
Adaptive Source Routing in Multistage Interconnection Networks

Yucel Aydogant, Craig B. Stunkelt , Cevdet Aykanatt , Bulent Abalit*

t Bilkent University, Dept. of Computer Science, Ankara.
$ IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598

Abstract

W e describe t h e adaptive source routing (ASR)
method which i s a f irst a t t e m p t t o combine adaptive
routing and source routing methods . In ASR, t h e adap-
t i v i t y of each packet i s de termined at t h e source proces-
sor . E v e r y packet can be routed in a f u l l y adaptive or
partially adaptive or non-adaptive manneT, all w i t h i n
t h e s a m e ne twork at t h e s a m e t i m e . W e evaluate and
compare per formance of t h e proposed adaptive source
routing n e t w o r k s and oblivious routing ne tworks by
s imula t ions . W e also describe a route generation al-
g o r i t h m t h a t de termines m a x i m a l l y adaptive routes in
mul t i s tage ne tworks .

1 Introduction
Interconnection networks play an important role in

providing low latency, high bandwidth communication
in multicomputers. Some examples of interconnection
networks used in commercial machines are the IBM
SP2 multistage interconnection network [1], Cray T3D
3-dimensional torus [2, 31, the Connection Machine fat
tree [4, 51, and Intel Paragon mesh [6]. Routing in
an interconnection network can be classified as a d a p
tive or non-adaptive depending on the dynamics of
route selection. In non-adaptive (or oblivious) rout-
ing, there is a fixed routing decision at each intermedi-
ate switching element (switch) along a path between a
source node and a destination node-each switch can
use only one output port for message packet forward-
ing. Adaptive routing methods allow more than one
choice of output ports. Switches try to minimize net-
work contention by exploring alternate routes to desti-
nations [5, 7, 8, 91. On the other hand, some networks
employ oblivious routing methods such as the source-
based routing (source routing) used in SP2 [I, 10, 111
due their flexible choice of network topology and sim-
plicity of switch design. In the source routing method,
the packet route is deterministic and is completely de-
termined at the source processor which encodes the

‘To whom correspondence should be addressed.

DESTINATION SOURCE

t I

BASED BASED

NON-ADAPTIVE 1 J 1 J

Figure 1: Routing Methods

route in the packet header. Thus another way of clas-
sifying routing is source-based or destination-based ac-
cording to the method of addressing the destination
processor, which results in a method space shown in
Fig. 1.

Although many adaptive routing networks have
been constructed and proposed to date, they have
all been destination-based adaptive routing networks.
This paper presents the first at tempt to combine the
source routing and adaptive routing, referred to as the
adaptive source routing (ASR) method. The proposed
combination has the advantages of both methods. The
route and the adaptivity of each packet is determined
a t the source processor node. Every packet can be
routed in a fully adaptive, or partially adaptive, or
oblivious manner, all within the same network a t the
same time. The ASR method also provides support for
multiple types of network traffic, in-order delivery of
multiple packets, and network partitioning.

In the following, we give an overview of adaptive,
destination-based, and source-based routing methods.
In Section 2, we describe the proposed Adaptive Source
Routing method. In Section 3, we present a perfor-
mance comparison of the ASR networks and the obliv-
ious routing networks by simulations. In Section 4, we
present a route generation algorithm that finds m a x -
i m a l l y adaptive routes between the processor nodes.
This algorithm enables the ASR method.

1.1 Background
In adaptive routing networks, message packets make

use of multiple paths between source-destination node

1063-7133/96 $5.00 0 1996 IEEE
Proceedings of IPPS ’96

258

pairs [7]. Switches alleviate congestion by sending
packets via less busy alternate routes. Typically, a
busy output port will cause an adaptive routing switch
to use another output in routing a packet to its desti-
nation. In a (destination-based) adaptive routing net-
work, a switch element must therefore “know” which
of its outputs lead to the intended destination. There-
fore, a common characteristic of many adaptive rout-
ing networks is a regular and simply described network
topology such as a hypercube, mesh, k-ary n-cube, or
a fat tree [4, 5, 7, 8, 91. The switches then have an
implicit knowledge of the entire network topology, and
therefore they can route packets accordingly. A disad-
vantage of adaptive routing is that it limits the choice
of network topologies. In an alternative approach, each
switch may have a routing table that maps destination
processor addresses to the switch port numbers, how-
ever this will occupy real-estate on the switch (chips)
and the bounded size of the tables may limit scalability
of the networks.

In the destination-based routing, the address (e.g.
position) of the destination processor in the network,
or an address difference between source and destina-
tion, is encoded in the packet header and then the net-
work decides how to route the message. The source
processor has no influence on the routing decisions.
This method also requires switches to have a global
knowledge of the network topology in order to correctly
route packets. Some examples of destination-based
networks are the CM-5 fat tree [5] and Intel Paragon
2-dimensional mesh [6].

In the source routing method, unlike destination-
based routing, switches need not know the topology;
the source processor determines the route and encodes
the routing instructions in the packet header. Switches
then follow these instructions to forward the packet to
its destination. Cray T3D [3] and IBM SP2 [l] sys-
tems are based on source routing networks. For exam-
ple, in the SP2 multistage network, which consists of
8 x 8 switches, the packet header initially contains 3-
bit routing words RI , R2,. . . , Rn, where n is the num-
ber of network stages to travel. Each word indicates a
switch port numbered from 0 to 7. The source proces-
sor determines the route and puts respective words in
the header. Each switch forwards the packet through
the output port indicated in the first route word and
strips off the first word before forwarding the packet
to the next level in the network [l]. Thus, the packet
contains no routing information upon arriving a t its
destination. In the source routing method, typically
routing headers are computed only once and then kept
in a route table in each processor node. The route ta-
ble approach enables faulty links and switches to be

mapped out easily, and allows more choices of network
topologies tha.n destination-based routing, and allows
multiple routes to be defined per destination.

2 Architecture
In the adaptive source routing method proposed

here, the key idea is in the definition of the routing
words in a packet header. Each routing word indi-
cates a set of permitted output ports, rather than a
specific output port. Each m-bit word has the format
R = T,-IT,-~.. . T O , where m is the number of switch
ports. One bits in the routing word indicate the set of
outputs that the switch is permitted to use for forward-
ing the packet. The source processor is responsible for
encoding the correct routing instructions in the header
as in the source routing method.

Each switch examines the first word of each packet
and (adaptively) selects an unused port from one of
the permitted outputs to forward the packet to the
next network stage. If none of the permitted ports are
available, then the packet will be blocked and cannot
proceed until at least one of the ports become avail-
able. The switch strips off the first route word be-
fore forwarding the packet as before. For example, in
the 32 node network given in Fig. 14, the header of
a packet from processor 4 to 30 may consist of words
RI = 11110000, R2 = 11110000, R3 = 10000000, Re =
01000000. The header indicates to the first, second,
third, and the last stage switches that they may for-
ward the packet through one of four ports 4-7 (R I) ,
one of four ports 4-7 (R2), port 7 (R3), and port 6
(&), respectively. In general, the number of distinct
paths a packet may follow from source to destination
is

where lRil is defined as the number of one bits in the
routing word I&. Obviously, not only Npath paths must
exist between the source and the destination, but any
combination of the outputs specified in the successive
routing words in the header must correctly lead the
packet to its intended destination.

Each source processor can choose the adaptivity of a
message packet by varying Npath. If Npath = max, then
the adaptivity is maximum and packets may reap per-
formance benefits of full adaptivity. This case is useful
to minimize network contention due to non-uniform
message traffic and difficult communication patterns.

If Npath = 1, then the routing is oblivious. The
packet is to be routed through a single deterministic
path. The Npath = 1 case may be useful in several ap-
plications. If interprocessor communication patterns

259

are known in advance, such as for permutation rout-
ing on SIMD machines, an optimal set of oblivious
routes may be selected to minimize contention [ll].
The Npath = 1 case is also valuable for avoiding the
over-taking property of adaptive networks. Over-
taking means that the successive packets that belong
to the same message may arrive a t their destination
out of order, which requires the receiving processor to
buffer and sort them. Thus, over-taking may result
in more hardware resources being used and may offset
performance gains due to adaptive routing. In a possi-
ble implementation that guarantees in-order delivery
of packets (that belong to the same message), source
processors may send the packets of a multiple packet
message non-adaptively, i.e. use Npath = 1, whereas
they may send a single packet message adaptively, i.e.
use Npath = max, since single packet messages are not
subject to over-taking.

If 1 < Npath < max, then each packet is routed
in a partially-adaptive manner, where only a subset of
all possible paths is utilized. This case is valuable for
network security or partitioning: When the network
is to be logically partitioned among multiple parallel
tasks so that their respective communications do not
overlap in the network, then by using the partially-
adaptive routing method each packet may be forced
to remain in its partition, however routed adaptively
within the partition.

3 Network Performance
We are primarily interested in the effect of adaptive

routing on bidirectional multistage (BMIN) topologies
similar to the topologies used in the IBM SP2, the
Thinking Machine CM-5 [12], and the Meiko CS-2 [13].
Figure 2 illustrates a 16 processor node BMIN and
shows sample routes from a source node 0 t o destina-
tion nodes 3 and 10. The 16 ports on the right side are
unused in this configuration. The BMIN switches-for
this example 8 input, 8 output devices-could be per-
mitted to forward packets from any input port to any
output port (including ports on the same “side”).

We have seen few studies directly comparing adap-
tive versus oblivious routing for BMIN’s, although
the CM-5 machine employs destination-based adaptive
routing. In addition, we are interested in assessing the
effects of adaptive routing when used in combination
with switches that incorporate central buffers similar
t o SP2 switches [l].

To evaluate the performance of adaptive source
routing, we conducted network simulations based upon
a C++ model of SP2-like switches. These switches im-
plement buffered wormhoZe routing [1] for flow-control
and contain a 1 KB dynamically-shared central buffer.

PO
P1
P2
P3
P4
P5
P6
P7
PB
P9
P10
P11
P12
P13
P14
P16

Figure 2: A 16 processor node bidirectional multistage
network (BMIN)

Under light to medium loading, a switch is typically
able to buffer an entire arriving packet when that
packet becomes blocked due to output port contention.
Thus, in effect, the switch often operates in virtual
cut-through [14] fashion, completely removing blocked
packets from network links. However, under heavy
loading the central buffer may become full, and pack-
ets may then be blocked across several switches, just
as in wormhole routing [15].

In BMIN networks, adaptive choices can typically
be made while the packet is traveling “away” from the
processors until it reaches any switch which is a least
common ancestor of both the source and the destina-
tion node. When more than one output port is both
idle and permitted for adaptive routing, our simula-
tions assume the choice of output port is made on a
least-recently-granted basis. The path “back” to the
destination from the least common ancestor switch is
unique. We assume minimal paths-if there exists an
h-hop path between source and destination, no > h-
hop paths may be traversed for communication be-
tween them.

All simulations assume an open network model con-
taining idealized processor nodes: the nodes contain
an infinite transmit queue buffer, and packet flits are
immediately pulled from the network as they arrive.
We assume an exponential distribution for message in-
jection time (message arrival time). We apply a range
of loading to the network, where a load of 1.0 indi-
cates that each node is injecting packets in the net-
work a t the maximum link da ta rate. Latency curves
include input queueing time and are not shown after
saturation (steady-state latency is infinite after satura-
tion, assuming infinite input queues). The maximum
packet size is 255, and messages longer than 255 bytes
are broken into multiple packets before transmission.

The open network model makes it possible to
“stress” the network to a far greater degree and cause

260

Oblwlous. 4-route -+-
Adaptwe *

100 I
n l -__I
0 0 2 0.4 0.6 0.0 1

Applied load (fraction of max. bandwidth)

Figure 3: Bit-reversal permutation traffic on a 16-node
BMIN topology

more contention than might be possible in a “real”
environment. For instance, in the SP2, the processor
software and the network interface hardware control
the injection of message packets via strategies such as
end-to-end flow control and message interleaving that
significantly reduce the possibility of network cratura-
tion and the creation of “hot-spots” [l6]. Therefore
the heavily-loaded simulation results shown here are
extremely unlikely to be reproducible in an actual ma-
chine. However, the open network model simplifies
analysis by removing the complex software and net-
work interface factors, and makes it possible to exam-
ine a single issue: the effect of adaptive routing.

For each experiment, we compare adaptive routing
with oblivious routing schemes. For instance, .in SP2
systems, each node maintains a route table containing
4 valid minimal routes for each destination node. If
there are less than 4 unique minimal routes, as when
the source and destination node are connected to the
same switch, then 2 or more of these routes are iden-
tical. Choosing between 4 routes reduces the effect
of contention and reduces the probability of creating
“hot-spots” in the network.

3.1 Permutation traffic simulation

In this section we investigate the relative per-
formance of adaptive routing when the communica-
tion pattern is a static permutation. We test 2
permutations: bit-reversal and transpose. In bit-
reversal, a source processor represented in binary
by sn-1sn-2.. . slso sends messages to destination
sosl .. .sn-2sn-1. In transposes for even n, the des-
tination is SE- SE-2.. .s1sosn-1sn-2.. .SE+ISE. We
simulate 16-way and 64-way BMIN’s. For our simula-
tions the 64-way BMIN is constructed from 4 of the
16-way BMIN’s shown in Figure 2. For each 16-way
BMIN, the 16 unused right-side bidirectional links are

. . .
a a a a

0 hrious. 4-route c
Adaptive -+--

1500

6
6
E

l p 1000 8

t_ f i ; : i + ~ . ~ . ~
~ +

0
0 0.2 0.4 0.6 0 0

Applied load (fraction of max. bandwidth)

Figure 4: Transpose permutation traffic on a 16-node
BMIN topology

connected to a separate switch in a 3rd stage of 16
switches. Thus each 3rd stage switch is connected to
each 16-way BMIN by one link.

Figure 3 displays simulation results for the bit-
reversal perrrmtation on a 16-way BMIN topology.
Adaptive routing attained both the lowest latency and
the highest saturation bandwidth for this difficult per-
mutation. For our 1-route oblivious routing, each
packet traverses a “straight” path to a least common
ancestor switch, and then the packet proceeds on the
unique path t’o the destination. This topology has a
maximum of 4 distinct paths between pairs of nodes,
and thus 4-ronte oblivious routing is equivalent to ran-
domized routing for the 16-way topology shown in Fig-
ure 2. In general, 1-route oblivious routing either per-
forms very well or very poorly depending on the per-
mutation. Its dismal worst-case performance and high
variability make it a poor choice for a general rout-
ing strategy, amd we will not consider it further in this
paper.

For this 16-way topology, adaptive routing and 4-
route oblivious routing have exactly the same paths
available. However, with adaptive routing any packets
traveling a 3-hop path are guaranteed not to contend
with any other packets while traversing the first switch
stage. Why? For this first hop, only 4 input ports (the
“left” input ports in Figure 2) are contending for the
4 “right” output ports of the switching element (pack-
ets cannot enter and then exit the “right” side of the
switching elernent, because the resulting path would
not be minimal). Therefore if a packet is entering the
“left” side, there are 5 3 other input ports currently
sending packets to the “right” side, leaving a t least one
“right” output port open. The 4-route oblivious pack-
ets may often contend in the first stage, and this is the
major cause of higher latency for this experiment.

Figure 4 illustrates the adaptive routing perfor-

261

1400
OblNiouS, 4-route, 100-bvte msas -

3500
Oblivious, 4-ro te, 100-byte msgs. +

Adaptie 1 OO-byte msgs. -+-.
ObiNious, 4-rohte: 500-byte msgs.

Adappe, 500-byte msgs. - - - 3000 -
I

I I
0 02 0 4 0 6 O B 1

Applied load (fraction of max bandwidth)

Figure 5: Transpose permutation traffic on a 64-node
BMIN topology

0 0 2 0 4 0 6 0 8 1
Applied load (fraction of max ban&idth)

Figure 6: Short message random traffic on a 16-node
BMIN topology

mance for the transpose permutation. Again adap-
tive routing performs better, and in fact encounters
no contention. The 4-route method loses bandwidth
principally because of contention in the first hop.

We have established that adaptive routing performs
well for several types of permutation traffic on small
systems. We now briefly examine the performance of
one permutation on a larger system to illustrate that
the benefits of adaptive routing extend over a range of
system sizes. Figure 5 displays the latency curves for
the transpose permutation on a 64-way BMIN topol-
ogy. Adaptive routing still obtains lower latency and
higher saturation throughput, although it no longer
achieves the “no contention’’ curve of the 16-way sys-
tem. For the 64-way system, packets with source and
destination in different 16-way groups will traverse 5
switches and have 16 possible least common ancestors.
Thus, 4-route oblivious routing no longer corresponds
to random routing, and we include the 16-route obliv-
ious case to demonstrate that adaptive routing main-
tains performance advantages over random routing as

1200 1 x Adaptive, 1 O O - b ~ e msss. -+---
Oblpious. 4-route. 500-byte m s g s -e--- , Adaptive, 500-byte m s g s -*

n l I
0 0 2 0 4 0 6 O B 1

Applied load (fraction of max bandwidth)

Figure 7: Short message random traffic on a 128-node
BMIN topology

a000

x
Oblivious, 4-route, ZOOO-byte msgs. -

Adaptive. 2OOO-byte msgs. -+---
p ,’ Oblivious, 4-route. EOOO-byte m s g s . -e---

Adaptive, BOOO-byte msgs. -*. .

0 0 2 0 4 0 6 0 8 1
Applied load (fraction of max bandwidth)

Figure 8: Long message random traffic on a 128-node
BMIN topology

the system size grows. Other permutations and system
sizes support similar conclusions, but we will not ex-
haustively detail results to further support these claims
here.

3.2 Random traffic simulation

In other experiments, we injected traffic with a uni-
form destination distribution: for each message, the
source randomly chooses any node except itself as the
destination. Figure 6 plots message latency for adap-
tive routing and 4-route oblivious routing for short
(100-byte and 500-byte) messages. Latency before sat-
uration is lower and saturation load is higher for adap-
tive routing, although neither criteria is significantly
better than that of oblivious routing.

To see how the effect of adaptive routing for ran-
dom traffic changes with system size, Figure 7 shows
the results of the same short message experiment con-
ducted on a 128-way BMIN, an example of which can
be found in [l]. For this larger topology, the positive ef-
fects of adaptive routing on random routing are more

262

pronounced. There are more stages in which. adap-
tive routing avoids contention compared with oblivious
routing.

Figure 8 shows the results of the same 128-way ex-
periment conducted with longer (2000-byte and 8000-

routing saturates the network a t a 25% highe.c input
load than 4-route oblivious routing. As messages be-

GENERATE-ltOUTES(GT, 9)

G,, ~- BF91(GT,
2 for each processor d # s do
3 GR t BFSZ(G,,, d) ;
4 Gs +- AIJL_FEASIBLE-ROUTES(GR);

6 return the routing table RT
Figure 9: Generating routes from a processor to other

byte) messages. For the longer messages, adaptive 5 RT,d t IklAXADAPTIVEROUTE(Gs);

- -
come longer, the effect of hot-spots becomes greater,
and adaptive routing tends to shift traffic awa.y from
heavily loaded parts of the BMIN network.

To summarize: for BMIN’s, adaptive routing is gen-
erally superior to oblivious routing for both permuta-
tion and random routing. The advantages accrue for
two reasons: (1) Adaptive routing does not contribute
to contention on the path “away” from the processors,
because for this portion of the path each packet al-
ways finds an output port link available. (2) Even in
the absence of contention, adaptive routing random-
izes traffic by choosing among several available output
ports going “away” from the nodes.

4 Routing Algorithm
In this section, we describe an algorithm that, gener-

ates the adaptive routing headers of the message pack-
ets. The algorithm maximizes the adaptivity, (Npath),
of the header. The problem of maximizing the adap-
tivity may be complicated by irregularities in the net-
work topology, such as faulty links and switches. Here,
we present an approach that is applicable to any multi-
stage interconnection network, including networks with
faults and partitioned networks.

We represent the topology of the network by a di-
rected graph GT = (VT, ET) , which is referred here as
the topology graph. The vertex set VT contains two
types of nodes, namely processor nodes and switching
nodes. The edge set ET represents the interconnections
between the switching nodes and between the proces-
sor and switching nodes. Each edge e =< U, v > has an
m-bit binary label &[e] whose 1-bit position denotes
the output port number of the switching vertex U it is
sourced from. For the sake of efficiency, multiplie edges
between the same pair of vertices in the same djirection
are coalesced into a single edge. The label of the coa-
lesced edge is obtained by bitwise OR’ing the labels of
the individual edges.

We will work out an example on a 32 node network
shown in Fig. 14. The topology graph GT = (~ V T , E T)
contains 48 vertices which represent the switching
nodes and processor nodes. The processors are indexed
from 0 to 31 and switches are indexed from 32 to 47.
In the examples to follow, the message source will be
processor 4 and its destination will be processor 30.

processors

Each processor node, s E VT, calls the GENER-
ATE..ROUTES(GT,S) function given in Fig. 9 to deter-
mine the set of adaptive routes from itself to every
other processlor d E VT in the network. The first step
(line 3) of the function finds all possible shortest paths
from source t o the destination processor on a routabil-
i t y g m p h . The second step (line 4) enumerates all feasi-
ble adaptive routing solutions on a so lu t ion graph. The
last step (line 5) selects a route from the solution graph
with the maximum adaptivity and stores the result in
the routing table.

4.1 Routability Graph
A routabi l i ty graph GR = (VR, ER) enumerates all

possible shoriest paths from a source to a destination
processor. A routability graph contains only switch-
ing nodes and it is a subgraph of the topology graph
with all switching nodes and edges that are not in
the shortest paths from the source to destination node
eliminated. For example, Fig. 15 shows the routabil-
ity graph for the source-destination pair (4,30) of the
network given in Fig. 14. Usable output ports are in-
dicated by the edge labels.

Formally, GR = (VR,ER) for a given source-
destination processor pair is defined to be a directed
n-stage multistage graph [17], where a denotes the
shortest path distance between the source and desti-
nation processors. Here, distance refers to the number
of switching elements in a route. Each vertex v E VR
has an m-bit binary attribute portsR[W] whose 1-bit
positions denote the output ports allowed during rout-
ing to reach idhe destination processor. Vertices V i a t
each stage i are indexed in decimal ordering from 0
to - 1, for i = 1 , 2 ,..., a. Both first and last
stages contain a single vertex v i and vg which corre-
spond to the source and destination switches, respec-
tively. Here, source and destination switches refer to
the unique switching nodes to which the source and the
destination processors are connected, respectively. The
routing word R, for reaching the destination processor
from the the destination switch is known in advance.
Edges exist only between the vertices of the succes-
sive stages. That is, < u , v >E ER only if U E V i
and v E Vi+‘ for some i = 1,2,. . . , n - 1. Each edge

263

B F S ~ (G T , S)
1 for each vertex 21 E VT - {s} do
2 color[v] t WHITE;
3 color[s] t GRAY; depth[s] t 0 ; Q t {s};
4 while Q # 0 do
5 U +- head[&];
6 for each w E A d j ~ [a] do
7
8 color[v] t GRAY; depth[v] t depth[%] + 1;
9
10 FIFOENQUEUE(Q, U);
11

12

14 re turn G,, = (V,,, E,,), where

if C O Z O T [V] = WHITE then

.[VI +- { U } ; e,,[< w , U >] + !T[< U , v >];

elseif color[v] = GRAY and
depth[v] = depth[u] + 1 then
.[.I t 4 2 1 1 U { U } ; e,, [< 21, U >] + e,[< U , 2, >]

13 FIFODEQUEUE(&); coloT[U] +- BLACK

v,, = {'U E VT : cOlOr[v] = BLACK } - {s}
E,, = {< u,w >: U , V E Vw, and w E .[U]}

Figure 10: The BFS-like algorithm proposed to con-
struct the predecessors subgraph GT, = (VTs , ET,) for
the source processors.

e =< U , v > is labeled with !,[e] similar to GT.
The routability graph for a given source-destination

processor pair (s , d) is constructed in two steps. In
the first step, we use a modified Breadth-First-Search
(BFS) algorithm on GT starting from the source ver-
tex s. The proposed BFS-like algorithm-BFS1(GT, s)

in Fig. 10-constructs the predecessors subgraph GT, =
(V,$, E T S) which is different from the breadth-first tree
generated during conventional BFS [18]. In G T s , V,,
contains all processor nodes of GT, and those switching
nodes of GT which are in the shortest route from the
source processor s to a t least one destination proces-
sor other than s. Similarly, ET* contains those edges
(links) of GT in reverse direction which are in the short-
est route from the source processor s to a t least one
destination processor other than s. As seen in Fig. 10,
each node v E VTS contains multiple parents stored in
its 7r,[v] field which also denotes the adjacency list of
vertex v in GT,. Hence, edge list ET, of GT, is con-
structed on GT in adjacency list format by the T fields
of the vertices in V,,.

In the second step, the routability graph for a
processor pair (s , d) can easily be constructed by
running another BFS-like algorithm--BFS2(GT,, d) in
Fig. 11-on G,, starting from destination processor
d. In Fig. 11, each non-black (white and gray) vertex
v E V,, encountered while scanning the adjacency list
of a vertex U of depth j from the destination switch
constitutes an edge from vertex v to U at stages i and
i + 1 of GR, respectively, where i = n - j - 1.

4.2 Solution Graph
A solution graph Gs = (VS, E s) enumerates every

feasible adaptive route solution (route-word encoding)

BFSZ(G,,, d)
1 dsw t ~ [d] ;
2 for each vertex w E V,, - { d s w } do
3 color[v] t WHITE;

5 while Q # 0 do
6 U t head[Q];
7 for each w E .[a] d o
8
9 color[v] t GRAY; A d j ~ [v] t { U } ;

10

11 FIFOENQUEUE(Q,V);

/* d s w is the destination switch */

4 co~o?'[d8w] t GRAY; Q t {dsw};

if color[v] = WHITE then

por tsR[v] + L,, [< '11, 2, > I ;
stage~[v] t depth,, [w];

1 2 else /* color[v] should be GRAY */
13 A d j ~ [v] +- A d j ~ [v] U { U } ;

/* "V": bitwise OR */
14 p O T t S R [w] +- pOrtsR['J] v &,[< U , > I ;
15

17 re turn G R = (VR, E R) , where

e,[< V , U >] +- e,, [< U , 21 >];
16 FIFOENQUEUE(Q); COlO?'[U] t BLACK

VR = {'U E v,, : CO~or[v] = BLACK }
E R = {< U , V >: U , V E VR and v E A ~ ~ R [u] }

Figure 11: The BFS-like algorithm proposed to con-
struct the routability graph GR = (VR,ER) for the
source destination pair (5 , d).

from a given source to a given destination. Formally,
Gs = (VS, E s) is defined to be a multistage graph with
the same number of stages as in the routability graph
GR. The vertex set Vi of Gs at stage i is a subset
of the power set of V i of GR excluding the empty set,
i.e., Vi 2vA - 0. It is clear that both first and last
stages (stages 1 and n) of Gs contain a single vertex v:
and U? which correspond to the source and destination
switches, respectively.

In a straightforward implementation, we allocate
21vil - 1 vertices for constructing the stage i vertices
of Gs. Allocated vertices of each stage are indexed
in decimal ordering starting from 1 to 21vgl - 1. The
positions of the 1-bits in the binary representation of
each vertex vi E Vi determine the subset Sf of ver-
tices (switches) a t stage i of GR that it represents. For
example, a t stage 2 of the routability graph shown in
Fig. 15, there are 4 vertices 0, 1, 2, 3 corresponding
to switches 36, 37, 38, 39, respectively. Therefore, at
stage 2 of the corresponding solution graph shown in
Fig. 16, there are 24 - 1 = 15 vertices labeled in binary
0001 through 1111, representing all possible subsets of
the set of 4 vertices in the routability graph. As is also
seen in Fig. 16, v:3 E V i of Gs represents the ver-
tex subset Sf3 = {si, s ; , si} = {36,38,39} of V i since
13 = "1101" in binary.

A vertex vi E Vi only if there exists a t least one
feasible adaptive route R1R2.. . R, which can forward
the message initiated from the source processor to ex-
actly one of the switches in Si through RlR2.. . R,-1.

264

Here, feasibility refers to the fact that the remaining
n - i route words &&+I.. .R, can forward the mes-
sage packets at all switches in Si to the destination
processor. An edge e =< v f , vi" >E Es only .if there
exists at least one feasible route whose stage-i :routing
word R; forwards the message packets at all switches in
Si to exactly one of the switches in S:+'. Each edge e
is associated with a label &[e] which corresponds to the
maximal routing word which achieves the above men-
tioned message forwarding. Here, maximality rlefers to
the routing word with maximumnumber of 1's. Hence,
the sequence of labels (routing words) on the edges of
each distinct path from vi to w y constitutes a :feasible
route from the source switch to the destination switch.
Each one of these feasible routes appended with the
pre-determined routing word R, from the destination
switch to the destination processor constitutes a fea-
sible adaptive route from the source processor to the
destination processor.

For example, in Fig. 16, the vertex vg = 0101 a t
stage 2 has an outgoing edge with the label 11.110000
to the vertex vg = 0101. This edge indicates that
from the set of switches Si = {sg,s;} = (36,38}
at stage 2 of GR, we can reach the set of switches
St = {sg, s;} = {40,42} at stage 3 of GR by the rout-
ing word 11110000 which can be verified from Fig. 15.
So, the set of switches reached from the switch set
{36,38} by the routing word 11110000 is the union
of the sets reached from all members.

Fig. 12 illustrates the pseudo-code of the algorithm
for creating the solution graph. The first outer for-loop
(lines 1-5) and statement at line 6 perform the neces-
sary initializations. Here, InAdj and OutAdj denote
the adjacency lists of the vertices for their incoming
and outgoing edges in Gs, respectively.

The second outer for-loop (lines 7-21) performs a
forward pass over the vertex stages starting from the
only active vertex vi a t stage 1 which corresponds to
the source switch. In this for-loop, only active vertices
are processed a t each stage i to determine the active
vertices a t the following stage i+l and create the edges
between the active vertices a t stages i and i +- 1. At
line 9, Pa is an m-bit binary number whose 1-bit posi-
tions correspond to the common ports of the switches
in Sa which can be used to reach the destination. In
the for-loop at lines 10-21, all possible route words cor-
responding to the 1-bit positions of Pa are enumerated
and processed. For a Pa with 1 5 IC 5 m 1-bits, 2k - 1
route words are generated 'by fixing the bit positions
corresponding to the 0-bit positions of Pa to all 0's and
enumerating 2k - 1 distinct non-zero binary numbers
from 1 to 2k - 1 on the bit positions corresponding
to the 1-bit positions of Pa. The set Si+' C Vi'' R

ALL_FEASIBI;EROUTES(GR)
1 for i +- 1 to n do
2 allocate IVil = 21vil - 1 nodes {'U;}C' for Vi
3 for j t I., to IVil do
4 m a ~ k [v ;] f - INACTIVE;
5
6 marlc[v:] t- ACTIVE;
7 f o r i c l t o n - 1 d o
8
9 pa + / \ u ~ ~ , ?"JTtsR[u];

10

InAdj[uj] t 0; OutAdj[vj] t 0;

for each ACTIVE vertex a E VG do

/* "A" : bitwise AND operation */
for each possible routing word R; E

(1-bit position combinations of Pa} d o

for coach stage-i vertex U E Sa of V i do
11 $1 t 0;

14 t szi U {w};

12
13 for each w E A d j ~ [u] such that

&R[< U , w >] A Ri # 0 do

15 find the vertex 'U E Vit1 where S, = S g ' ;
16 if 'U fi! OutAdj[a] then
17 mark[v] t ACTIVE;
18 O ~ t A d j [a] t OutAdj[a] U {v};

InA4dj[v] t InAdj[v] U { a } ;
19 l s [< U , V >J Ri;
20 else /* edge < a , v > already exists */
21 e,[< a , ' ~ >] is[< a l v >] V Ri;

/* "v" : bitwise OR operation */
22 for i t n -- 1 downto 2 do
23
24
25
26

27
28 return G S = (VS, Es), where

for each ACTIVE vertex a E vi do

for each U E InAdj[a] do
if OutAdj[a] = 0 then

remove vertex a from OutAdj[u];
/* remove edge < U , a > */

InAclj[a] t 0; marh[a] t INACTIVE;

vs = {'U : maTk[v] = ACTIVE }
Es = {< U , 'U >: U , 'U E Vs and 'U E OutAdj[u]}

Figure 12: The algorithm for generating the solution
graph Gs = i(Vs, Es)

of switches reached from the switch set Sa C V i by
the routing word R, is constructed in the for-loop at
lines 12-14. 'The search operation at line 15 can be ef-
ficiently performed in constant time by exploiting the
proposed vertex encoding in GR and Gs. The if-clause
at lines 16-19, adds the edge e =< u , v > t o Es, ac-
tivates vertex v at stage i + 1 of Gs, and initializes
the route-word label &[e] of edge e . The else clause a t
lines 20-21 ensures the maximality of the route-word
label 1s [e] .

The solution graph Gs generated at the end of the
second outer for-loop (lines 7-21) may cuntain vertices
and edges which are not involved in any feasible solu-
tion path from the source to the destination because
of the vertices at later stages which do not have any
outgoing edges. These infeasible vertices and edges are
removed in the last outer for-loop (lines 22-27) in or-
der to reduce the computational complexity of the dy-

265

MAXADAPTIVEROUTE(G s)
1 ADP[wr] t 1;
2 for i c n - 1 downto 1 do
3 for each vertex U E Vi do
4 ADP[U] +- 0;
5
6
7

9 nezt[u] +- v;

11 for i t 1 t o n - 1 do
1 2 v t nezt[u];
13 R; t is[< U , V >];
14 U t w;
15 R, t is[< v f , d >];
16 return R =

Figure 13: Algorithm for determining maximum adap-
tive route in an n-stage solution graph Gs = (Vs, Es).

namic programming algorithm to be executed in the
next phase. The backward processing order over the
vertex stages of Gs ensures the feasibility of all remain-
ing vertices and edges.

for each v E QutAdj[u] do
adp t lis[< U , v >]I x ADP[v];
if adp > ADP[a] then

8 ADP[.LL] t adp;

1 0 U +- v:;

/* d : destination processor */
. . . R,-iR, with Npsth = ADP[V:]

4.3 Maximizing Adaptivity

Once the solution graph is created, the maximally
adaptive route may be found by finding a path from
source to destination node in the solution graph that
maximizes the product of the adaptivity values of edges.
The adaptivity of an edge e E Es is defined as the num-
ber of 1-bits (i.e., l&[e]l) in its edge label & [e] , repre-
senting the number of common output port choices of
the switches in Sa that can be used to lead the messages
a t those switches to the destination. The adaptivity of
a path from source to destination is the multiplication
of the adaptivity values of edges on the path. Hence,
the problem reduces to finding an optimal path from w:
to v;" in Gs with maximumadaptivity. As an example,
in Fig. 16, the top most path has a product cost (adap-
tivity) of 1 x 4 x 1 = 4 (i.e., 1 O O O I O O O O / x ~ 1 1 1 l O O O O ~ x
~10000000~), which indicates that the given sequence
of routing words result in 4 different routes between
source and destination processors. Likewise, the bot-
tom most path has a product cost of 4 x 4 x 1 = 16 (i.e.,
~11110000/ x j11110000/ x ~10000000~), which shows that
the given sequence of routing words result in 16 differ-
ent routes between source and destination processors.
Note that the bottom most path happens to be the so-
lution with the maximum adaptivity; there are no more
than 16 distinct shortest paths from processor 4 to 30,
as can be verified from Figs. 14 and 15. Therefore, the
route header encoding with the maximum adaptivity
is RI = 11110000, Ra = 11110000, R3 = 10000000, and
Rq = 01000000 in this example.

1 17
2 18
3 19

4 20
5 21
6 22
7 23

8 24
9 25

10 26
11 27

12 28
13 29
14 30

31 15

Figure 14: A 32 processor node bidirectional multi-
stage network (BMIN)

A dynamic programming [17, 181 formulation for an
n-stage solution graph Gs is obtained by first noticing
that every source to destination path is a result of a
sequence of n - 2 decisions. The i-th decision involves
determining which vertex in Vj (1 < i < n) is t o be on
an optimal path.

Let ADP [W;] denotes the adaptivity of the optimal
path p (v i , wy) from the stage-i vertex v$ E Vj t o the
destination switch v;". Then, the optimal substructure
property gives the recursive formulation

Since the adaptivity of the optimal path from desti-
nation switch w;" to the destination processor is 1, the
adaptivity of optimal routes from all vertices of Gs can
easily be computed by performing a backward pass over
the vertex stages of Gs as shown in Fig. 13. ADP[v:]
contains the adaptivity value of the optimal routing so-
lution(s) when the first for-loop (lines 2-9) terminates.
In this for-loop, nezt attribute for each vertex is com-
puted to enable the construction of an optimal routing
in the second outer for-loop (lines 11-14). This for-loop
constructs an optimal routing by simply following the
next fields of the vertices in forward direction starting
from the source switch a t stage 1.

5 Conclusion

In this paper, we presented the first at tempt to com-
bine the source routing and adaptive routing meth-
ods, referred to as the adaptive source routing (ASR)
method. We showed that the route and the adaptivity
of message packets are determined at the source proces-
sor node, and that packets can be routed in a fully

266

STAGE: 1 2 3 4

nionnim

Figure 15: The routability graph GR = (VR,&R) for
the processor pair (4,30).

STAGE: 1 2 3 4

Figure 16: The solution graph Gs = (VS, E s) for the
processor pair (4,30).

adaptive, or partially adaptive, or oblivious manner in
the same network, at the same time. We described
how the ASR method may support multiple types of
network traffic, in-order delivery of multiple packets
to avoid over-taking, and network partitioning. The
source routing nature of the ASR method e1i:minates
the need for routing tables on the switch chips which
may limit scalability and occupy valuable real-estate
on silicon. We presented performance comparison of
adaptive versus oblivious routing networks. We found
adaptive routing to be generally superior to oblivi-
ous routing for both permutation and randomi traffic.
We presented an algorithm that generates maximally
adaptive routing headers for the message packets. The
algorithm is applicable to multistage networks in gen-
eral, including faulty networks and irregular topologies.

Acknowledgements: We are thankful to Mike
Rosenfield and anonymous reviewers for their helpful
comments.

References
[l] C. B. Stunkel, D. G. Shea, and B. Abali et al., “The

sP2 high-performance switch,” IBM Sys tems Journal,
vol. 34, no. 2, pp. 185-204, 1995.

[2] Cray Research Inc., cray T3D System Architecture
Overview, 1993.

[3] S. Scott and G. Thorson, “Optimized Routing in
the Cray T3D,” Lecture Notes in Computer Science,
Springer-Verlag, vol. 853, pp. 281-294, 1994.

[4] C. E. Leiserson, “Fat-trees: Universal networks for
hardware-efficient supercomputing,” IEEE Trans. on
Computers, vol. C-34, pp. 892-901, Oct. 1985.

[5] Thinking Machines Corporation, Connection Machine
CM-5 Technical Summary, November 1993.

[6] Intel Cor:poration, Paragon xP/s Product Overview,
1991.

[7] S. A. Felperin, L. Gravano, G. D. Pifarre, and L. C.
Sanz, “Routing techniques for massively parallel com-
munication,” Proc. IEEE, vol. 79, pp. 488-503, April
1991.

[8] S. Konstetntinidou and L. Snyder, “Chaos router: ar-
chitecture and performance,” in Proc. 18th A n n . Int .
Symp. on Computer Architecture, pp. 212-221, 1991.

[9] R. V. Boppana and S. Chalasani, “A comparison of
adaptive ,wormhole routing algorithms,” in PTOC. 20th.
Ann. Int. Symp. on Computer Architecture, pp. 351-
360, May 1993.

[lo] C. B. Stunkel, D. G. Shea, B. Abali, M. M. Den-
neau, P. H. Hochschild, D. J. Joseph, B. J . Nathanson,
M. Tsao, and P. R. Varker, “Architecture and imple-
mentation of Vulcan,” in Proc. 8th Int . Parallel Pro-
cessing Symp., pp. 268-274, April 1994.

[ll] B. Ab& and C. Aykanat, “Routing Algorithms
for IBM SP1,” Lecture Notes i n Computer Science,
Springer-Verlag, vol. 853, pp. 161-175, 1994.

[12] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas,
C. R. Feynman, M. N. Ganmukhi, J. V. Hill, W. D.
Hillis, B. C. Kuszmaul, M. A. St. Pierre, D. S. Wells,
M. C. Wong, S.-W. Yang, and R. Zak, “The net-
work architecture of the Connection Machine CM-5,”
in Proc. I1992 Symp. Parallel Algorithms and Architec-
tures, pp. 272-285, ACM, 1992.

[13] J. Beecroft, M. Homewood, and M. McLaren, “Meiko
CS-2 interconnect Elan-Elite design,” Parallel Com-

[14] P. Kermani and L. Kleinrock, “Virtual cut-through: A
new com:puter communications switching technique,”
Computer Networks, vol. 3, pp. 267-286, Sept. 1979.

[15] W. J. Dally, “Performance analysis of k-ary n-cube in-
terconnection networks,” IEEE Trans. on Computers,
vol. 39, pp. 775-785, June 1990.

[16] M. Snir, P. Hochschild, D. D. Frye, and K. J . Gildea,
“The communication software and parallel environ-
ment of the IBM SP2,” IBM Systems Journal, vol. 34,
no. 2, pp. 205-221, 1995.

[17] E. Horowitz and S. Sahni, Fundamentals of Computer
Algorithms. Maryland: Computer Science Press, 1989.

[18] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, In-
troduction to Algorithms. NY: The MIT Press, 1991.

puting, vol. 20, pp. 1627-1638, NOV. 1994.

267

