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Abstract 

W e  describe t h e  adaptive source routing (ASR) 
method which  i s  a f irst  a t t e m p t  t o  combine adaptive 
routing and source routing methods .  In ASR, t h e  adap- 
t i v i t y  of each packet i s  de termined  at t h e  source proces- 
sor .  E v e r y  packet can be routed in a f u l l y  adaptive or 
partially adaptive or non-adaptive manneT,  all w i t h i n  
t h e  s a m e  ne twork  at t h e  s a m e  t i m e .  W e  evaluate and 
compare per formance  of t h e  proposed adaptive source 
routing n e t w o r k s  and oblivious routing ne tworks  by 
s imula t ions .  W e  also describe a route generation al- 
g o r i t h m  t h a t  de termines  m a x i m a l l y  adaptive routes in 
mul t i s tage  ne tworks .  

1 Introduction 
Interconnection networks play an important role in 

providing low latency, high bandwidth communication 
in multicomputers. Some examples of interconnection 
networks used in commercial machines are the IBM 
SP2 multistage interconnection network [1], Cray T3D 
3-dimensional torus [2, 31, the Connection Machine fat 
tree [4, 51, and Intel Paragon mesh [6]. Routing in 
an interconnection network can be classified as a d a p  
tive or non-adaptive depending on the dynamics of 
route selection. In non-adaptive (or oblivious) rout- 
ing, there is a fixed routing decision at each intermedi- 
ate switching element (switch) along a path between a 
source node and a destination node-each switch can 
use only one output port for message packet forward- 
ing. Adaptive routing methods allow more than one 
choice of output ports. Switches try to minimize net- 
work contention by exploring alternate routes to desti- 
nations [5, 7, 8, 91. On the other hand, some networks 
employ oblivious routing methods such as the source- 
based routing (source routing) used in SP2 [I, 10, 111 
due their flexible choice of network topology and sim- 
plicity of switch design. In the source routing method, 
the packet route is deterministic and is completely de- 
termined at the source processor which encodes the 
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Figure 1: Routing Methods 

route in the packet header. Thus another way of clas- 
sifying routing is source-based or destination-based ac- 
cording to the method of addressing the destination 
processor, which results in a method space shown in 
Fig. 1. 

Although many adaptive routing networks have 
been constructed and proposed to  date, they have 
all been destination-based adaptive routing networks. 
This paper presents the first at tempt to  combine the 
source routing and adaptive routing, referred to  as the 
adaptive source routing (ASR) method. The proposed 
combination has the advantages of both methods. The 
route and the adaptivity of each packet is determined 
a t  the source processor node. Every packet can be 
routed in a fully adaptive, or partially adaptive, or 
oblivious manner, all within the same network a t  the 
same time. The ASR method also provides support for 
multiple types of network traffic, in-order delivery of 
multiple packets, and network partitioning. 

In the following, we give an overview of adaptive, 
destination-based, and source-based routing methods. 
In Section 2, we describe the proposed Adaptive Source 
Routing method. In Section 3, we present a perfor- 
mance comparison of the ASR networks and the obliv- 
ious routing networks by simulations. In Section 4, we 
present a route generation algorithm that finds m a x -  
i m a l l y  adaptive routes between the processor nodes. 
This algorithm enables the ASR method. 

1.1 Background 
In adaptive routing networks, message packets make 

use of multiple paths between source-destination node 
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pairs [7]. Switches alleviate congestion by sending 
packets via less busy alternate routes. Typically, a 
busy output port will cause an adaptive routing switch 
to use another output in routing a packet to its desti- 
nation. In a (destination-based) adaptive routing net- 
work, a switch element must therefore “know” which 
of its outputs lead to  the intended destination. There- 
fore, a common characteristic of many adaptive rout- 
ing networks is a regular and simply described network 
topology such as a hypercube, mesh, k-ary n-cube, or 
a fat tree [4, 5, 7, 8, 91. The switches then have an 
implicit knowledge of the entire network topology, and 
therefore they can route packets accordingly. A disad- 
vantage of adaptive routing is that  it limits the choice 
of network topologies. In an alternative approach, each 
switch may have a routing table that maps destination 
processor addresses to  the switch port numbers, how- 
ever this will occupy real-estate on the switch (chips) 
and the bounded size of the tables may limit scalability 
of the networks. 

In the destination-based routing, the address (e.g. 
position) of the destination processor in the network, 
or an  address difference between source and destina- 
tion, is encoded in the packet header and then the net- 
work decides how to route the message. The source 
processor has no influence on the routing decisions. 
This method also requires switches to have a global 
knowledge of the network topology in order to correctly 
route packets. Some examples of destination-based 
networks are the CM-5 fat tree [5] and Intel Paragon 
2-dimensional mesh [6]. 

In the source routing method, unlike destination- 
based routing, switches need not know the topology; 
the source processor determines the route and encodes 
the routing instructions in the packet header. Switches 
then follow these instructions to  forward the packet to  
its destination. Cray T3D [3] and IBM SP2 [l] sys- 
tems are based on source routing networks. For exam- 
ple, in the SP2 multistage network, which consists of 
8 x 8 switches, the packet header initially contains 3- 
bit routing words RI ,  R2,. . . , Rn, where n is the num- 
ber of network stages to travel. Each word indicates a 
switch port numbered from 0 to 7. The source proces- 
sor determines the route and puts respective words in 
the header. Each switch forwards the packet through 
the output port indicated in the first route word and 
strips off the first word before forwarding the packet 
to the next level in the network [l]. Thus, the packet 
contains no routing information upon arriving a t  its 
destination. In the source routing method, typically 
routing headers are computed only once and then kept 
in a route table in each processor node. The route ta- 
ble approach enables faulty links and switches to be 

mapped out easily, and allows more choices of network 
topologies tha.n destination-based routing, and allows 
multiple routes to  be defined per destination. 

2 Architecture 
In the adaptive source routing method proposed 

here, the key idea is in the definition of the routing 
words in a packet header. Each routing word indi- 
cates a set of permitted output ports, rather than a 
specific output port. Each m-bit word has the format 
R = T,-IT,-~.. . T O ,  where m is the number of switch 
ports. One bits in the routing word indicate the set of 
outputs that  the switch is permitted to use for forward- 
ing the packet. The source processor is responsible for 
encoding the correct routing instructions in the header 
as in the source routing method. 

Each switch examines the first word of each packet 
and (adaptively) selects an  unused port from one of 
the permitted outputs to  forward the packet to  the 
next network stage. If none of the permitted ports are 
available, then the packet will be blocked and cannot 
proceed until at least one of the ports become avail- 
able. The switch strips off the first route word be- 
fore forwarding the packet as before. For example, in 
the 32 node network given in Fig. 14, the header of 
a packet from processor 4 to  30 may consist of words 
RI = 11110000, R2 = 11110000, R3 = 10000000, Re = 
01000000. The header indicates to  the first, second, 
third, and the last stage switches that they may for- 
ward the packet through one of four ports 4-7 ( R I ) ,  
one of four ports 4-7 (R2), port 7 (R3), and port 6 
(&), respectively. In general, the number of distinct 
paths a packet may follow from source to destination 
is 

where lRil is defined as the number of one bits in the 
routing word I&.  Obviously, not only Npath paths must 
exist between the source and the destination, but any 
combination of the outputs specified in the successive 
routing words in the header must correctly lead the 
packet to its intended destination. 

Each source processor can choose the adaptivity of a 
message packet by varying Npath. If Npath = max, then 
the adaptivity is maximum and packets may reap per- 
formance benefits of full adaptivity. This case is useful 
to minimize network contention due to  non-uniform 
message traffic and difficult communication patterns. 

If Npath = 1, then the routing is oblivious. The 
packet is to be routed through a single deterministic 
path. The Npath = 1 case may be useful in several ap- 
plications. If interprocessor communication patterns 
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are known in advance, such as for permutation rout- 
ing on SIMD machines, an optimal set of oblivious 
routes may be selected to minimize contention [ll]. 
The Npath = 1 case is also valuable for avoiding the 
over-taking property of adaptive networks. Over- 
taking means that the successive packets that belong 
to the same message may arrive a t  their destination 
out of order, which requires the receiving processor to 
buffer and sort them. Thus, over-taking may result 
in more hardware resources being used and may offset 
performance gains due to adaptive routing. In a possi- 
ble implementation that guarantees in-order delivery 
of packets (that belong to the same message), source 
processors may send the packets of a multiple packet 
message non-adaptively, i.e. use Npath = 1, whereas 
they may send a single packet message adaptively, i.e. 
use Npath = max, since single packet messages are not 
subject to over-taking. 

If 1 < Npath < max, then each packet is routed 
in a partially-adaptive manner, where only a subset of 
all possible paths is utilized. This case is valuable for 
network security or partitioning: When the network 
is to be logically partitioned among multiple parallel 
tasks so that their respective communications do not 
overlap in the network, then by using the partially- 
adaptive routing method each packet may be forced 
to remain in its partition, however routed adaptively 
within the partition. 

3 Network Performance 
We are primarily interested in the effect of adaptive 

routing on bidirectional multistage (BMIN) topologies 
similar to the topologies used in the IBM SP2, the 
Thinking Machine CM-5 [12], and the Meiko CS-2 [13]. 
Figure 2 illustrates a 16 processor node BMIN and 
shows sample routes from a source node 0 t o  destina- 
tion nodes 3 and 10. The 16 ports on the right side are 
unused in this configuration. The BMIN switches-for 
this example 8 input, 8 output devices-could be per- 
mitted to  forward packets from any input port to any 
output port (including ports on the same “side”). 

We have seen few studies directly comparing adap- 
tive versus oblivious routing for BMIN’s, although 
the CM-5 machine employs destination-based adaptive 
routing. In addition, we are interested in assessing the 
effects of adaptive routing when used in combination 
with switches that incorporate central buffers similar 
t o  SP2 switches [l]. 

To evaluate the performance of adaptive source 
routing, we conducted network simulations based upon 
a C++ model of SP2-like switches. These switches im- 
plement buffered wormhoZe routing [1] for flow-control 
and contain a 1 KB dynamically-shared central buffer. 

PO 
P1 
P2 
P3 
P4 
P5 
P6 
P7 
PB 
P9 
P10 
P11 
P12 
P13 
P14 
P16 

Figure 2: A 16 processor node bidirectional multistage 
network (BMIN) 

Under light to medium loading, a switch is typically 
able to buffer an entire arriving packet when that 
packet becomes blocked due to  output port contention. 
Thus, in effect, the switch often operates in virtual 
cut-through [14] fashion, completely removing blocked 
packets from network links. However, under heavy 
loading the central buffer may become full, and pack- 
ets may then be blocked across several switches, just 
as in wormhole routing [15]. 

In BMIN networks, adaptive choices can typically 
be made while the packet is traveling “away” from the 
processors until it reaches any switch which is a least 
common ancestor of both the source and the destina- 
tion node. When more than one output port is both 
idle and permitted for adaptive routing, our simula- 
tions assume the choice of output port is made on a 
least-recently-granted basis. The path “back” to  the 
destination from the least common ancestor switch is 
unique. We assume minimal paths-if there exists an  
h-hop path between source and destination, no > h- 
hop paths may be traversed for communication be- 
tween them. 

All simulations assume an open network model con- 
taining idealized processor nodes: the nodes contain 
an infinite transmit queue buffer, and packet flits are 
immediately pulled from the network as they arrive. 
We assume an  exponential distribution for message in- 
jection time (message arrival time). We apply a range 
of loading to the network, where a load of 1.0 indi- 
cates that  each node is injecting packets in the net- 
work a t  the maximum link da ta  rate. Latency curves 
include input queueing time and are not shown after 
saturation (steady-state latency is infinite after satura- 
tion, assuming infinite input queues). The  maximum 
packet size is 255, and messages longer than 255 bytes 
are broken into multiple packets before transmission. 

The open network model makes it possible to  
“stress” the network to  a far greater degree and cause 
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Figure 3: Bit-reversal permutation traffic on a 16-node 
BMIN topology 

more contention than might be possible in a “real” 
environment. For instance, in the SP2, the processor 
software and the network interface hardware control 
the injection of message packets via strategies such as 
end-to-end flow control and message interleaving that 
significantly reduce the possibility of network cratura- 
tion and the creation of “hot-spots” [l6]. Therefore 
the heavily-loaded simulation results shown here are 
extremely unlikely to  be reproducible in an  actual ma- 
chine. However, the open network model simplifies 
analysis by removing the complex software and net- 
work interface factors, and makes it possible to exam- 
ine a single issue: the effect of adaptive routing. 

For each experiment, we compare adaptive routing 
with oblivious routing schemes. For instance, .in SP2 
systems, each node maintains a route table containing 
4 valid minimal routes for each destination node. If 
there are less than 4 unique minimal routes, as when 
the source and destination node are connected to the 
same switch, then 2 or more of these routes are iden- 
tical. Choosing between 4 routes reduces the effect 
of contention and reduces the probability of creating 
“hot-spots” in the network. 

3.1 Permutation traffic simulation 

In this section we investigate the relative per- 
formance of adaptive routing when the communica- 
tion pattern is a static permutation. We test 2 
permutations: bit-reversal and transpose. In bit- 
reversal, a source processor represented in binary 
by sn-1sn-2.. . slso sends messages to  destination 
sosl .. .sn-2sn-1. In transposes for even n, the des- 
tination is SE- SE-2.. .s1sosn-1sn-2..  .SE+ISE. We 
simulate 16-way and 64-way BMIN’s. For our simula- 
tions the 64-way BMIN is constructed from 4 of the 
16-way BMIN’s shown in Figure 2. For each 16-way 
BMIN, the 16 unused right-side bidirectional links are 
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Figure 4: Transpose permutation traffic on a 16-node 
BMIN topology 

connected to a separate switch in a 3rd stage of 16 
switches. Thus each 3rd stage switch is connected to 
each 16-way BMIN by one link. 

Figure 3 displays simulation results for the bit- 
reversal perrrmtation on a 16-way BMIN topology. 
Adaptive routing attained both the lowest latency and 
the highest saturation bandwidth for this difficult per- 
mutation. For our 1-route oblivious routing, each 
packet traverses a “straight” path to  a least common 
ancestor switch, and then the packet proceeds on the 
unique path t’o the destination. This topology has a 
maximum of 4 distinct paths between pairs of nodes, 
and thus 4-ronte oblivious routing is equivalent to  ran- 
domized routing for the 16-way topology shown in Fig- 
ure 2. In general, 1-route oblivious routing either per- 
forms very well or very poorly depending on the per- 
mutation. Its dismal worst-case performance and high 
variability make it a poor choice for a general rout- 
ing strategy, amd we will not consider it further in this 
paper. 

For this 16-way topology, adaptive routing and 4- 
route oblivious routing have exactly the same paths 
available. However, with adaptive routing any packets 
traveling a 3-hop path are guaranteed not to  contend 
with any other packets while traversing the first switch 
stage. Why? For this first hop, only 4 input ports (the 
“left” input ports in Figure 2) are contending for the 
4 “right” output ports of the switching element (pack- 
ets cannot enter and then exit the “right” side of the 
switching elernent, because the resulting path would 
not be minimal). Therefore if a packet is entering the 
“left” side, there are 5 3 other input ports currently 
sending packets to the “right” side, leaving a t  least one 
“right” output port open. The 4-route oblivious pack- 
ets may often contend in the first stage, and this is the 
major cause of higher latency for this experiment. 

Figure 4 illustrates the adaptive routing perfor- 
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Figure 5: Transpose permutation traffic on a 64-node 
BMIN topology 
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Figure 6: Short message random traffic on a 16-node 
BMIN topology 

mance for the transpose permutation. Again adap- 
tive routing performs better, and in fact encounters 
no contention. The 4-route method loses bandwidth 
principally because of contention in the first hop. 

We have established that adaptive routing performs 
well for several types of permutation traffic on small 
systems. We now briefly examine the performance of 
one permutation on a larger system to illustrate that 
the benefits of adaptive routing extend over a range of 
system sizes. Figure 5 displays the latency curves for 
the transpose permutation on a 64-way BMIN topol- 
ogy. Adaptive routing still obtains lower latency and 
higher saturation throughput, although it no longer 
achieves the “no contention’’ curve of the 16-way sys- 
tem. For the 64-way system, packets with source and 
destination in different 16-way groups will traverse 5 
switches and have 16 possible least common ancestors. 
Thus, 4-route oblivious routing no longer corresponds 
to  random routing, and we include the 16-route obliv- 
ious case to  demonstrate that  adaptive routing main- 
tains performance advantages over random routing as 
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Oblpious. 4-route. 500-byte m s g s  -e--- , Adaptive, 500-byte m s g s  -* 

n l  I 
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Figure 7: Short message random traffic on a 128-node 
BMIN topology 
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Figure 8: Long message random traffic on a 128-node 
BMIN topology 

the system size grows. Other permutations and system 
sizes support similar conclusions, but we will not ex- 
haustively detail results to further support these claims 
here. 

3.2 Random traffic simulation 

In other experiments, we injected traffic with a uni- 
form destination distribution: for each message, the 
source randomly chooses any node except itself as the 
destination. Figure 6 plots message latency for adap- 
tive routing and 4-route oblivious routing for short 
(100-byte and 500-byte) messages. Latency before sat- 
uration is lower and saturation load is higher for adap- 
tive routing, although neither criteria is significantly 
better than that of oblivious routing. 

To see how the effect of adaptive routing for ran- 
dom traffic changes with system size, Figure 7 shows 
the results of the same short message experiment con- 
ducted on a 128-way BMIN, an  example of which can 
be found in [l]. For this larger topology, the positive ef- 
fects of adaptive routing on random routing are more 
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pronounced. There are more stages in which. adap- 
tive routing avoids contention compared with oblivious 
routing. 

Figure 8 shows the results of the same 128-way ex- 
periment conducted with longer (2000-byte and 8000- 

routing saturates the network a t  a 25% highe.c input 
load than 4-route oblivious routing. As messages be- 

GENERATE-ltOUTES( GT, 9) 

G,, ~- BF91(GT, 
2 for each processor d # s do 
3 GR t BFSZ(G,,, d ) ;  
4 Gs +- AIJL_FEASIBLE-ROUTES(GR); 

6 return the routing table RT 
Figure 9: Generating routes from a processor to  other 

byte) messages. For the longer messages, adaptive 5 RT,d t IklAXADAPTIVEROUTE(Gs); 

- - 
come longer, the effect of hot-spots becomes greater, 
and adaptive routing tends to shift traffic awa.y from 
heavily loaded parts of the BMIN network. 

To summarize: for BMIN’s, adaptive routing is gen- 
erally superior to oblivious routing for both permuta- 
tion and random routing. The advantages accrue for 
two reasons: (1) Adaptive routing does not contribute 
to  contention on the path “away” from the processors, 
because for this portion of the path each packet al- 
ways finds an  output port link available. (2) Even in 
the absence of contention, adaptive routing random- 
izes traffic by choosing among several available output 
ports going “away” from the nodes. 

4 Routing Algorithm 
In this section, we describe an  algorithm that, gener- 

ates the adaptive routing headers of the message pack- 
ets. The algorithm maximizes the adaptivity, (Npath), 
of the header. The problem of maximizing the adap- 
tivity may be complicated by irregularities in the net- 
work topology, such as faulty links and switches. Here, 
we present an  approach that is applicable to  any multi- 
stage interconnection network, including networks with 
faults and partitioned networks. 

We represent the topology of the network by a di- 
rected graph GT = (VT, ET) ,  which is referred here as 
the topology graph. The vertex set VT contains two 
types of nodes, namely processor nodes and switching 
nodes. The edge set ET represents the interconnections 
between the switching nodes and between the proces- 
sor and switching nodes. Each edge e =< U, v > has an 
m-bit binary label &[e] whose 1-bit position denotes 
the output port number of the switching vertex U it is 
sourced from. For the sake of efficiency, multiplie edges 
between the same pair of vertices in the same djirection 
are coalesced into a single edge. The label of the coa- 
lesced edge is obtained by bitwise OR’ing the labels of 
the individual edges. 

We will work out an example on a 32 node network 
shown in Fig. 14. The topology graph GT = ( ~ V T ,  E T )  
contains 48 vertices which represent the switching 
nodes and processor nodes. The processors are indexed 
from 0 to  31 and switches are indexed from 32 to 47. 
In the examples to  follow, the message source will be 
processor 4 and its destination will be processor 30. 

processors 

Each processor node, s E VT, calls the GENER- 
ATE..ROUTES(GT,S) function given in Fig. 9 to deter- 
mine the set of adaptive routes from itself to  every 
other processlor d E VT in the network. The first step 
(line 3) of the function finds all possible shortest paths 
from source t o  the destination processor on a routabil- 
i t y  g m p h .  The second step (line 4) enumerates all feasi- 
ble adaptive routing solutions on a so lu t ion  graph. The 
last step (line 5) selects a route from the solution graph 
with the maximum adaptivity and stores the result in 
the routing table. 

4.1 Routability Graph 
A routabi l i ty  graph GR = (VR, ER) enumerates all 

possible shoriest paths from a source to  a destination 
processor. A routability graph contains only switch- 
ing nodes and it is a subgraph of the topology graph 
with all switching nodes and edges that are not in 
the shortest paths from the source to  destination node 
eliminated. For example, Fig. 15 shows the routabil- 
ity graph for the source-destination pair (4,30) of the 
network given in Fig. 14. Usable output ports are in- 
dicated by the edge labels. 

Formally, GR = (VR,ER) for a given source- 
destination processor pair is defined to be a directed 
n-stage multistage graph [17], where a denotes the 
shortest path distance between the source and desti- 
nation processors. Here, distance refers to the number 
of switching elements in a route. Each vertex v E VR 
has an m-bit binary attribute portsR[W] whose 1-bit 
positions denote the output ports allowed during rout- 
ing to  reach idhe destination processor. Vertices V i  a t  
each stage i are indexed in decimal ordering from 0 
to - 1, for i = 1 , 2  ,..., a. Both first and last 
stages contain a single vertex v i  and vg which corre- 
spond to the source and destination switches, respec- 
tively. Here, source and destination switches refer to 
the unique switching nodes to which the source and the 
destination processors are connected, respectively. The 
routing word R, for reaching the destination processor 
from the the destination switch is known in advance. 
Edges exist only between the vertices of the succes- 
sive stages. That  is, < u , v  >E ER only if U E V i  
and v E Vi+‘ for some i = 1,2,. . . , n - 1. Each edge 
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B F S ~ ( G T  , S) 
1 for each vertex 21 E VT - {s} do 
2 color[v] t WHITE; 
3 color[s] t GRAY; depth[s]  t 0 ;  Q t {s}; 
4 while Q # 0 do 
5 U +- head[&]; 
6 for each w E A d j ~ [ a ]  do 
7 
8 color[v] t GRAY; depth[v]  t depth[%] + 1; 
9 
10 FIFOENQUEUE(Q, U); 
11 

12 

14 re turn  G,, = (V,,, E,,), where 

if C O Z O T [ V ]  = WHITE then  

.[VI +- { U } ;  e,,[< w ,  U >] + !T[< U ,  v >]; 

elseif color[v] = GRAY and 
depth[v]  = depth[u] + 1 then  
.[.I t 4 2 1 1  U { U } ;  e,, [< 21, U >] + e,[< U ,  2, >] 

13 FIFODEQUEUE(&); coloT[U] +- BLACK 

v,, = {'U E VT : cOlOr[v] = BLACK } - {s} 
E,, = {< u,w >: U , V  E Vw, and w E .[U]} 

Figure 10: The BFS-like algorithm proposed to con- 
struct the predecessors subgraph GT, = (VTs , ET,) for 
the source processors. 

e =< U ,  v > is labeled with !,[e] similar to GT. 
The routability graph for a given source-destination 

processor pair ( s , d )  is constructed in two steps. In 
the first step, we use a modified Breadth-First-Search 
(BFS) algorithm on GT starting from the source ver- 
tex s. The proposed BFS-like algorithm-BFS1(GT, s) 

in Fig. 10-constructs the predecessors subgraph GT, = 
(V,$ , E T S )  which is different from the breadth-first tree 
generated during conventional BFS [18]. In G T s ,  V,, 
contains all processor nodes of GT,  and those switching 
nodes of GT which are in the shortest route from the 
source processor s to a t  least one destination proces- 
sor other than s. Similarly, ET* contains those edges 
(links) of GT in reverse direction which are in the short- 
est route from the source processor s to a t  least one 
destination processor other than s. As seen in Fig. 10, 
each node v E VTS contains multiple parents stored in 
its 7r,[v] field which also denotes the adjacency list of 
vertex v in GT,. Hence, edge list ET, of GT, is con- 
structed on GT in adjacency list format by the T fields 
of the vertices in V,,. 

In the second step, the routability graph for a 
processor pair ( s , d )  can easily be constructed by 
running another BFS-like algorithm--BFS2(GT,, d )  in 
Fig. 11-on G,, starting from destination processor 
d. In Fig. 11, each non-black (white and gray) vertex 
v E V,, encountered while scanning the adjacency list 
of a vertex U of depth j from the destination switch 
constitutes an  edge from vertex v to U at stages i and 
i + 1 of GR, respectively, where i = n - j - 1. 

4.2 Solution Graph 
A solution graph Gs = (VS, E s )  enumerates every 

feasible adaptive route solution (route-word encoding) 

BFSZ(G,,, d )  
1 dsw t ~ [ d ] ;  
2 for each vertex w E V,, - { d s w }  do 
3 color[v] t WHITE; 

5 while Q # 0 do 
6 U t head[Q]; 
7 for each w E .[a] d o  
8 
9 color[v] t GRAY; A d j ~ [ v ]  t { U } ;  

10 

11 FIFOENQUEUE(Q,V); 

/* d s w  is the destination switch */ 

4 co~o?'[d8w] t GRAY; Q t {dsw}; 

if color[v] = WHITE then  

por tsR[v]  + L,, [< '11, 2, > I ;  
stage~[v]  t depth,, [w]; 

1 2  else /* color[v] should be GRAY */ 
13 A d j ~ [ v ]  +- A d j ~ [ v ]  U { U } ;  

/* "V": bitwise OR */ 
14 p O T t S R [ w ]  +- pOrtsR['J] v &,[< U ,  > I ;  
15 

17 re turn  G R  = (VR, E R ) ,  where 

e,[< V ,  U >] +- e,, [< U ,  21 >]; 
16  FIFOENQUEUE(Q); COlO?'[U] t BLACK 

VR = {'U E v,, : CO~or[v] = BLACK } 
E R  = {< U , V  >: U , V  E VR and v E A ~ ~ R [ u ] }  

Figure 11: The BFS-like algorithm proposed to con- 
struct the routability graph GR = (VR,ER) for the 
source destination pair ( 5 ,  d). 

from a given source to  a given destination. Formally, 
Gs = (VS, E s )  is defined to be a multistage graph with 
the same number of stages as in the routability graph 
GR. The vertex set Vi of Gs at stage i is a subset 
of the power set of V i  of GR excluding the empty set, 
i.e., Vi 2vA - 0. It is clear that  both first and last 
stages (stages 1 and n) of Gs contain a single vertex v: 
and U? which correspond to  the source and destination 
switches, respectively. 

In a straightforward implementation, we allocate 
21vil - 1 vertices for constructing the stage i vertices 
of Gs. Allocated vertices of each stage are indexed 
in decimal ordering starting from 1 to  21vgl - 1. The 
positions of the 1-bits in the binary representation of 
each vertex vi E Vi determine the subset Sf of ver- 
tices (switches) a t  stage i of GR that  it represents. For 
example, a t  stage 2 of the routability graph shown in 
Fig. 15, there are 4 vertices 0, 1, 2, 3 corresponding 
to switches 36, 37, 38, 39, respectively. Therefore, at 
stage 2 of the corresponding solution graph shown in 
Fig. 16, there are 24 - 1 = 15 vertices labeled in binary 
0001 through 1111, representing all possible subsets of 
the set of 4 vertices in the routability graph. As is also 
seen in Fig. 16, v:3 E V i  of Gs represents the ver- 
tex subset Sf3 = {si, s ; ,  si} = {36,38,39} of V i  since 
13 = "1101" in binary. 

A vertex vi E Vi only if there exists a t  least one 
feasible adaptive route R1R2.. . R, which can forward 
the message initiated from the source processor to  ex- 
actly one of the switches in Si through RlR2.. . R,-1. 
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Here, feasibility refers to the fact that the remaining 
n - i route words &&+I.. .R, can forward the mes- 
sage packets at all switches in Si to the destination 
processor. An edge e =< v f ,  vi" >E Es only .if there 
exists at least one feasible route whose stage-i :routing 
word R; forwards the message packets at all switches in 
Si to  exactly one of the switches in S:+'. Each edge e 
is associated with a label &[e] which corresponds to the 
maximal routing word which achieves the above men- 
tioned message forwarding. Here, maximality rlefers to  
the routing word with maximumnumber of 1's. Hence, 
the sequence of labels (routing words) on the edges of 
each distinct path from vi to  w y  constitutes a :feasible 
route from the source switch to  the destination switch. 
Each one of these feasible routes appended with the 
pre-determined routing word R, from the destination 
switch to the destination processor constitutes a fea- 
sible adaptive route from the source processor to  the 
destination processor. 

For example, in Fig. 16, the vertex vg = 0101 a t  
stage 2 has an outgoing edge with the label 11.110000 
to the vertex vg = 0101. This edge indicates that 
from the set of switches Si = {sg,s;} = (36,38} 
at stage 2 of GR, we can reach the set of switches 
St = {sg, s;} = {40,42} at stage 3 of GR by the rout- 
ing word 11110000 which can be verified from Fig. 15. 
So, the set of switches reached from the switch set 
{36,38} by the routing word 11110000 is the union 
of the sets reached from all members. 

Fig. 12 illustrates the pseudo-code of the algorithm 
for creating the solution graph. The first outer for-loop 
(lines 1-5) and statement at line 6 perform the neces- 
sary initializations. Here, InAdj and OutAdj denote 
the adjacency lists of the vertices for their incoming 
and outgoing edges in Gs, respectively. 

The second outer for-loop (lines 7-21) performs a 
forward pass over the vertex stages starting from the 
only active vertex vi a t  stage 1 which corresponds to  
the source switch. In this for-loop, only active vertices 
are processed a t  each stage i to determine the active 
vertices a t  the following stage i+l  and create the edges 
between the active vertices a t  stages i and i +- 1. At 
line 9, Pa is an  m-bit binary number whose 1-bit posi- 
tions correspond to the common ports of the switches 
in Sa which can be used to  reach the destination. In 
the for-loop at lines 10-21, all possible route words cor- 
responding to  the 1-bit positions of Pa are enumerated 
and processed. For a Pa with 1 5 IC 5 m 1-bits, 2k - 1 
route words are generated 'by fixing the bit positions 
corresponding to  the 0-bit positions of Pa to  all 0's and 
enumerating 2k - 1 distinct non-zero binary numbers 
from 1 to 2k - 1 on the bit positions corresponding 
to  the 1-bit positions of Pa. The set Si+' C Vi'' R 

ALL_FEASIBI;EROUTES( GR) 
1 for i +- 1 to n do 
2 allocate IVil = 21vil - 1 nodes {'U;}C' for Vi 
3 for j t I., to IVil do 
4 m a ~ k [ v ; ]  f -  INACTIVE; 
5 
6 marlc[v:] t- ACTIVE; 
7 f o r i c l t o n - 1 d o  
8 
9 pa + / \ u ~ ~ ,  ?"JTtsR[u]; 

10 

InAdj[uj] t 0; OutAdj[vj] t 0; 

for each ACTIVE vertex a E VG do 

/* "A" : bitwise AND operation */ 
for each possible routing word R; E 

(1-bit position combinations of Pa} d o  

for coach stage-i vertex U E Sa of V i  do 
11 $1 t 0; 

14 t szi U {w}; 

12 
13 for each w E A d j ~ [ u ]  such that 

&R[< U ,  w >] A Ri # 0 do 

15 find the vertex 'U E Vit1 where S, = S g ' ;  
16 if 'U fi! OutAdj[a] then 
17 mark[v] t ACTIVE; 
18 O ~ t A d j [ a ]  t OutAdj[a] U {v}; 

InA4dj[v] t InAdj[v] U { a } ;  
19 l s [<  U , V  >J Ri; 
20 else /* edge < a , v  > already exists */ 
21 e,[< a , ' ~  > ]  is[< a l v  >]  V Ri; 

/* "v" : bitwise OR operation */ 
22 for i t n -- 1 downto 2 do 
23 
24 
25 
26 

27 
28 return G S  = (VS, Es), where 

for each ACTIVE vertex a E vi do 

for each U E InAdj[a] do 
if OutAdj[a] = 0 then  

remove vertex a from OutAdj[u]; 
/* remove edge < U ,  a > */ 

InAclj[a] t 0; marh[a] t INACTIVE; 

vs = {'U : maTk[v]  = ACTIVE } 
Es = {< U ,  'U >: U ,  'U E Vs and 'U E OutAdj[u]} 

Figure 12: The algorithm for generating the solution 
graph Gs = i(Vs, Es)  

of switches reached from the switch set Sa C V i  by 
the routing word R, is constructed in the for-loop at 
lines 12-14. 'The search operation at line 15 can be ef- 
ficiently performed in constant time by exploiting the 
proposed vertex encoding in GR and Gs. The if-clause 
at lines 16-19, adds the edge e =< u , v  > t o  Es,  ac- 
tivates vertex v at stage i + 1 of Gs, and initializes 
the route-word label &[e] of edge e .  The else clause a t  
lines 20-21 ensures the maximality of the route-word 
label 1s [ e ] .  

The solution graph Gs generated at the end of the 
second outer for-loop (lines 7-21) may cuntain vertices 
and edges which are not involved in any feasible solu- 
tion path from the source to  the destination because 
of the vertices at later stages which do not have any 
outgoing edges. These infeasible vertices and edges are 
removed in the last outer for-loop (lines 22-27) in or- 
der to reduce the computational complexity of the dy- 
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MAXADAPTIVEROUTE( G s )  
1 ADP[wr] t 1; 
2 for i c n - 1 downto 1 do 
3 for each vertex U E Vi do 
4 ADP[U] +- 0; 
5 
6 
7 

9 nezt[u] +- v;  

11 for i t 1 t o  n - 1 do 
1 2  v t nezt[u]; 
13 R; t is[< U , V  >]; 
14 U t w; 
15 R, t is[< v f ,  d >]; 
16 return R = 

Figure 13: Algorithm for determining maximum adap- 
tive route in an n-stage solution graph Gs = (Vs, Es). 

namic programming algorithm to be executed in the 
next phase. The backward processing order over the 
vertex stages of Gs ensures the feasibility of all remain- 
ing vertices and edges. 

for each v E QutAdj[u] do 
adp t lis[< U ,  v >]I x ADP[v]; 
if adp > ADP[a] then 

8 ADP[.LL] t adp;  

1 0  U +- v:; 

/* d : destination processor */ 
. . . R,-iR, with Npsth  = ADP[V:] 

4.3 Maximizing Adaptivity 

Once the solution graph is created, the maximally 
adaptive route may be found by finding a path from 
source to destination node in the solution graph that 
maximizes the product of the adaptivity values of edges. 
The adaptivity of an  edge e E Es is defined as the num- 
ber of 1-bits (i.e., l&[e]l) in its edge label & [ e ] ,  repre- 
senting the number of common output port choices of 
the switches in Sa that can be used to lead the messages 
a t  those switches to the destination. The adaptivity of 
a path from source to  destination is the multiplication 
of the adaptivity values of edges on the path. Hence, 
the problem reduces to  finding an optimal path from w: 
to v;" in Gs with maximumadaptivity. As an example, 
in Fig. 16, the top most path has a product cost (adap- 
tivity) of 1 x 4 x 1 = 4 (i.e., 1 O O O I O O O O /  x ~ 1 1 1 l O O O O ~  x 
~10000000~),  which indicates that  the given sequence 
of routing words result in 4 different routes between 
source and destination processors. Likewise, the bot- 
tom most path has a product cost of 4 x 4 x 1 = 16 (i.e., 
~11110000/ x j11110000/ x ~10000000~),  which shows that 
the given sequence of routing words result in 16 differ- 
ent routes between source and destination processors. 
Note that the bottom most path happens to be the so- 
lution with the maximum adaptivity; there are no more 
than 16 distinct shortest paths from processor 4 to 30, 
as can be verified from Figs. 14 and 15. Therefore, the 
route header encoding with the maximum adaptivity 
is RI = 11110000, Ra = 11110000, R3 = 10000000, and 
Rq = 01000000 in this example. 

1 17 
2 18 
3 19 

4 20 
5 21 
6 22 
7 23 

8 24 
9 25 

10 26 
11 27 

12 28 
13 29 
14 30 

31 15 

Figure 14: A 32 processor node bidirectional multi- 
stage network (BMIN) 

A dynamic programming [17, 181 formulation for an  
n-stage solution graph Gs is obtained by first noticing 
that every source to  destination path is a result of a 
sequence of n - 2 decisions. The i-th decision involves 
determining which vertex in Vj  (1 < i < n) is t o  be on 
an optimal path. 

Let ADP [W;] denotes the adaptivity of the optimal 
path p ( v i ,  wy) from the stage-i vertex v$ E Vj t o  the 
destination switch v;". Then, the optimal substructure 
property gives the recursive formulation 

Since the adaptivity of the optimal path from desti- 
nation switch w;" to the destination processor is 1, the 
adaptivity of optimal routes from all vertices of Gs can 
easily be computed by performing a backward pass over 
the vertex stages of Gs as shown in Fig. 13. ADP[v:] 
contains the adaptivity value of the optimal routing so- 
lution(s) when the first for-loop (lines 2-9) terminates. 
In this for-loop, nezt attribute for each vertex is com- 
puted to enable the construction of an  optimal routing 
in the second outer for-loop (lines 11-14). This for-loop 
constructs an optimal routing by simply following the 
next fields of the vertices in forward direction starting 
from the source switch a t  stage 1. 

5 Conclusion 

In this paper, we presented the first at tempt to com- 
bine the source routing and adaptive routing meth- 
ods, referred to as the adaptive source routing (ASR) 
method. We showed that the route and the adaptivity 
of message packets are determined at the source proces- 
sor node, and that packets can be routed in a fully 
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STAGE: 1 2 3 4 

nionnim . . . . . . . . . . 

Figure 15: The routability graph GR = (VR,&R) for 
the processor pair (4,30). 

STAGE: 1 2 3 4 

Figure 16: The solution graph Gs = (VS, E s )  for the 
processor pair (4,30). 

adaptive, or partially adaptive, or oblivious manner in 
the same network, at the same time. We described 
how the ASR method may support multiple types of 
network traffic, in-order delivery of multiple packets 
to avoid over-taking, and network partitioning. The 
source routing nature of the ASR method e1i:minates 
the need for routing tables on the switch chips which 
may limit scalability and occupy valuable real-estate 
on silicon. We presented performance comparison of 
adaptive versus oblivious routing networks. We found 
adaptive routing to  be generally superior to oblivi- 
ous routing for both permutation and randomi traffic. 
We presented an algorithm that generates maximally 
adaptive routing headers for the message packets. The 
algorithm is applicable to  multistage networks in gen- 
eral, including faulty networks and irregular topologies. 
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