Adaptive Software Cache Management for
Distributed Shared Memory Architectures

John K. Bennett*

John B. Carter™
Willy Zwaenepoel™

“Department of Electrical and Computer Engineering
“*Department of Computer Science
Rice University

Houston, TX 77251-1892

Abstract

An adaptive cache coherence mechanism exploits se-
mantic information about the expected or observed
access behavior of particular data objects. We con-
tend that, in distributed shared memory systems,
adaptive cache coherence mechanisms will outper-
form static cache coherence mechanisms. We have
examined the sharing and synchronization behavior
of a variety of shared memory parallel programs. We
have found that the access patterns of a large per-
centage of shared data objects fall in a small num-
ber of categories for which efficient software coherence
mechanisms exist. In addition, we have performed a
simulation study that provides two examples of how
an adaptive caching mechanism can take advantage
of semantic information.

1 Introduction

We are developing Munin [4], a system that will al-
low programs written for shared memory multiproces-
sors to be executed efficiently on distributed memory
machines. What distinguishes Munin from previous
distributed shared memory systems [6, 12, 14] is the
means by which memory coherence is achieved. In-
stead of a single memory coherence mechanism for all
shared data objects, Munin will employ several differ-
ent mechanisms, each appropriate for a different cate-
gory of shared data object. We refer to this technique
of providing multiple coherence mechanisms as adap-
tive caching. Adaptive caching maintains coherence

This work was supported in part by the National Science Foun-
dation under Grants CDA-8619893 and CCR-8716914.

based on the expected or observed access behavior of
each shared object and on the size of cached items.
We contend that adaptive caching provides an effi-
cient abstraction of shared memory on distributed
memory hardware. Since coherence in distributed
shared memory systems is provided in software, we
expect the overhead of providing multiple coherence
mechanisms to be offset by the increase in perfor-
mance that such mechanisms will provide.

For adaptive caching to perform well, it must be
possible to characterize a large percentage of all ac-
cesses to shared data objects by a small number of
categories of access patterns for which efficient coher-
ence mechanisms can be developed. In a previous pa-
per [4], we have identified a number of categories, and
described the design of efficient coherence mechanism
for each. In this paper, we show that these categories
capture the vast majority of the accesses to shared
data objects in a number of shared memory paral-
lel programs. We also show, through simulation, the
potential for performance improvement of adaptive
caching compared to static coherence mechanisms.

In Section 2 of this paper, we briefly reiterate the
main results of our previous paper [4]. We describe
the categories of access patterns, provide examples,
and give a brief description of how each category can
be handled efficiently. Section 3 describes the pro-
grams that we study in this paper, our technique for
logging the accesses to shared memory by these pro-
grams, the method by which we analyze these logs to
discover common access patterns, and the results of
our logging study. Section 4 describes a simulation
study that provides two examples of how an adaptive
caching mechanism can take advantage of semantic
information. We discuss previous work in this area in
Section 5. Finally, we draw conclusions in Section 6.



