallssians, one hroad ano one lIarrow. This may explain why weight 

elimination works quite well for t.his t.ask. 

Weigeno el at point. Ollt that. fOJ" Lillie series preoiction tasks sllch as the SUllspot 

task a mudl rnore int,(' resl.illg nlca:-;llI"t' of performance is th e ability of the Illouel to 

preoict Illore thall aile t.illlt: st.ep into the fUl.LUe. One way to appl"Oacll the Illulti

step prediction problem is to llse iterated szng/e-step predzctzon. In this method, the 

predicted output is fed back as input fOI· the next preJictioll and all otlter illput 

units have theil' values shifted back Olle unit. Thus t.he input. typically consists 

of a combination of act.ual and preJicted values. \Vhen preuictillg more thaJl one 

step int.o the future, the prediction error depends both on how ma.ny steps into the 

future one is predicting (/) ano on what point in the time series the prediction 

began. An appropriate enor measure for iterated prediction is the aVe1·age relaltve 

I-times iter'ated pr'ediclion V(lT"wnce (\Veigend, Huberman and Rumelhart, 1990) 

5The aut.hors thallk Andreas vVeigend for providing his version of this data. 

6This was the morl el fa.vored b~ 1 Priestly (Pri estley, 1991a.) in a recent evaluation of 

classical stat.istical approaches 1.0 t.his t.ask. 
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Figure 2: Typical final mixture probability density for the SUllspot prediction pl'Ob
lem with a model containing 8 ruixt.llI'e components. 
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Figure 3: A verage relative I-times iterated prediction variance versus number of 

prediction iterations for t.he sunspot. time series from 1921 to 1955. Closed circles 
represent the TAR model, opell circles the W RH model, closed sljuares the j 

component complexity 1l10del, and opell squares the ~ componellt complexity lllodei. 

Ten different set.s of initial weights were used for the 3 and 8 component complexity 
models and one standard deviation error bars are shown. 



1000 Nowlan and Hinton 

which averages predictions I steps into the future over all possible starting points. 
Using this measure , the performance of various models is shown in Figure 3. 

5 Sun1mary 

The simulations we have described provide evidence that the use of a more flexible 

model for the distribution of weights in a network can lead to better generalization 

performance than weight decay, weight elimination, or techniques that control the 

learning time. The flexibility of our model is clearly demonstrated in the very differ

ent final weight distributions discovered for the two different problems investigated 
in this paper. The a.bility to automatically adapt to individual problems suggests 

that the method should ha.ve broad applicability. 
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