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Abstract

We propose a new adaptive space deformation method for interactive shape modeling. A novel energy formulation

based on elastically coupled volumetric cells yields intuitive detail preservation even under large deformations.

By enforcing rigidity of the cells, we obtain an extremely robust numerical solver for the resulting nonlinear

optimization problem. Scalability is achieved using an adaptive spatial discretization that is decoupled from the

resolution of the embedded object. Our approach is versatile and easy to implement, supports thin-shell and solid

deformations of 2D and 3D objects, and is applicable to arbitrary sample-based representations, such as meshes,

triangle soups, or point clouds.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

A central goal in geometric modeling is the design of tools
for intuitive shape deformations with a simple and easy-to-
use interaction metaphor. Click-and-drag interfaces are par-
ticularly popular, since they allow direct manipulation of
a geometric object by specifying a few constraints on the
surface of the model. The algorithm then computes a de-
formation function that warps the shape to satisfy the user
constraints as closely as possible. In addition, the computed
warp should meet the user’s expectation of an intuitive shape
deformation.

Recent methods have approached this goal using physi-
cally inspired shape deformations, which are modeled based
on simplified elastic energy formulations derived from con-
tinuum mechanics. This leads to an intuitive editing behav-
ior that is in agreement with our everyday experience on how
shapes deform in the physical world.

In principle, shape deformations for geometric modeling
can be implemented using existing techniques for physical
simulation such as finite element methods. However, practi-
cal solutions benefit from considering the inherently differ-
ent objectives of interactive editing as compared to physical
simulation. While physical accuracy and correctness is a pri-
mary goal in simulation, shape editing only requires physi-
cally plausible behavior that matches our intuition on natural
shape deformations.

Figure 1: The dragon is deformed by optimizing the posi-

tions of the set of cells shown on the left to meet the user’s

constraints indicated in yellow and gray.

On the other hand, typical user edits in shape modeling go
well beyond the small-scale displacements often sufficient
for physical simulations. Recent work has demonstrated that
large deformations are more appropriately handled with non-
linear deformation models. Linear approximations can lead
to unintuitive distortions that need to be controlled with ad-
ditional editing constraints, thus imposing a higher burden
on the user. However, nonlinear methods are prone to insta-
bilities, thus requiring highly robust computations that re-
main stable even for drastic shape deformations.
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Most recent deformation methods are surface-based, i.e.,
they emulate the physical behavior of thin shells. While this
avoids the computational overhead of simulating the inte-
rior of a shape, certain volumetric features, such as local
or global volume preservation, are difficult to achieve with
purely surface-based methods. We therefore propose a truly
volumetric approach that is inspired by elastic energies of
solid objects.

With increasing size of geometric models, scalability is
another key requirement, in particular for volumetric dis-
cretizations. Scalable algorithms can be implemented by ex-
ploiting the fact that the complexity of the deformation can
often be decoupled from the complexity of the shape dis-
cretization. Such reduced deformable models and sub-space
techniques have successfully been applied both for physical
simulation and geometric modeling applications.

In this paper we extend our robust, nonlinear surface de-

formation technique [BPGK06] to a volumetric space de-

formation method based on a simplified elastic energy for
solids. The shape to be deformed is embedded in a set of
volumetric cells that discretize the volume enclosed by the
object surface (cf. Figure 1). The deformation energy estab-
lishes a coupling between adjacent cells, which remain rigid
during the deformation (Section 3). This rigidity can be ex-
ploited to derive an efficient and robust numerical scheme to
minimize the deformation energy based on geometric local
and global shape matching (Section 4).

While our energy formulation allows arbitrarily shaped
convex elements, we found hexahedral cells to be a good
compromise between spatial adaptivity and ease of imple-
mentation (Section 5). The discretization can be adapted in
the fashion of an octree, leading to efficient updates of neigh-
borhood information and thus easy splitting of elements. The
adaptive discretization allows the computational effort to be
concentrated in regions of high deformation error and impor-
tant geometric detail. The deformation of the cell complex is
transferred to the embedded object using smooth radial basis
function interpolation (Section 6), which is well-suited for
the non-uniform node placements resulting from our adap-
tive space decomposition.

The decoupling of the deformation from the geometry of
the embedded shape enables interactive editing of complex
objects. In addition, since the deformation is defined as a
space warping function, arbitrary sample-based surface rep-
resentations, such as meshes, triangle soups, or point clouds,
can be edited with our approach. Disconnected components,
triangles with bad aspect ratio, or non-manifold configura-
tions are handled without difficulty, as shown in Section 7
for 2D and 3D deformations on a variety of different shape
representations.

2. Related Work

Interactive shape editing is a popular, well-studied research
field in geometric modeling, and a large variety of ap-
proaches has been proposed in recent years. In this paper
we focus on physically-plausible shape deformations, and do
not discuss more artistic shape design or from-scratch object
modeling.

One class of recent surface deformation methods is based
on the variational minimization of simplified thin shell en-
ergies [KCVS98, GSS99, BK04]. The employed lineariza-
tion, however, causes distortions of geometric details under
large deformations, which is addressed by multi-resolution
or multi-scale techniques. A second class of techniques is
based on differential coordinates and avoids the rather in-
volved explicit multi-scale decomposition. The surface is
deformed by first manipulating surface gradients [YZX∗04,
ZRKS05], Laplacians [LSCO∗04,SCOL∗04], or general lo-
cal frames [LSLCO05,SYBF06], and then reconstructing the
deformed surface by solving a linear system.

Due to the inherent nonlinearity of the underlying phys-
ical equations for surface deformation, the above linear ap-
proaches all have certain limitations, as analyzed in the sur-
vey article [BS07]. However, with the increasing process-
ing power of modern CPUs, nonlinear approaches have re-
cently become computationally tractable, allowing for inter-
active large scale deformations [SK04, SZGP05, BPGK06,
HSL∗06, ATLF06, vFTS06].

Often, the objects to be deformed are not surfaces or hol-
low objects, but solid models. In this case, shell models
are less appropriate, since they can lead to a loss of vol-
ume. To address this issue, Zhou et al. [ZHS∗05] propose
shape deformations based on a volumetric graph structure.
Other surface-based methods preserve volume by either us-
ing explicit constraints [HSL∗06] or employing divergence-
free vector fields [ACWK06, vFTS06]. The result, however,
might not be as natural as a full volumetric discretization
with physically plausible deformation energies.

Laplacian surface editing has also been applied to 2D im-
age editing, using both linear [IMH05] and nonlinear op-
timization [WXW∗06]. The image deformation method of
Schaefer et al. [SMW06] avoids the solution of global linear
or nonlinear systems, but instead uses local shape matching,
which bears some similarity to our approach.

Interactive shape editing faces increasing challenges due
to a steady growth in model complexity, mostly triggered
by high-resolution 3D acquisition devices. Surface-based

methods are typically strongly coupled to the underlying
model representation, which limits the scalability when deal-
ing with very large models. In addition, inconsistent or low-
quality meshes, or point-sampled representations, are diffi-
cult to handle with most surface-based techniques. In con-
trast, space deformation approaches decouple the complex-
ity of the deformation from the surface representation by
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warping the embedding space of the object. Space deforma-
tions based on radial basis functions [BK05] provide more
flexibility for constraint placement than traditional free-form
deformation [SP86]. Methods based on divergence free vec-
tor fields [ACWK06,vFTS06] additionally preserve the vol-
ume of the object.

In the context of physically-based animation, Müller et
al. [MTG04] and James et al. [JBT04] also embed the de-
formable object into a hexahedral grid. For dynamic simu-
lations, linearized elastic energies are robust and efficient,
but lead to artifacts for large rotations. This is addressed by
stiffness warping [MG04], which accounts for local element
rotations by estimating them from the previous time-step.
However, in interactive modeling applications the local ro-
tations between successive frames can be arbitrarily large,
thereby making stiffness warping more difficult to apply.
nonlinear strain measures obviously avoid linearization arti-
facts, and can be implemented efficiently using hierarchical
solvers [GW06]. However, nonlinear elasticity can get nu-
merically unstable for large deformations, requiring special
treatment [ITF04, TSIF05]. By keeping the cells rigid and
explicitly optimizing for local rotations instead of estimat-
ing them, our method both is numerically robust and handles
large deformations without linearization artifacts.

3. Deformation Energy

In this section we introduce our nonlinear elastic energy for
deformable solids. Our formulation is motivated by concepts
from continuum elasticity, although we focus on numerical
robustness rather than physical accuracy.

Elastic strain energies for deformable models are typi-
cally defined in terms of the gradient of the displacement
function [Bat95, NMK∗06]. The geometric intuition is that
the more the displacement function varies locally (i.e., the
higher its gradient), the more the object is stretched and
deformed. Consequently, constant or rigid motions do not
influence the elastic energy. The following derivations are
valid for arbitrary spatial decompositions of an object into
convex polyhedra C1, . . . ,Cn. In Section 5 we will show how
discretizations based on adaptive grids lead to a simple and
efficient implementation.

In contrast to finite element methods, where individual
cells Ci usually are deformed, we follow the motivation
of [BPGK06] and keep the cells rigid for the sake of numer-
ical robustness. Our deformation energy then corresponds to
an “elastic glue” that couples neighboring rigid cells. Similar
to a strain energy, we measure the local variation of transfor-
mations, i.e., differences of neighboring cells’ rigid motions.

This requires a suitable metric on the space of affine
or rigid motions. Although the Frobenius norm of the cor-
responding transformation matrices could be used [SP04,
SZGP05], a geometrically more intuitive norm was proposed
by Pottmann et al. [PHYH06]: They define the difference of
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Figure 2: The cells Ci and C j are displaced from their orig-

inal configuration (left) by their rigid motions Ti and T j

(right). The pairwise elastic energy (1) measures the devi-

ation of each cell under its own transformation (solid) and

its neighbor’s transformation (transparent).

two transformations Ti and T j by the squared distances of
a set of representative sample points x1, . . . ,xk mapped by
both transformations:
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To derive the elastic energy, we need to compute the dif-
ference between transformations Ti and T j of two neighbor-
ing cells Ci and C j. In order to be independent of a particular
sampling strategy, we replace the above sum by an integral
over all points in the cells’ interiors. As illustrated in Fig-
ure 2, this yields the pairwise energy between Ci and C j

Ei j

(

Ti,T j

)

=
1

Vi +V j

Z

Ci∪C j

∥

∥Ti(x)−T j(x)
∥

∥

2
dx , (1)

where Vi and V j denote the volumes of the cells Ci and C j ,
respectively. Note that for simple cell shapes, such as tetra-
hedra or hexahedra, the above integral can be evaluated ana-
lytically.

Although coming from a different physical motivation,
the volumetric elastic energy (1) is very similar to the prism-
based shell energy proposed in PriMo [BPGK06]. The sub-
tle, but important difference is that PriMo integrates only
over the shared face Ci ∩C j, whereas the new formulation
integrates over the volume Ci ∪C j. Geometrically this corre-
sponds to a shape matching of corresponding faces or cells,
respectively. While for surfaces (one layer of cells) the two
energies show similar behavior, in the volumetric setting the
face-coupling of PriMo is not strong enough to prevent fold-
ing and self-intersections under bending transformations.

The global energy of the cell complex is finally defined
as a weighted sum of the pairwise energies (1) for all pairs
{i, j} of neighboring cells Ci and C j:

E(T1, . . . ,Tn) = ∑
{i, j}

wi j ·Ei j

(

Ti,T j

)

. (2)

The symmetric weights wi j take into account varying sam-
pling densities and cell sizes and can be derived as a straight-
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Figure 3: The weighting of the pairwise energy (1) depends

on the area Ai j of the (partial) face shared by Ci and C j , and

on the perpendicular distances hi and h j of their barycenters

ci and c j, respectively.

forward generalization to volumetric meshes of the weights
used in [GHDS03, BPGK06]:

wi j = w ji =
Ai j

hi +h j
,

where Ai j measures the (possibly partial) face area shared
by Ci and C j, and hi,h j denote the perpendicular distances
of their centers to the shared face (cf. Figure 3, left).

In the case of an adaptive hexahedral mesh, as will be dis-
cussed in Section 5, hi is simply half of the voxel size and the

shared partial face area reduces to Ai j = min
(

2hi,2h j

)2
(cf.

Figure 3, right). This simple handling of adaptive meshes is
one of the main advantages of our energy formulation, since
it does not require a consistent spatial decomposition with-
out T-junctions. Also note that while the above derivation is
based on 3D cells, the energy can be defined for arbitrary
dimensions.

4. Nonlinear Optimization

Given the elastic energy (2) defined on a convex cell dis-
cretization, we now discuss the optimization method that
minimizes the energy subject to the user’s editing con-
straints. The user interacts with the model by selecting a de-

formable region, a fixed region, and one or several handle

parts (blue, gray, and yellow in Figure 1). The handles can
then be transformed by prescribing an affine motion using
any existing modeling interface. The resulting surface con-
straints are automatically mapped to constraints for the cells
that intersect the corresponding surface regions.

Each cell Ci stores a rigid motion Ti(x) = Ri(x)+ti, com-
posed of a rotation Ri and a translation ti, yielding 6 degrees
of freedom per cell. Each cell can be constrained by either
prescribing both rotation and translation, or by fixing the po-
sition of one point pi ∈Ci, but still allowing the cell to rotate.
In the latter case, the rotation is formulated with the fixed
point pi as the rotation center, i.e., Ti(x) = Ri(x−pi)+pi.

The elastic energy (2) can be minimized subject to these
constraints by finding optimal rigid motions for the remain-
ing unconstrained cells. For the similar surface-based energy
of [BPGK06], the energy minimization was shown to be

equivalent to a geometric shape matching problem, which
can efficiently be solved using a Newton-type solver. Al-
though our volumetric energy differs from [BPGK06] as dis-
cussed in the last section, the nonlinear minimization is es-
sentially the same. We therefore outline the main steps below
and refer the reader to [BPGK06] for more details.

In each iteration of the Newton solver, we linearize the
rigid motions Ti(x) = Ri(x) + ti by linear and angular ve-
locities vi,ωi ∈ IR3, which yield affine approximations

Ti(x) ≈ Ai(x) := x+(ωi ×x)+vi .

Replacing the rigid motions Ti by their affine approxima-
tions Ai in (2) leads to an energy quadratic in the linear
and angular velocities. Minimizing this energy by solving a
sparse linear system yields optimal affine motions Ai. These
correspond to tangent vectors on the manifold of rigid mo-
tions and yield a descent direction for the Newton solver.
After each update step, the resulting affine motions Ai must
be projected to their closest rigid motions Ti. This amounts
to a simple local shape matching of Ai(Ci) and Ti(Ci) by
eigenanalysis of a 4× 4 covariance matrix [Hor87]. The re-
sulting rigid motions Ti are then used to update the cells’
positions and orientations.

Approximating the solid by elastically coupled rigid cells
and solving the resulting nonlinear energy minimization
problem by a purely geometric shape matching technique
results in an extremely robust optimization method, as illus-
trated in Figure 4. The cells of the octopus model are col-
lapsed into a single point and rotated randomly. Even from
this highly degenerate starting configuration our nonlinear
optimization recovers the original state without any numeri-
cal problems.

The optimization easily carries over to the 2D setting,
where rigid motions are linearized using linear velocities
vi ∈ IR2 and angular velocities ωi ∈ IR, leading to

Ai(x) =

[

1 −ωi

ωi 1

]

x+vi .

Since in 2D each cell has 3 degrees of freedom only, the
required linear systems have half the size compared to 3D.
Similarly, the local shape matching for projecting onto the
rigid motion manifold requires solving 2× 2 eigensystems
instead of 4×4 ones.

5. Adaptive Space Discretization

In this section we discuss how to discretize the space oc-
cupied by the shape to be deformed. Regular grids are an
obvious choice. The fixed regular neighborhood structure
leads to a simple and efficient implementation well suited
for smooth, large-scale deformations. However, regular grids
scale poorly (quadratic complexity in 2D, cubic in 3D)
and thus fine-scale edits quickly become prohibitive. While
smooth deformations often affect the global shape, detailed
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Figure 4: Rigidity of cells and optimization based on shape matching lead to extremely robust computations. In this example,

all cells have been contracted and rotated randomly. The images show the evolving optimization after 1, 4, 7, and 25 iterations.

edits are typically confined to more localized regions of the
model. This coupling between the scale of deformation and
the locality of the affected region can be exploited using spa-
tially adaptive discretizations. More and smaller cells can
be concentrated in regions of strongly varying deformation,
while fewer and larger cells are sufficient where the defor-
mation is smooth.

As described above, our deformation energy is defined for
arbitrary convex cell shapes and arrangements in space, and
is thus ideally suited for adaptive discretizations. Adjacent
faces can be partially overlapping, i.e., T-junctions are im-
plicitly handled and require no special treatment (cf. Fig-
ure 3). This is one of the main benefits of our method, since
it supports a variety of possible adaptive schemes. We opted
for an octree-like refinement based on hexahedral cells. An
initial coarse regular grid is refined by splitting cubical cells
into eight congruent sub-cells (four in 2D). We build the ini-
tial collection of cells by rasterizing the embedded shape,
similar to [MTG04]. Cells that intersect the boundary sur-
face of the model are recursively refined up to some fixed
level. This geometry-aware space decomposition concen-
trates cells in the region of interest, i.e., at the boundary
of the model, as shown in Figure 5. It also avoids possibly
unwanted connections between semantically disjoint parts,
e.g., the connection between the legs in Figure 7b, up to the
resolution of the highest level.

In addition to this static adaptive discretization, we also
apply a dynamic refinement scheme based on geometric
error. The elastic energy provides us with a local strain
measure that quantifies how strongly the transformations of
neighboring cells differ. Whenever this error measure ex-
ceeds a certain threshold, the cell is subdivided to introduce
more degrees of freedom for the optimization (Figure 5).
This error-driven refinement achieves a high accuracy of the
resulting deformation function, comparable to a dense reg-
ular grid (see Figure 7). As this example demonstrates, the
octree-style decomposition yields a sufficiently adaptive dis-
cretization that avoids the computational and memory over-
head of a high-resolution regular grid. At the same time, the
semi-regular structure allows simple bookkeeping of adja-

cency information and thus efficient updates to the cell ar-
rangement during deformation.

6. Space Deformation

Every cell C1, . . . ,Cn of the space decomposition defines a
local transformation that maps the cell center from its origi-
nal position ci to the deformed position Ti(ci). We construct
a continuous space deformation d : IR3 → IR3, which can
be evaluated at arbitrary sample locations of the embedded
shape, by interpolating the point transformations

d(ci) = (Ti(ci)− ci) , i = 1, . . . ,n.

We chose an interpolation scheme based on tri-harmonic ra-
dial basis functions (RBFs), since they provides high-quality
C2-continuous deformation fields that minimize global fair-
ness energies [BK05], and hence are well-suited for the non-
uniform node placement resulting from our adaptive space
discretization. However, the high quality of the interpolation
function comes at the cost of having to solve a dense n× n

linear system. In addition, the evaluation of the interpola-
tion function for all m vertices of the model has complexity
O(m ·n) and thus quickly degrades the performance for more

Figure 5: The cut-away views show how the initial adap-

tive discretization is dynamically refined in regions of high

deformation error.
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Figure 6: Local blending of transformations (left) vs. RBF

interpolation (right) for 480k mesh vertices and 1176 cells.

complex shapes. We therefore tried compactly supported ba-
sis functions, which only require to solve sparse linear sys-
tems, but experienced smoothness degradation in areas of
adaptive refinement, i.e., for irregular sampling.

To maintain interactive response during editing, we there-
fore apply a simple local blending of transformations to pro-
vide a preview impression of the deformation. Each sam-
ple is displaced by averaging the transformations of the four
closest cells, weighted by the inverse distance to the cell cen-
ter. When the user releases the mouse, or at the end of the
modeling session, we apply the high quality RBF interpo-
lation to obtain the final deformed shape. Figure 6 shows a
comparison of the fast preview deformation and the high-
quality RBF interpolation for a coarse cell discretization.

7. Results

In this section we show deformations of a variety of geo-
metric models and representations to illustrate the specific
features of our approach.

Interactive 2D image editing is illustrated in Figure 7. Our
nonlinear energy yields natural deformations with very few
constraints, thus providing a simple and easy-to-use inter-
face suitable for non-expert users.

Figure 8 shows complex deformations on a large 3D
model. During editing, the user interacts with a simplified
model consisting of 50k vertices to enable responsive feed-
back. Once she is satisfied with her editing result, the space
deformation induced by the deformed cells can be applied to
the high-resolution version of 3.6M vertices in a streaming
fashion. In this way, even extremely large models that cannot
be kept in main memory can be edited and deformed.

Shape editing on a non-manifold, triangle soup model
is shown in Figure 9. Our shape-aware space deforma-
tion approach is well suited for such models, since it de-
couples the deformation from the geometric representation
of the deformed object. Disconnected components, non-
manifold configurations, and self-intersections are handled
easily. This example also illustrates how the user can control
the deformation by scaling the weights in (2) to locally adapt
the stiffness of the elastic energy.

Model #Vert. #Cells Voxel. Solve Blend RBF

Dragon 5k 1,176 0.57 0.26 0.005 0.09

5k 5,518 0.58 1.66 0.005 0.49

50k 1,175 0.72 0.26 0.072 0.84

50k 5,519 0.73 1.66 0.072 3.58

480k 1,176 1.62 0.28 0.981 8.18

480k 5,535 1.63 1.74 0.981 34.10

Tree 80k 4,724 0.79 1.74 0.053 5.97

Warrior 50k 1,130 0.68 0.33 0.065 0.70

50k 5,197 0.69 1.91 0.065 2.95

Block 3k 688 0.46 0.18 0.003 0.03

Table 1: Performance data measured in seconds on a Mac

Pro 2.66GHz with 2 GBytes RAM. From left to right: Num-

ber of vertices, avg. number of cells, time for initial vox-

elization, nonlinear Newton iteration, per-frame preview de-

formation using local blending, and final, high-quality de-

formation using RBF interpolation.

Figure 10 shows a comparison of our volumetric approach
with the surface-based PriMo [BPGK06] and a deformation
based on the nonlinear discrete shell energy of [GHDS03].
The latter method has also been augmented with a global
volume constraint. This example demonstrates that our vol-
umetric approach yields more natural deformations than
surface-based techniques with explicit global volume con-
trol, but at the cost of requiring additional cells in the inte-
rior of the model. Of course, if shell-like behavior is desired,
we can simply remove the interior cells to obtain the result
shown on the right.

A limitation of our octree-style space discretization is
aliasing. Figure 11 illustrates this effect on a worst-case ex-
ample. Shapes with a regular, directional discretization can
exhibit high-frequency distortions when deformed with a
coarse grid that is not appropriately aligned. These aliasing
artifacts are particularly noticeable if the deformation also
has a dominant direction. Due to the smooth RBF interpo-
lation, the distortions mostly disappears when the deforma-
tion is more complex, as shown in the twisting example of
Figure 11. However, deformations that are completely inde-
pendent of the relative orientation of the model can only be
achieved with conforming cell arrangements. While our en-
ergy formulation and optimization method support such dis-
cretizations, adaptive, and specifically dynamic refinement
require substantially more complex data structures.

Currently, our approach can only handle a modest number
of cells at interactive rates (see Table 1). Compared to linear
approaches, our nonlinear volumetric energy inherently re-
quires a more costly optimization, and hence cannot compete
with linear methods in terms of computational efficiency.
However, a number of performance improvements are pos-
sible. For example, the octree decomposition directly sup-
ports adaptive hierarchical solvers, by combining the adap-
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(a) (b) (c) (d) (e)

109 503 759 5,408

Figure 7: 2D deformations illustrate the benefits of adaptive refinement. (a) original shape, (b) coarse regular grid, (c) bound-

ary refinement, (d) boundary and error-driven refinement, (e) fine regular grid. The color coding in (c) and (d) shows the local

error, where red color denotes high error and blue low error. The number of cells is shown below the model and user constraints

are indicated by red dots.

Figure 8: Deformations on a very large model. The user deforms the shape using a reduced model during interaction shown

on the left. When satisfied with her results, the final space deformation is applied offline to the high-resolution model on the

right consisting of more than seven million triangles.

constant stiffness variable stiffnessoriginal

Figure 9: Deformation of a triangle soup consisting of 14k connected components. The leaves of the tree are modeled as

alpha-textured triangles. On the right the stiffness was decreased toward the top of the trunk and for the leaves.
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PriMo

[BPGK06]

discrete shells 

[GHDS03]

discrete shells 

with volume constraint

our approach

with interior cells

83% 79% 95%100%

our approach 

w/o interior cells

72%

Figure 10: Comparison of our approach with different surface-based methods. The numbers show the relative volume.

Figure 11: Aliasing artifacts can occur when the grid is not aligned with the dominant direction of the shape discretization.

These effects are less noticeable for more complex deformations such as the twist shown on the right.

tive discretization with the multigrid shape matching pro-
posed in [BPGK06]. Additionally, a GPU implementation of
the evaluation of the RBFs should be straightforward, lead-
ing to additional performance gains.

8. Conclusions

We have introduced a novel space deformation framework
for interactive shape editing that is conceptually simple and
geometrically intuitive. The main features of our approach
are

• a nonlinear elastic energy model that enables physically
plausible large-scale shape deformations,

• an extremely robust nonlinear optimization based on local
and global shape matching,

• an adaptive discretization that can be dynamically refined
according to deformation error, and

• a space deformation method that supports arbitrary
sample-based shape representations.

A main benefit of our nonlinear elastic energy is that it
allows one to control large-scale deformations with a small

number of user constraints. From the user’s input, the opti-
mization derives additional point constraints at the cell cen-
ters that are then interpolated to yield a continuous space
deformation field. Similar end results can certainly be ob-
tained with linear deformation methods, but typically at the
cost of increased manual effort for specifying additional con-
straints. In this sense, our approach lessens the burden of the
user using a more powerful, but also computationally more
involved optimization.

Future work will address performance improvements us-
ing hierarchical solvers and by mapping computations to the
GPU, as discussed above. In addition, we plan to investi-
gate applications of our approach in dynamic simulations,
exploiting the robustness of our optimization to improve sta-
bility.
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