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Abstract

This paper reviews the adaptive sparse grid discontinuous Galerkin (aSG-DG) method for
computing high dimensional partial differential equations (PDEs) and its software implemen-
tation. The C++ software package called AdaM-DG, implementing the aSG-DG method, is
available on Github at https://github.com/JuntaoHuang/adaptive-multiresolution-DG.
The package is capable of treating a large class of high dimensional linear and nonlinear PDEs.
We review the essential components of the algorithm and the functionality of the software, in-
cluding the multiwavelets used, assembling of bilinear operators, fast matrix-vector product for
data with hierarchical structures. We further demonstrate the performance of the package by
reporting numerical error and CPU cost for several benchmark test, including linear transport
equations, wave equations and Hamilton-Jacobi equations.
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1 Introduction

In recent years, we initiated a line of research to develop adaptive sparse grid discontinuous Galerkin

(aSG-DG) method for computing high dimensional partial differential equations (PDEs). This

paper serves as a review of the fundamental philosophy behind the algorithm, and more importantly

its numerical implementation.

It is well known that any grid based solver for high dimensional PDEs suffers from the curse of

dimensionality [6]. This term refers to the fact that the computational degree of freedom (DOF)

scale as O(h−d) for a d-dimensional problem, where h denotes the mesh size in one coordinate

direction, and for a grid based method (e.g. finite difference or finite element method) with a

fixed order of accuracy k, this means the dependence of error on the DOF scales as O(DOF−k/d).

As such, when d → ∞, the exponent goes to zero regardless of k, and this means the numerical

solution will be inaccurate due to the limited computational resources. To break the curse of

dimensionality, there are several possible approaches. One is to use a probabilisitic type method,

such as the Monte Carlo algorithms. The drawback of this approach is the loss of accuracy due

to the inherent statistical noise. Another approach, which is the one we are taking, is the sparse

grid method [8, 14], introduced by Zenger [36]. The idea relies on a tensor product hierarchical

basis representation, which can reduce the degrees of freedom from O(h−d) to O(h−1| log2 h|d−1)

for d-dimensional problems without compromising much accuracy. This method is very suitable

for moderately high dimensional problems, offering a balance between accuracy and computational

cost, see [16] for a review.

Our work is focused on using sparse grid techniques to solve high dimensional PDEs. Sparse grid

finite element methods [36, 8, 27] and spectral methods [17, 15, 28, 29] are the most well-developed

sparse grid PDE solvers. Our research, on the other hand, is inspired by the distinctive advantages

of DG method for transport dominated problems, and with the sparse grid technique, our ultimate

goal is the efficient computations of high-dimensional transport dominated problems such as kinetic

equations and Hamilton-Jacobi equations. We start by developing sparse grid DG method for

elliptic, linear transport and kinetic problems in [33, 19]. We then developed the adaptive version:

the aSG-DG method in [20]. In [32], we developed new interpolatory multiwavelets for piecewise

polynomial spaces, and used those multiwavelets to compute hyperbolic conservation laws [22], wave

equations [23], and nonlinear dispersive equations [31, 24]. Since the underlying mechanism of the

aSG method is multiresolution analysis, we also call aSG-DG method the adaptive multiresolution

DG method, hence the name AdaM-DG (Adaptive Multiresolution DG) as the name of our package.

While developing and analyzing algorithms are important, we feel that software implementation
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is also crucial in this project. Reducing the DOF is one thing, the success of the reduction in CPU

cost and memory is another. Here, we outline several challenges facing the efficient implementation

of the method. First, the aSG-DG schemes rely on computations using non-local basis functions

(the multiwavelets), this means the standard element-wise DG implementation is no longer feasible.

One has to formulate and compute the scheme in the global sense. Second, the multiwavelets are

hierarchical. This hierarchical structure induces “orthogonality” in some sense, and it has to be

exploited for a fast computation. A prominent example is the fast wavelet transform, which incurs

linear cost with respect to the DOF. Third, the implementation has to be adaptive. It is well

known that the smoothness requirement of the sparse grid is stringent. This means that the

software implementation should be designed with adaptivity in mind.

To address the aforementioned challenges, we developed the numerical methods and the software

AdaM-DG (available at https://github.com/JuntaoHuang/adaptive-multiresolution-DG) with

several key features. Our method uses two sets of multiwavelets: Alpert’s multiwavelets [2], which

are L2 orthonormal and a class of interpolatory wavelets [32] for variable coefficients and general

nonlinear problems. Many key algorithms rely on fast matrix-vector product exploring the mesh

level hierarchy. The Hash table is the underlying fundamental data structures serving the purpose

of adaptivity. The code is written with a high level abstraction under a uniform treatment for

different dimension numbers and encompasses a universal framework for various equations with

different weak formulations. The current package has been used to compute nonlinear hyperbolic

conservation laws [22], wave equations [23], nonlinear Schrödinger equations [31], Hamilton-Jacobi

equations [21] and nonlinear dispersive equations [24], although generalizing this computational

module to other applications is achievable with a reasonable modification of the code on the high

level.

There are several other sparse grid packages available on the market, mostly for high dimensional

function interpolation and integration. For computing high dimensional PDEs, there are two other

main packages. SG++ [26] is a universal toolbox for spatially adaptive sparse grid methods and

the sparse grid combination technique. It provides various low-level and high-level sparse grid

functionality allowing one to start using sparse grids with minimal initial implementation effort. The

functionality include function interpolation, quadrature, numerical solver for PDEs, data mining

and machine learning, and uncertainty quantification. In terms of PDE solvers, it supports the

elliptic and parabolic equations using a finite element approach. ASGarD (Adaptive Sparse Grid

Discretization) [1] is a package implementing the adaptive sparse grid DG method with efficient

parallel implementations for both CPU (using OpenMP) and GPU (using CUDA). It was applied

to Maxwell equation [13], linear advection equation, diffusion equation and advection-diffusion
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equations, e.g. Fokker-Planck equations. This package only considers linear equations and does

not support the interpolatory multiwavelets and the associated fast algorithms. We also mention

[4], where an open source Julia library implementing the sparse grid DG method was developed

and applied to scalar linear wave equations in high dimensions.

The goal of this paper is to illustrate the main components of the algorithm and the software

using concrete examples. Throughout the paper, we will introduce and review the concepts used in

the method first, then provide short descriptions of the associated implementations in the AdaM-

DG package. With this in mind, the rest of the paper is organized as follows. In Section 2, we

review the fundamentals of Alpert’s and interpolatory multiwavelets, their implementation and the

adaptive procedure. In Section 3, we discuss the operators used to assemble a PDE solver, paying

particular attention to the fast algorithm. Section 4, we provide details of how to solve three types

of PDEs using the package, and provide benchmark results with CPU time. Section 5 concludes

the paper by discussing the current status of the software with future improvment.

2 Multiwavelets and adaptivity

The building blocks of the aSG-DG method are the multiwavelet basis functions and the associated

adaptive procedures. In this section, we will review the two types of multiwavelet basis functions

used and their implementations with data structure. We will also go over the details of the adaptive

refining and coarsening procedures illustrated by code blocks.

2.1 Multiwavelets in 1D

We use two types of multiwavelet bases. We will start by reviewing the construction of Alpert’s

multiwavelet basis functions [2] on the unit interval I = [0, 1]. We define a set of nested grids,

where the n-th level grid Ωn consists of 2n uniform cells

Ijn = (2−nj, 2−n(j + 1)], j = 0, . . . , 2n − 1

for n ≥ 0. The usual piecewise polynomial space of degree at most k ≥ 1 on the n-th level grid Ωn

for n ≥ 0 is denoted by

V k
n := {v : v ∈ P k(Ijn), ∀ j = 0, . . . , 2n − 1}. (2.1)

Then, we have the nested structure

V k
0 ⊂ V k

1 ⊂ V k
2 ⊂ V k

3 ⊂ · · ·
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We can now define the multiwavelet subspace W k
n , n = 1, 2, . . . as the orthogonal complement of

V k
n−1 in V k

n with respect to the L2 inner product on [0, 1], i.e.,

V k
n−1 ⊕W k

n = V k
n , W k

n ⊥ V k
n−1.

For notational convenience, we let W k
0 := V k

0 , which is the standard polynomial space of degree up

to k on [0, 1]. Therefore, we have V k
n =

⊕

0≤l≤nW
k
l .

Now we define a set of orthonormal basis associated with the space W k
l . The case of mesh level

l = 0 is trivial: we use the normalized shifted Legendre polynomials in [0, 1] and denote the basis

by v0i,0(x) for i = 0, . . . , k. When l > 0, the orthonormal bases in W k
l are presented in [2] and

denoted by

v
j
i,l(x), i = 0, . . . , k, j = 0, . . . , 2l−1 − 1,

where the index l denotes the mesh level, j denotes the location of the element, and i is the index for

polynomial degrees. Note that Alpert’s multiwavelets are orthonomal, i.e.,
∫ 1
0 v

j
i,l(x)v

j′

i′,l′(x) dx =

δii′δii′δjj′ .

The second class of basis functions are the interpolatory multiwavlets introduced in [32]. Denote

the set of interpolation points in the interval I = [0, 1] at mesh level 0 by X0 = {xi}Pi=0 ⊂ I. Here,

we assume the number of points in X0 is (P + 1). Then the interpolation points at mesh level

n ≥ 1, Xn can be obtained correspondingly as

Xn = {xji,n := 2−n(xi + j), i = 0, . . . , P, j = 0, . . . , 2n − 1}.

We require the points to be nested, i.e.

X0 ⊂ X1 ⊂ X2 ⊂ X3 ⊂ · · · . (2.2)

Given the interpolation points, we define the basis functions on the 0-th level grid as Lagrange

(K = 0) or Hermite (K ≥ 1) interpolation polynomials of degree ≤M := (P +1)(K+1)− 1 which

satisfy the property:

φ
(l′)
i,l (xi′) = δii′δll′ ,

for i, i′ = 0, . . . , P and l, l′ = 0, . . . ,K. Here and afterwards, the superscript (l′) denotes the l′-th

order derivative. It is easy to see that span{φi,l, i = 0, . . . , P, l = 0, . . . ,K} = V M
0 . With the

basis function at mesh level 0, we can define basis function at mesh level n ≥ 1:

φ
j
i,l,n(x) := 2−nlφi,l(2

nx− j), i = 0, . . . , P, l = 0, . . . ,K, j = 0, . . . , 2n − 1

which is a complete basis set for V M
n .
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Next, we introduce the hierarchical representations. Define X̃0 := X0 and X̃n := Xn\Xn−1 for

n ≥ 1, then we have the decomposition

Xn = X̃0 ∪ X̃1 ∪ · · · ∪ X̃n.

Denote the points in X̃1 by X̃1 = {x̃i}Pi=0. Then the points in X̃n for n ≥ 1 can be represented by

X̃n = {x̃ji,n := 2−(n−1)(x̃i + j), i = 0, . . . , P, j = 0, . . . , 2n−1 − 1}.

For notational convenience, we let W̃M
0 := VM

0 . The increment function space W̃M
n for n ≥ 1 is

introduced as a function space that satisfies

V M
n = VM

n−1 ⊕ W̃M
n , (2.3)

and is defined through the multiwavelets ψi,l ∈ VM
1 that satisfies

ψ
(l′)
i,l (xi′) = 0, ψ

(l′)
i,l (x̃i′) = δi,i′δl,l′ ,

for i, i′ = 0, . . . , P and l, l′ = 0, . . . ,K. Then W̃M
n is given by

W̃M
n = span{ψj

i,l,n := 2−(n−1)lψi,l(2
n−1x− j), i = 0, . . . , P, l = 0, . . . ,K, j = 0, . . . , 2n−1 − 1}

The explicit expression of the interpolatory multiwavelets basis functions can be found in [32, 23].

The algorithm converting between the point values and the derivatives at the interpolation points

to hierarchical coefficients is given in [32], and by a standard argument in fast wavelet transform,

can be performed with linear complexity.

In the software implementation, we have a base class Basis which is determined by three indices

level n, suppt j and dgree p. This is the base class denoting the basis functions in 1D. The three

classes AlptBasis, LagrBasis and HermBasis are inherited from Basis, which denote the Alpert’s,

Lagrange interpolotary and Hermite interpolotary multiwavelets, respectively. The values and the

derivatives of the basis functions can be computed through the member functions in the class.

All the basis functions in 1D are collected in the template class template <class T> AllBasis

in a given order. The key member variable in this class is std::vector<T> allbasis, which is

composed of all the basis functions, with T being AlptBasis, LagrBasis or HermBasis. The total

number of basis functions (i.e. the size of allbasis) is (k + 1)2n with k being the maximum

polynomial degree and n being the maximum mesh level in the computation.

2.2 Multiwavelets in multidimensions

Multidimensional case when d > 1 follows from a tensor-product approach. First we recall some ba-

sic notations to facilitate the discussion. For a multi-index α = (α1, · · · , αd) ∈ N
d
0, where N0 denotes
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the set of nonnegative integers, the l1 and l∞ norms are defined as |α|1 :=
∑d

m=1 αm, |α|∞ :=

max1≤m≤d αm. The component-wise arithmetic operations and relational operations are defined as

α · β := (α1β1, . . . , αdβd), c · α := (cα1, . . . , cαd), 2α := (2α1 , . . . , 2αd),

α ≤ β ⇔ αm ≤ βm, ∀m, α < β ⇔ α ≤ β and α 6= β.

By making use of the multi-index notation, we denote by l = (l1, · · · , ld) ∈ N
d
0 the mesh level

in a multivariate sense. We define the tensor-product mesh grid Ωl = Ωl1 ⊗ · · · ⊗ Ωld and the

corresponding mesh size hl = (hl1 , · · · , hld). Based on the grid Ωl, we denote Ijl = {x : xm ∈
(hmjm, hm(jm + 1)),m = 1, · · · , d} as an elementary cell, and

Vk
l := {v ∈ Qk(Ijl ), 0 ≤ j ≤ 2l − 1} = V k

l1,x1
× · · · × V k

ld,xd

as the tensor-product piecewise polynomial space, where Qk(Ijl ) represents the collection of poly-

nomials of degree up to k in each dimension on cell Ijl . If we use equal mesh refinement of size

hN = 2−N in each coordinate direction, the grid and space will be denoted by ΩN and Vk
N , respec-

tively.

For both the Alpert’s and the interpolatory multiwavelets, we can define their multidimensional

version. For example, the space corresponding to Alpert’s bases is

W k
l =W k

l1,x1
× · · · ×W k

ld,xd
.

We can see that Vk
N =

⊕

|l|∞≤N
l∈Nd

0

W k
l , while the standard sparse grid approximation space is

V̂k
N :=

⊕

|l|1≤N

l∈Nd
0

W k
l ⊂ Vk

N . (2.4)

The dimension of V̂k
N scales as O((k+1)d2NNd−1) [33], which is significantly less than that of Vk

N

with exponential dependence on Nd, hence the name “sparse grid”. For the more general case,

when we use adaptivity, the index choice for active elements is denoted by (l, j) ∈ H, where the

set H will be determined adaptively according to some specified criteria.

Basis functions in multidimensions are also defined by tensor products. For example, for Alpert’s

multiwavelets,

v
j
i,l(x) :=

d
∏

m=1

v
jm
im,lm

(xm), (2.5)

for l ∈ N
d
0, j ∈ Bl := {j ∈ N

d
0 : 0 ≤ j ≤ max(2l−1 − 1,0)} and 1 ≤ i ≤ k + 1. In our software, a

general expression of the numerical solution uh is represented as

uh(, t) =
∑

(l,j)∈H,
1≤i≤k+1

c
j
i,l(t)v

j
i,l(x). (2.6)
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uh is stored via a class hierarchy. First, at the lowest level, template <class T> VecMultiD

is constructed to store data, which can deal with tensors in any dimensions under a unified

framework. The class Element stores data related to each element (l, j) including the coeffi-

cients of Alpert’s basis functions and interpolation basis functions. For example, the data member

std::vector<VecMultiD<double>> Element::ucoe_alpt stores the coefficients cji,l of Alpert’s

basis with VecMultiD<double>, and the index of this std::vector is to denote the unknown vari-

ables: for a scalar equation, the size of this vector is 1; for a system of equations, the size of

this vector is the number of unknown variables. ucoe_alpt[s] is a VecMultiD of dimension d

and has the total number of DoF (k + 1)d, which corresponds to the s-th unknown variable in

the system. Last, we have class DGSolution at the top level to organize the entire DG solution.

The most important data member in this class is std::unordered_map<int, Element> dg, which

stores all the active elements H and the associated Hash keys. Here, we use the C++ container

std::unordered_map that store elements formed by combing a key value (the hash key is an int

determined by the mesh level and the support index of the element) and a content value (Element),

allowing for fast retrieval of individual elements based on their keys.

2.3 Adaptivity

To realize the adaptivity of the scheme, we implement class DGAdapt, which is derived from

DGSolution. There are two constants prescribed by the user for fine tuning adaptivity, namely

the refinement threshold ε (DGAdapt::eps) and the coarsen threshold η (DGAdapt::eta). In

the computation, we usually take η = 0.1ε. The adaptive procedure relies on two key member

functions DGAdapt::refine() and DGAdapt::coarsen(). Here, we provide the source code of

DGAdapt::refine() to illustrate the algorithm.

void DGAdapt::refine()

{

// before refine, set new_add variable to be false in all elements

set_all_new_add_false();

for (auto & iter : leaf)

{

if (indicator_norm(*(iter.second)) > eps) // l2 norm

{

// loop over all its children

const std::set<std::array<std::vector<int>,2>> index_chd_elem =

index_all_chd(iter.second->level, iter.second->suppt);

for (auto const & index : index_chd_elem)

{

int hash_key = hash.hash_key(index);

// if index is not in current child index set, then add it to dg solution

if ( iter.second->hash_ptr_chd.find(hash_key) == iter.second->hash_ptr_chd.end())

{
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Element elem(index[0], index[1], all_bas, hash);

add_elem(elem);

}

}

}

}

check_hole();

update_leaf();

update_leaf_zero_child();

update_order_all_basis_in_dgmap();

}

The concept of child and parent elements based on the hierarchical structure is defined as

follows. If an element (l′, j ′) satisfies the conditions that: (1) there exists an integer m such

that 1 ≤ m ≤ d and l′ = l + em, where em denotes the unit vector in the m-direction, and

the support of (l′, j ′) is within the support of (l, j); (2) ‖l′‖∞ ≤ N , then it is called a child

element of (l, j). Accordingly, element (l, j) is called a parent element of (l′, j ′). In DGAdapt,

member function index_all_chd(level,suppts) returns a set of indices (l′, j ′) of all the child

elements of the input element with index (level,suppts), i.e., (l, j). An element is called a leaf

element if the number of its child elements in dg is less the maximum number of child elements

it can have, i.e., at least one of its child elements are not included in dg. DGAdapt has data

member std::unordered_map<int, Element*> leaf that organizes the leaf elements of dg. In

DGAdapt::refine(), we set variable new_add to be false for all elements. Then we traverse the

unordered map leaf and compute the ℓ2 norm of Alpert wavelet coefficients

(

∑

1≤i≤k+1

∣

∣

∣
c
j
i,l

∣

∣

∣

2
)

1

2

for each element as the error indicator. If it is larger than eps, then we refine the element by adding

all its child elements to dg. The coefficients of the newly added elements are set to zero. Then

check_hole() is called to ensure that all the parent elements of the newly added elements are in

dg (i.e., no “hole” is allowed). update_leaf() will update map leaf. Furthermore, DGAdapt has

another data member std::unordered_map<int, Element*> leaf_zero_child, which is a subset

of leaf and organizes the leaf elements with zero child elements. It plays a critical role in function

DGAdapt::coarsen(). update_leaf_zero_child() is called to update map leaf_zero_child.

Last, function update_order_all_basis_in_dgmap() will update the ordering of all the basis in

dg, which will be used when assembling the operators.

We also provide the source code of DGAdapt::coarsen() to illustrate the coarsening algorithm.

void DGAdapt::coarsen()

{

leaf.clear();

update_leaf_zero_child();

coarsen_no_leaf();

9



update_leaf();

update_order_all_basis_in_dgmap();

}

In this routine, first we clear the map leaf and update leaf_zero_child. Then, we coarsen dg

based on map leaf_zero_child by recursively calling member function coarsen_no_leaf(). In

particular, similar to the refining procedure, we traverse the map leaf_zero_child and compute

the ℓ2 norm of Alpert wavelet coefficients for each element. If it is less than eta, then the element

is removed from dg. The coarsening procedure is repeatedly performed until no element can be

removed. Lastly, we call update_leaf() and update_order_all_basis_in_dgmap() to update

map leaf and ordering of basis in the coarsened dg.

Now we have defined the basis class and the fundamental function approximation module.

We can use it in any place when function approximations are needed, for example, to initial-

ize the PDE solution. In the simple case when the initial condition u0 = u0(x1, · · · , xd) is

separable, i.e. u0(x1, · · · , xd) =
∏d

i=1 gi(xi) or when it is a sum of several separable functions

u0(x1, · · · , xd) =
∑m

k=1

(

∏d
i=1 gki(xi)

)

, we can first project each 1D function gi or gki using numeri-

cal quadratures and then compute the coefficients of the basis functions in multidimensions by a ten-

sor product. This is implement in the member functions DGAdapt::init_separable_scalar() and

DGAdapt::init_separable_scalar_sum() for the scalar case and DGAdapt::init_separable_system()

and DGAdapt::init_separable_system_sum() for the system case. If the initial condition cannot

be written in the separable form, we will use the adaptive interpolation procedure by calling func-

tions DGAdaptIntp::init_adaptive_intp_Lag() or DGAdaptIntp::init_adaptive_intp_Herm()

corresponding to the Lagrange and Hermite interpolation. Then we perform the transformation

to the Alperts’ multiwavelets by calling the function FastLagrInit::eval_ucoe_Alpt_Lagr()

with the fast matrix-vector multiplication in Section 3.3. This is the main purpose of the class

DGAdaptIntp, which is derived from DGAdapt.

3 Basic operators

In this section, we show the details of implementing DG weak formulations in our package. We first

introduce the operator matrix which stores the volume and interface interactions between all the

basis functions in 1D. With this in hand, we can easily assemble the matrix for linear DG differential

operators in arbitrary dimensions by recognizing the orthogonality of the Alpert’s multiwavelets.

Then, we introduce a fast matrix-vector multiplication algorithm, which play a critical role for

computational savings when we perform the basis transformation. We also show the interpolation

technique with interpolatory multiwavelets for dealing with nonlinear terms together with the
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computation of bilinear forms. Last, we describe the ODE solvers implmented in this package. The

operator class described in this section as well as the adaptive procedure discussed in the previous

section are essential steps for the adaptive evolution procedures in the algorithm.

3.1 Operator matrix in 1D

Unlike the standard DG method, for which each element can only interact with itself and its

immediate neighbors, the interaction among multiwavelet basis is much more complicated when

assembling DG bilinear forms due to the distinct hierarchical structures. Hence, it is critical

to precompute and store the interaction information to save cost. In the package, the template

class OperatorMatrix1D<class U, class V> will compute and store the volume and interface

interactions between all the basis functions in 1D. Here, the basis functions U and V can be

Alpert basis (AlptBasis), Lagrange interpolation basis (LagrBasis) or Hermite interpolation basis

(HermBasis). The following code block shows how to use this class:

// maximum mesh level

const int NMAX = 8;

// initialize all basis functions in 1D for Alpert, Lagrange and Hermite basis

AllBasis<AlptBasis> all_bas_alpt(NMAX);

AllBasis<LagrBasis> all_bas_lagr(NMAX);

// periodic boundary condition

std::string boundary_type = "period";

OperatorMatrix1D<AlptBasis,AlptBasis> oper_matx_alpt(all_bas_alpt, all_bas_alpt,

boundary_type);

OperatorMatrix1D<LagrBasis,AlptBasis> oper_matx_lagr(all_bas_lagr, all_bas_alpt,

boundary_type);

In this code block, we first declare the maximum mesh level NMAX to be 8. Then all_bas_alpt

and all_bas_lagr store the information for all the Alpert basis and Lagrange interpolation basis

functions, respectively. Under the periodic boundary condition, we compute and store the operators

in oper_matx_alpt and oper_matx_lagr. For example, oper_matx_alpt.u_v stores the inner

product of all the basis functions in L2[0, 1]. In particular, oper_matx_alpt.u_v(i,j) denote

the inner product of the i-th basis and the j-th basis, which forms an identity matrix due to the

orthogonality. oper_matx_alpt.u_vx(i,j) denote the inner product of the i-th basis and the

derivative of the j-th basis. We also provide operators involving the interface interactions. For

example, oper_matx_alpt.ulft_vjp stores
∑

i u
−
i+ 1

2

[v]i+ 1

2

where the summation is taken over all

the cell interfaces where the basis function v may have discontinuity. These operator matrices are

pre-computed at the beginning of the code. Since it only involves 1D calculation, the computational
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cost is negligible. We list all the operators in 1D in Table 3.1. These operator matrix in 1D will be

Table 3.1: All the operators for the basis in 1D.
variables meaning usage example

volume

u_v
∫ 1
0 uvdx hyperbolic and HJ equations

u_vx
∫ 1
0 uv

′dx hyperbolic and ZK equations

ux_v
∫ 1
0 u

′vdx ZK equation

ux_vx
∫ 1
0 u

′v′dx diffusion and wave equations

u_vxx
∫ 1
0 uv

′′dx ZK equations

u_vxxx
∫ 1
0 uv

′′′dx KdV and ZK equations

interface

ulft_vjp
∑

i u
−
i+ 1

2

[v]i+ 1

2

hyperbolic and HJ equations

urgt_vjp
∑

i u
+
i+ 1

2

[v]i+ 1

2

hyperbolic and HJ equations

uxave_vjp
∑

i{ux}i+ 1

2

[v]i+ 1

2

diffusion and wave equations

ujp_vxave
∑

i[u]i+ 1

2

{vx}i+ 1

2

diffusion and wave equations

ujp_vjp
∑

i[u]i+ 1

2

[v]i+ 1

2

diffusion and wave equations

uxxrgt_vjp
∑

i(uxx)
+
i+ 1

2

[v]i+ 1

2

KdV and ZK equations

uxrgt_vxjp
∑

i(ux)
+
i+ 1

2

[vx]i+ 1

2

KdV and ZK equations

ulft_vxxjp
∑

i u
−
i+ 1

2

[vxx]i+ 1

2

KdV and ZK equations

used in assembling the bilinear form in multidimensions in the DG scheme. We will show further

details next.

3.2 Bilinear form with Alpert multiwavelets

The class BilinearFormAlpt is the base class of assembling the bilinear form with Alpert multi-

wavelets. The DG bilinear forms resulted from linear equations with constant coefficients are all

inherited from this class. To illustrate the main idea, we take the scalar linear hyperbolic equations

with constant coefficients in 2D as an example:

ut + ux1
+ ux2

= 0. (3.1)

The corresponding DG scheme in the global formulation for solving (3.1) is

∫

Ω
(uh)tφhdx1dx2 =

∑

i,j

∫

Iij

(uh(φh)x1
+ uh(φh)x2

)dx1dx2 −
∑

i,j

∫

Ij

(ûhi+ 1

2
,j(φh)

−
i+ 1

2
,j
− ûhi− 1

2
,j(φh)

+
i− 1

2
,j
)dx2

−
∑

i,j

∫

Ii

(ûhi,j+ 1

2

(φh)
−
i,j+ 1

2

− ûhi,j− 1

2

(φh)
+
i,j− 1

2

)dx1,

with the upwind flux:

ûhi+ 1

2
,j = uh

−
i+ 1

2
,j
, ûhi,j+ 1

2

= uh
−
i,j+ 1

2

. (3.2)
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With the periodic boundary condition, we can simplify the scheme:

∫

Ω
(uh)tφhdx1dx2 =

∑

i,j

∫

Iij

(uh(φh)x1
+uh(φh)x2

)dx1dx2+
∑

i,j

∫

Ij

uh
−
i+ 1

2
,j
[φh]i+ 1

2
,jdx2+

∑

i,j

∫

Ii

(uh
−
i,j+ 1

2

[φh]i,j+ 1

2

)dx1.

(3.3)

with

[φh]i+ 1

2
,j := (φh)

+
i+ 1

2
,j
− (φh)

−
i+ 1

2
,j
, [φh]i,j+ 1

2

:= (φh)
+
i,j+ 1

2

− (φh)
−
i,j+ 1

2

. (3.4)

Next, we present the details on the computation of the volume integral
∑

i,j

∫

Iij
uh(φh)x1

dx1dx2

in (3.3). The other terms in (3.3) can be computed in similar ways. Denote

B(u, φ) :=
∑

i,j

∫

Iij

(uφx1
)dx1dx2. (3.5)

Our strategy to compute this bilinear form is to compute it for every basis function, i.e., assemble

the matrix. After the matrix is assembled, we can directly compute the residual using the matrix-

vector multiplication in the linear algebra package Eigen. By taking the solution u and the test

function φ in (3.5) to be u = v
j
i,l(x) = v

j1
i1,l1

(x1)v
j2
i2,l2

(x2) and φ = v
j′

i′,l′(x) = v
j′
1

i′
1
,l′
1

(x1)v
j′
2

i′
2
,l′
2

(x2), we

obtain:

B(u, φ) =
∑

i,j

∫

Iij

(uφx1
)dx1dx2

=

∫

Ω

(

v
j1
i1,l1

(x1)v
j2
i2,l2

(x2)
) d

dx1

(

v
j′
1

i′
1
,l′
1

(x1)v
j′
2

i′
2
,l′
2

(x2)
)

dx1dx2

=

(
∫ 1

0
v
j1
i1,l1

(x1)
d

dx1
(v

j′
1

i′
1
,l′
1

(x1))dx1

)

δi2,i′2δj2,j
′

2
δl2,l′2

= (vj1i1,l1 , (v
j′
1

i′
1
,l′
1

)′)δi2,i′2δj2,j′2δl2,l′2

(3.6)

Here, (·, ·) denotes the inner product in the unit interval [0, 1]. From this, we can see that the

bilinear form could be nonzero, only if i2 = i′2, j2 = j′2 and l2 = l′2, i.e. the indices of the basis func-

tions are the same in x2-dimension. Moreover, to compute it, only the inner product of the Alpert

basis and the derivative of the Alpert basis (i.e. the operator matrix in 1D oper_matx_alpt.u_vx)

will be used. This indicates that the computation of the matrix only depends on one operator

matrix in 1D and the specific dimension of the bilinear form. This is also true for equations

in higher dimensions. With these properties, the matrix can be fast assembled by the function

void BilinearFormAlpt::assemble_matrix_alpt(). We note that all the classes to assemble

the matrix for the bilinear forms are inherited from the base class BilinearFormAlpt and call

the function void BilinearFormAlpt::assemble_matrix_alpt() at the lower level. The cur-

rent package includes the derived classes DiffusionAlpt and DiffusionZeroDirichletAlpt for

Laplace operator using interior penalty DG method [3] with periodic and zero Dirichlet boundary
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conditions, and KdvAlpt, ZKAlpt, SchrodingerAlpt for ultra weak DG methods for KdV equa-

tions [10], ZK equations [24] and Schrödinger equations [9]. It is easy to generalize to new weak

formulations by following the similar line.

3.3 Fast algorithm of matrix-vector multiplication

In this part, we describe the fast algorithm of the matrix-vector multiplication. Since the multi-

wavelet basis functions are hierarchical, the evaluation of the residual yields denser matrix than

those obtained by standard local DG bases, if the interpolatory multiwavelets are applied for the

nonlinear terms and no longer have the orthogonality. Efficient implementations are therefore

essential to ensure that the computational cost is on par with element-wise implementation of

traditional DG schemes. Our work extends the fast matrix-vector multiplication in [29, 28] to an

adaptive index set.

3.3.1 2D case

For simplicity, we first show the main idea in 2D case while it can be easily generalized to arbitrary

dimension in the next part.

Consider the matrix-vector multiplication in this form:

fn1,n2
=

∑

0≤n′

1
,n′

2
≤N

f ′n′

1
,n′

2

t
(1)
n′

1
,n1

t
(2)
n′

2
,n2

, 0 ≤ n1, n2 ≤ N. (3.7)

Here F = {fn1,n2
}0≤n1,n2≤N ∈ R

(N+1)×(N+1) and F ′ = {f ′n1,n2
}0≤n1,n2≤N ∈ R

(N+1)×(N+1) are

matrices. T (i) = {t(i)n′,n}0≤n′,n≤N ∈ R
(N+1)×(N+1) for i = 1, 2 denote the transformation matrix in

1D in x1 and x2 dimensions.

We can compute (3.7) dimension by dimension: first do the transformation in x1 dimension:

gn1,n′

2
=

∑

0≤n′

1
≤N

f ′n′

1
,n′

2

t
(1)
n′

1
,n1

, 0 ≤ n1, n
′
2 ≤ N. (3.8)

and then do the transformation in x2 dimension:

fn1,n2
=

∑

0≤n′

2
≤N

gn1,n′

2
t
(2)
n′

2
,n2
, 0 ≤ n1, n2 ≤ N. (3.9)

Here, the intermediate matrix is denoted by {gn1,n2
}0≤n1,n2≤N ∈ R

(N+1)×(N+1). It is easy to verify

that (3.8)-(3.9) is equivalent to (3.7). Moreover, if we first do the transformation in x2 dimension:

gn′

1
,n2

=
∑

0≤n′

1
≤N

f ′n′

1
,n′

2

t
(2)
n′

2
,n2

, 0 ≤ n1, n
′
2 ≤ N, (3.10)
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and then do the transformation in x1 dimension:

fn1,n2
=

∑

0≤n′

2
≤N

gn′

1
,n2
t
(1)
n′

1
,n1

, 0 ≤ n1, n2 ≤ N, (3.11)

which is also equivalent to (3.7).

Next, we extend the same idea to the matrix-vector multiplication with different range of indices:

fn1,n2
=

∑

0≤n′

1
+n′

2
≤N

f ′n′

1
,n′

2

t
(1)
n′

1
,n1

t
(2)
n′

2
,n2

, 0 ≤ n1 + n2 ≤ N. (3.12)

Here, fn1,n2
and f ′n1,n2

are only defined for 0 ≤ n1 + n2 ≤ N .

We try to compute (3.12) in the same way: first do the transformation in x1 dimension:

gn1,n′

2
=

∑

0≤n′

1
≤N−n′

2

f ′n′

1
,n′

2

t
(1)
n′

1
,n1

, 0 ≤ n1 + n′2 ≤ N, (3.13)

and then do the transformation in x2 dimension:

fn1,n2
=

∑

0≤n′

2
≤N−n1

gn1,n′

2
t
(2)
n′

2
,n2

, 0 ≤ n1 + n2 ≤ N. (3.14)

Here, the intermediate variable gn1,n2
is only defined for 0 ≤ n1 + n2 ≤ N .

By plugging (3.13) into (3.14), we have

fn1,n2
=

∑

0≤n′

1
≤N−n′

2
,0≤n′

2
≤N−n1

f ′n′

1
,n′

2

t
(1)
n′

1
,n1

t
(2)
n′

2
,n2

, 0 ≤ n1 + n2 ≤ N. (3.15)

Notice that the summation set {(n′1, n′2) | 0 ≤ n′1 ≤ N − n′2, 0 ≤ n′2 ≤ N − n1} in (3.15) is different

from the original one {(n′1, n′2) | 0 ≤ n′1 + n′2 ≤ N} in (3.12). Therefore, the two algorithms (3.12)

and (3.13)-(3.14) are not equivalent. However, under the condition that T (1) is lower triangular

matrix or T (2) is upper triangular matrix, (3.12) and (3.13)-(3.14) are equivalent. This will be

illustrated and proved in Proposition 3.1.

We can also choose to do the transformation in x2 dimension first:

gn′

1
,n2

=
∑

0≤n′

2
≤N−n′

1

f ′n′

1
,n′

2

t
(2)
n′

2
,n2

, 0 ≤ n′1 + n2 ≤ N, (3.16)

and then do the transformation in x1 dimension:

fn1,n2
=

∑

0≤n2≤N−n′

1

gn′

1
,n2
t
(1)
n′

1
,n1

, 0 ≤ n1 + n2 ≤ N. (3.17)

Similar as before, under the condition that T (1) is upper triangular matrix or T (2) is lower triangular

matrix, (3.12) and (3.16)-(3.17) are equivalent. This is also shown in Proposition 3.1.
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Proposition 3.1 (equivalence of matrix-vector multiplication in 2D). 1. Under any of the fol-

lowing two conditions:

(a) T (1) is lower triangular matrix, i.e., t
(1)
n′

1
,n1

= 0 for n′1 < n1;

(b) T (2) is upper triangular matrix, i.e., t
(2)
n′

2
,n2

= 0 for n′2 > n2;

the matrix-vector multiplication in (3.12) is equivalent to first doing transformation in x1

dimension in (3.13) and then in x2 dimension in (3.14).

2. Under any of the following two conditions:

(a) T (1) is upper triangular matrix, i.e., t
(1)
n′

1
,n1

= 0 for n′1 > n1;

(b) T (2) is lower triangular matrix, i.e., t
(2)
n′

2
,n2

= 0 for n′2 < n2;

the matrix-vector multiplication in (3.12) is equivalent to first doing transformation in x2

dimension in (3.16) and then in x1 dimension in (3.17).

Proof. We only give the proof for the first case in 1(a) and other cases can be proved along the

same line.

If T (1) is lower triangular matrix, i.e., t
(1)
n′

1
,n1

= 0 for n′1 < n1, then the summation set in (3.15)

will be reduced to {(n′1, n′2) | 0 ≤ n′1 ≤ N − n′2, 0 ≤ n′2 ≤ N − n1} ∩ {(n′1, n′2) | n′1 ≥ n1} =

{(n′1, n′2) | n1 ≤ n′1 ≤ N, 0 ≤ n′2 ≤ N − n′1}. The original summation set in (3.12) will be reduced

to {(n′1, n′2) | 0 ≤ n′1+n
′
2 ≤ N}∩{(n′1, n′2) | n′1 ≥ n1} = {(n′1, n′2) | n1 ≤ n′1 ≤ N, 0 ≤ n′2 ≤ N −n′1}.

Therefore, these two summation set are equivalent.

Motivated by Proposition 3.1, we first decompose T (1) into:

T (1) = L(1) + U (1), (3.18)

where L(1) = {l(1)
n′

1
,n1

} and U (1) = {u(1)
n′

1
,n1

} are the lower and upper part of T (1), respectively. Note

that the diagonal part of T (1) can be either put in L(1) or U (1). Then we decompose the summation

(3.12) to:

fn1,n2
=

∑

0≤n′

1
+n′

2
≤N

f ′n′

1
,n′

2

(l
(1)
n′

1
,n1

+ u
(1)
n′

1
,n1

)t
(2)
n′

2
,n2
,

=
∑

0≤n′

1
+n′

2
≤N

f ′n′

1
,n′

2

l
(1)
n′

1
,n1
t
(2)
n′

2
,n2

+
∑

0≤n′

1
+n′

2
≤N

f ′n′

1
,n′

2

t
(2)
n′

2
,n2
u
(1)
n′

1
,n1
.

(3.19)

To compute the first term
∑

0≤n′

1
+n′

2
≤N f

′
n′

1
,n′

2

l
(1)
n′

1
,n1

t
(2)
n′

2
,n2

, we first do transformation in x1 dimension

as in (3.13) and then in x2 dimension as in (3.14). To compute the second term
∑

0≤n′

1
+n′

2
≤N f ′n′

1
,n′

2

t
(2)
n′

2
,n2

u
(1)
n′

1
,n1

,

we first doing transformation in x2 dimension as in (3.16) and then in x1 dimension as in (3.17).

Note that here we can also decompose T (2) into the lower and upper parts.
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3.3.2 Multidimensional case and adaptive sparse grid

To generalize the 2D case to the multidimensional case and the adaptive sparse grid method, we

consider the matrix-vector multiplication in the following form:

fn1,n2,...,nd
=

∑

(n′

1
,n′

2
,...,n′

d
)∈G

f ′n′

1
,n′

2
,...,n′

d
t
(1)
n′

1
,n1

t
(2)
n′

2
,n2

· · · t(d)
n′

d
,nd
, (n1,n2, . . . ,nd) ∈ G, (3.20)

where ni = (li, ji, ki) and n′
i = (l′i, j

′
i, k

′
i) ∈ N

3
0 for i = 1, 2, · · · , d. In the adaptive sparse grid, li, ji

and ki denotes the mesh level, the support index and the polynomial degree, in the i-th dimension,

respectively.

For any two indices ni = (li, ji, ki) and n′
i = (l′i, j

′
i, k

′
i), we define the order:

1. ni � n′
i (or ni ≺ n′

i) if and only if li ≤ l′i (or li < l′i);

2. ni � n′
i (or ni ≻ n′

i) if and only if li ≥ l′i (or li > l′i).

Based on this order relation, we say

1. T (i) = {t(i)
n′

i,ni
} is (strictly) lower triangular if and only if t

(i)
n′

i,ni
= 0 for n′

i ≺ ni (n
′
i � ni);

2. T (i) = {t(i)
n′

i,ni
} is (strictly) upper triangular if and only if t

(i)
n′

i,ni
= 0 for n′

i ≻ ni (n
′
i � ni);

We assume that G satisfies the requirement that it is downward closed, i.e. for any basis function

with some index in the set G, the index corresponding to the basis function in its parent element

is also in G. Note that this requirement is enforced in our adaptive procedure.

Next, we try to do the transformation dimension by dimension as in the 2D case. We start with

the transformation along the x1 dimension:

g
(1)
n1,n′

2
,...,n′

d

=
∑

(n′

1
,n′

2
,...,n′

d
)∈G

f ′n′

1
,n′

2
,...,n′

d
t
(1)
n′

1
,n1
, (n1,n

′
2, . . . ,n

′
d) ∈ G, (3.21)

then the x2 dimension:

g
(2)
n1,n2,n′

3
...,n′

d

=
∑

(n1,n′

2
,...,n′

d
)∈G

g
(1)
n1,n′

2
,...,n′

d

t
(2)
n′

2
,n2

, (n1,n2, . . . ,n
′
d) ∈ G, (3.22)

and all the way up to xd dimension:

fn1,n2,n3...,nd
=

∑

(n1,n2,...,nd−1,n
′

d
)∈G

g
(d−1)
n1,n2,...,nd−1,n

′

d

t
(d)
n′

d
,nd
, (n1,n2, . . . ,nd) ∈ G. (3.23)

We try to plug the first equation (3.21) into the second one (3.22) and all the way up to the last

one (3.23):

fn1,n2,...,nd
=

∑

(n′

1
,n′

2
,...,n′

d
)∈Sf

f ′n′

1
,n′

2
,...,n′

d
t
(1)
n′

1
,n1

t
(2)
n′

2
,n2

· · · t(d)
n′

d
,nd
, (n1,n2, . . . ,nd) ∈ G, (3.24)
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where the overall summation set is

Sf := {(n′
1,n

′
2, · · · ,n′

d−1,n
′
d) |(n′

1,n
′
2, · · · ,n′

d−1,n
′
d) ∈ G, . . . ,

(n1,n
′
2, · · · ,n′

d−1,n
′
d) ∈ G, . . . ,H(n1,n2, · · · ,nd−1,n

′
d) ∈ G},

for (n1,n2, . . . ,nd) ∈ G. Generally, Sf is only a subset of the orginal summation set

S := {(n′
1,n

′
2, · · · ,n′

d−1,n
′
d) | (n′

1,n
′
2, · · · ,n′

d−1,n
′
d) ∈ G}. (3.25)

However, if we assume that, for some integer 1 ≤ k ≤ d, T (i) for i = 1, . . . , k−1 are lower triangular

and T (i) for i = k + 1, . . . , d are upper triangular (or T (i) for i = 1, . . . , k − 1 are lower triangular

and T (i) for i = k + 1, . . . , d are upper triangular), then these two constrains are equivalent, i.e.,

Sf = S. This is proved in the following proposition.

Proposition 3.2. Suppose that there exists some integer 1 ≤ k ≤ d such that T (i) for i = 1, . . . , k−1

are lower triangular and T (i) for i = k + 1, . . . , d are upper triangular (or T (i) for i = 1, . . . , k − 1

are lower triangular and T (i) for i = k + 1, . . . , d are upper triangular), then the algorithm (3.20)

are equivalent to the computation (3.21)-(3.22)-(3.23) dimension by dimension.

Proof. We show the proof in the case of d = 3 and T (1) and T (2) are both lower triangular matrix.

The other cases follow the same line.

Since T (1) and T (2) are both lower triangular matrix, we have the extra constraint

n′
1 � n1, n′

2 � n2. (3.26)

Take any index (n′
1,n

′
2,n

′
3) ∈ S. Since n′

1 � n1, there are only two cases: the first is that the

basis function with the index (n1,n
′
2,n

′
3) belongs to the parent (or parent’s parent) element of

(n′
1,n

′
2,n

′
3) and thus (n1,n

′
2,n

′
3) ∈ G; the second is that the supports of two basis functions with

the indices (n′
1,n

′
2,n

′
3) and (n1,n

′
2,n

′
3) have empty intersection and thus t

(1)
n′

1
,n1

= 0. Due to

n′
2 � n2, we have similar conclusions as the x1 dimension. Therefore, either S ⊆ Sf or the two

summations are equivalent.

Motivated by Proposition 3.2, we can decompose the matrix in the first (d− 1) dimensions into

the lower and upper parts:

fn1,n2,...,nd
=

∑

(n′

1
,n′

2
,...,n′

d
)∈G

f ′n′(l
(1)
n′

1
,n1

+ u
(1)
n′

1
,n1

)(l
(2)
n′

2
,n2

+ u
(2)
n′

2
,n2

) · · · (l(d−1)
n′

d−1
,nd−1

+ u
(d−1)
n′

d−1
,nd−1

)t
(d)
n′

d
,nd
,

(3.27)

for (n1,n2, . . . ,nd) ∈ G. Here L(i) = {l(i)
n′

i,ni
} and U (i) = {u(i)

n′

i,ni
} for i = 1, 2, · · · , d − 1 denote

the lower and upper parts of T (i), respectively. Then, we multipy every term out, which will result
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in 2d−1 terms for the summation. For each term, we can perform the multiplication dimension

by dimension. The order is that first do the lower triangular matrix, and then the full matrix in

between, and follows the upper triangular matrix. Here we list the case of d = 3 as an example:

fn1,n2,n3
=

∑

(n′

1
,n′

2
,n′

3
)∈G

f ′n′

1
,n′

2
,n′

3

(l
(1)
n′

1
,n1

+ u
(1)
n′

2
,n1

)(l
(2)
n′

2
,n2

+ u
(2)
n′

2
,n2

)t
(3)
n′

3
,n3

,

=
∑

(n′

1
,n′

2
,n′

3
)∈G

f ′n′

1
,n′

2
,n′

3

l
(1)
n′

1
,n1

l
(2)
n′

2
,n2

t
(3)
n′

3
,n3

+
∑

(n′

1
,n′

2
,n′

3
)∈G

f ′n′

1
,n′

2
,n′

3

l
(1)
n′

1
,n1

t
(3)
n′

3
,n3

u
(2)
n′

2
,n2

+
∑

(n′

1
,n′

2
,n′

3
)∈G

f ′n′

1
,n′

2
,n′

3

l
(2)
n′

2
,n2
t
(3)
n′

3
,n3
u
(2)
n′

2
,n2

+
∑

(n′

1
,n′

2
,n′

3
)∈G

f ′n′

1
,n′

2
,n′

3

t
(3)
n′

3
,n3
u
(1)
n′

1
,n1
u
(2)
n′

2
,n2
.

The fast matrix-vector multiplication is implemented in void FastMultiplyLU::transform_1D(),

which do the multiplication dimension by dimension. The base class FastMultiplyLU will be in-

herited by other classes and used in the interpolation, computational of the residuals. We will show

in details in the later sections.

3.4 Computing nonlinear terms

The interpolation operator is applied when dealing with nonlinear terms. it is implemented in the

base class Interpolation and its inheritance class LagrInterpolation and HermInterpolation.

As an example, we consider scalar hyperbolic conservation laws in two dimension:

ut + f(u)x1
+ g(u)x2

= 0. (3.28)

The semi-discrete DG scheme is
∫

Ω
(uh)tφdx1dx2 =

∑

i,j

∫

Iij

(f(uh)φx1
+ g(uh)φx2

)dx1dx2 −
∑

i,j

∫

Ij

(f̂i+ 1

2
,jφ

−
i+ 1

2
,j
− f̂i− 1

2
,jφ

+
i− 1

2
,j
)dx2

−
∑

i,j

∫

Ii

(ĝi,j+ 1

2

φ−
i,j+ 1

2

− ĝi,j− 1

2

φ+
i,j− 1

2

)dx1.

(3.29)

Here, we use the global Lax-Friedrichs flux:

f̂(u−, u+) =
1

2
(f(u−) + f(u+))− α

2
(u+ − u−). (3.30)

and

ĝ(u−, u+) =
1

2
(g(u−) + g(u+))− α

2
(u+ − u−). (3.31)

In the classic DG methods, the integrals over elements and edges are often approximated by

numerical quadrature rules on each cell [12]. However, in the sparse grid DG method, this naive
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approach would result in computational cost that is proportional to the number of fundamental

elements, i.e., O(h−d), and is still subject to the curse of dimensionality. To evaluate the integrals

over elements and edges more efficiently with a cost proportional to the DOF of the underlying finite

element space, we propose to interpolate the nonlinear function f(uh) by using the multiresolution

Lagrange (or Hermite) interpolation basis functions [22]. Therefore, the semidiscrete DG scheme

with interpolation is

∫

Ω
(uh)tφdxdy =

∑

i,j

∫

Iij

(I[f(uh)]φx1
+ I[g(uh)]φx2

)dx1dx2 −
∑

i,j

∫

Ij

(I[f̂ ]i+ 1

2
,jφ

−
i+ 1

2
,j
− I[f̂ ]i− 1

2
,jφ

+
i− 1

2
,j
)dx2

−
∑

i,j

∫

Ii

(I[ĝ]i,j+ 1

2

φ−
i,j+ 1

2

− I[ĝ]i,j− 1

2

φ+
i,j− 1

2

)dx1.

(3.32)

Now we show the main procedure to interpolation f(uh). This is implemented in the function

void HermInterpolation::nonlinear_Herm_2D_fast() with the Hermite interpolation in 2D.

The main procedure of the function is presented in the following:

{

fastHerm.eval_up_Herm();

eval_fp_Her_2D(func, func_d1, func_d2, is_intp);

pw1d.clear();

eval_fp_to_coe_D_Her(is_intp);

}

The first step in this function fastHerm.eval_up_Herm() is to read the values (and derivatives) of

uh at the interpolation points, i.e., transform the coefficients of Alpert basis in uh to the values (and

derivatives) at the interpolation points. Here, the fast matrix-vector multiplication is used. The

second step eval_fp_Her_2D(func, func_d1, func_d2, is_intp) is to compute the values (and

derivatives) of f(uh) at the interpolation points. This part is local in the sense that the computation

of each point is independent of other points. Here, the value and derivatives of the scalar function

f(x) will be used. The last step eval_fp_to_coe_D_Her(is_intp) is to transform the values (and

derivatives) of f(uh) at the interpolation points to the coefficients of the interpolatory multiwavelets.

Here, we use the fast matrix-vector multiplication again. The detailed algorithm is illustrated in

[32].

Now we will show how to compute the bilinear form after the interpolation of f(uh) is expressed

in terms of interpolatory multiwavelets. As an example, we show the computation of the volume
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integral
∫

Ω I[f(uh)]φx1
dx1dx2. After the interpolation of f(uh), we obtain

I[f(uh)] =
∑

(l,j)∈H,
1≤i≤k+1

c
j
i,lψ

j
i,l(x) =

∑

(l,j)∈H,
1≤i≤k+1

c
j
i,lψ

j1
i1,l1

(x1)ψ
j2
i2,l2

(x2) (3.33)

Take the test function φ = v
j′

i′,l′(x) = v
j′
1

i′
1
,l′
1

(x1)v
j′
2

i′
2
,l′
2

(x2)

∫

Ω
I[f(uh)]φx1

dx1dx2 =

∫

Ω

∑
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j
i,lψ
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j2
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(x2)
d

dx1
v
j′
1

i′
1
,l′
1

(x1)v
j′
2

i′
2
,l′
2

(x2)dx1dx2

=
∑

(l,j)∈H,
1≤i≤k+1

c
j
i,l

∫

Ω
ψ
j1
i1,l1

(x1)ψ
j2
i2,l2

(x2)
d

dx1
v
j′
1

i′
1
,l′
1

(x1)v
j′
2

i′
2
,l′
2

(x2)dx1dx2

=
∑

(l,j)∈H,
1≤i≤k+1

c
j
i,l

(
∫ 1

0
ψ
j1
i1,l1

(x1)
d

dx1
v
j′
1

i′
1
,l′
1

(x1)dx1

)(
∫ 1

0
ψ
j2
i2,l2

(x2)v
j′
2

i′
2
,l′
2

(x2)dx2

)

This can be efficiently computed using the fast matrix-vector multiplication in Section 3.3. In partic-

ular, the function void HyperbolicHermRHS::rhs_vol_scalar() in the class HyperbolicHermRHS

is to compute this residual using the fast algorithm implemented in the base class FastRHS.

3.5 ODE solvers

We implement the commonly used ODE solvers in the base class ODESolver and its inheritance

classes. Here, we use the linear algebra package Eigen [18] to perform matrix-vector multiplication

and linear solvers. For the explicit RK method, the package includes the first-order Euler forward

method in ForwardEuler, the second-order and third-order strong-stability-preserving (SSP) RK

method [30] in RK2SSP and RK3SSP, the classic fourth-order RK method in RK4. The explicit

multistep method includes the second-order and fourth-order Newmark method [34] in Newmark2nd

and Newmark4th. The implicit-explicit (IMEX) method includes the third-order IMEX RK method

[25] in IMEX43.

4 Examples

In this section, we use several examples to illustrate how to use this package and the code perfor-

mance. Due to the page limit, we only present several representative equations including the linear

equation with constant coefficients, the Hamilton-Jacobi equations, and the wave equations. There

are also other examples available in the GitHub repository, such as the Schrödinger equations, the

Korteweg-de Vries (KdV) equation and its two-dimensional generalization, the Zakharov-Kuznetsov

(ZK) equation. We will show the sample code and the CPU time. All the test cases are run in the
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High Performance Computing Center (HPCC) at Michigan State University with the AMD EPYC

7H12 Processor @2.595 GHz. The single node with the multi-thread (OpenMP) and the GCC 8.3.0

compiler is used.

4.1 Linear hyperbolic equation with constant coefficients

We consider the linear hyperbolic equation with constant coefficients in the domain Ω = [0, 1]d with

periodic boundary conditions:

ut +

d
∑

i=1

uxi
= 0 (4.1)

with the initial condition

u(x1, · · · , xd, 0) = cos(2π(
d
∑

i=1

xi)). (4.2)

As the first example, we show the sparse grid DG method without adaptivity. The code is in

the GitHub repository ./example/02_hyperbolic_01_scalar_const_coefficient.cpp. Here,

we present the main part of the code for solving this problem.

The first part of the code is to declare some basic parameters in the package including the

dimension of the problem, the polynomial degrees of the Alpert basis and interpolation basis, the

maximum mesh level, the CFL number and the final time and so on. Note that this code has uniform

treatment with different dimensions. One can simply modify the dimension in this part and most

of the functions in the package are consistent with arbitrary dimensions. However, we would also

like to point out an implementation shortcoming of the current version of our package. Since many

variables (e.g. HermBasis::PMAX and HermBasis::msh_case) in the package are declared as static

variables in C++, they have to be declared even if they are not really used when solving the linear

equations (4.1).

// --- Part 1: preliminary part ---

// static variables

const int DIM = 4;

AlptBasis::PMAX = 2;

LagrBasis::PMAX = 5;

LagrBasis::msh_case = 1;

HermBasis::PMAX = 3;

HermBasis::msh_case = 1;

Element::PMAX_alpt = AlptBasis::PMAX; // max polynomial degree for Alpert basis

Element::PMAX_intp = LagrBasis::PMAX; // max polynomial degree for interpolation basis

Element::DIM = DIM; // dimension

Element::VEC_NUM = 1; // num of unknown variables in PDEs
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DGSolution::DIM = Element::DIM;

DGSolution::VEC_NUM = Element::VEC_NUM;

Interpolation::DIM = DGSolution::DIM;

Interpolation::VEC_NUM = DGSolution::VEC_NUM;

DGSolution::ind_var_vec = { 0 };

DGAdapt::indicator_var_adapt = { 0 };

Element::is_intp.resize(Element::VEC_NUM);

for (size_t num = 0; num < Element::VEC_NUM; num++)

{ Element::is_intp[num] = std::vector<bool>(Element::DIM, true); }

// constant variable

int NMAX = 4;

int N_init = NMAX;

int is_sparse = 1;

const std::string boundary_type = "period";

double final_time = 1.0;

const double cfl = 0.1;

const bool is_adapt_find_ptr_alpt = true; // variable control if need to adaptively find

out pointers related to Alpert basis in DG operators

const bool is_adapt_find_ptr_intp = false; // variable control if need to adaptively

find out pointers related to interpolation basis in DG operators

// adaptive parameter

// if need to test code without adaptive, just set refine_eps large number 1e6, then no

refine

// and set coarsen_eta negative number -1, then no coarsen

const double refine_eps = 1e10;

// const double coarsen_eta = refine_eps/10.;

const double coarsen_eta = -1;

OptionsParser args(argc, argv);

args.AddOption(&NMAX, "-N", "--max-mesh-level", "Maximum mesh level");

args.AddOption(&is_sparse, "-s", "--sparse-grid", "sparse grid (1) or full grid (0)");

args.AddOption(&final_time, "-tf", "--final-time", "Final time; start time is 0.");

args.Parse();

if (!args.Good())

{

args.PrintUsage(std::cout);

return 1;

}

args.PrintOptions(std::cout);

N_init = NMAX;

bool sparse = (is_sparse == 1) ? true : false;

// hash key

Hash hash;

LagrBasis::set_interp_msh01();

HermBasis::set_interp_msh01();
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AllBasis<AlptBasis> all_bas_alpt(NMAX);

AllBasis<LagrBasis> all_bas_lagr(NMAX);

AllBasis<HermBasis> all_bas_herm(NMAX);

// operator matrix

OperatorMatrix1D<AlptBasis,AlptBasis> oper_matx(all_bas_alpt, all_bas_alpt,

boundary_type);

OperatorMatrix1D<HermBasis, HermBasis> oper_matx_herm_herm(all_bas_herm, all_bas_herm,

boundary_type);

OperatorMatrix1D<LagrBasis, LagrBasis> oper_matx_lagr_lagr(all_bas_lagr, all_bas_lagr,

boundary_type);

Part 2 of the code is to project the initial condition to the sparse grid DG space. Here, although

the initial function is low rank, we still use the function DGAdaptIntp::init_adaptive_intp().

for a general solution. The first step in this function is to do adaptive Lagrange interpolation and

update coefficients of interpolation basis (Element::ucoe_intp in DG solution). The second step

is to transform coefficients of Lagrange basis to those of Alpert basis where the fast matrix-vector

multiplication is applied.

// --- Part 2: initialization of DG solution ---

DGAdaptIntp dg_solu(sparse, N_init, NMAX, all_bas_alpt, all_bas_lagr, all_bas_herm,

hash, refine_eps, coarsen_eta, is_adapt_find_ptr_alpt, is_adapt_find_ptr_intp,

oper_matx_lagr_lagr, oper_matx_herm_herm);

// initial condition

// u(x,0) = cos(2 * pi * (sum_(d=1)^DIM x_d)

auto init_non_separable_func = [=](std::vector<double> x, int i)

{

double sum_x = 0.;

for (int d = 0; d < DIM; d++) { sum_x += x[d]; };

return cos(2*Const::PI*sum_x);

};

dg_solu.init_adaptive_intp(init_non_separable_func);

After the initial condition is projected, we do the time evolution. First we assemble the matrix

for the DG bilinear form using the function void HyperbolicAlpt::assemble_matrix_scalar().

Then we use third-order SSP RK time integrator [30] to do the time marching.

// --- Part 3: time evolution ---

// coefficients in the equation are all 1:

// u_t + \sum_(d=1)^DIM u_(x_d) = 0

const std::vector<double> hyperbolicConst(DIM, 1.);

const int max_mesh = dg_solu.max_mesh_level();

const double dx = 1./pow(2., max_mesh);

double dt = dx * cfl / DIM;

int total_time_step = ceil(final_time/dt) + 1;
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dt = final_time/total_time_step;

HyperbolicAlpt dg_operator(dg_solu, oper_matx);

dg_operator.assemble_matrix_scalar(hyperbolicConst);

RK3SSP odesolver(dg_operator, dt);

odesolver.init();

std::cout << "--- evolution started ---" << std::endl;

// record code running time

Timer record_time;

double curr_time = 0;

for (size_t num_time_step = 0; num_time_step < total_time_step; num_time_step++)

{

odesolver.step_rk();

curr_time += dt;

// record code running time

if (num_time_step %

{

std::cout << "num of time steps: " << num_time_step

<< "; time step size: " << dt

<< "; curr time: " << curr_time

<< "; DoF: " << dg_solu.get_dof()

<< std::endl;

record_time.time("elasped time in evolution");

}

}

odesolver.final();

The final part is to compute the L2 error between the numerical solution and the exact solution.

Since the evaluation of the error using the Gaussian quadrature in high dimension is too costly, we

again use adaptive interpolation to approximate the exact solution at final time, then transform

them to the coefficients of Alpert basis.

// --- Part 4: calculate error between numerical solution and exact solution ---

std::cout << "calculating error at final time" << std::endl;

record_time.reset();

// compute the error using adaptive interpolation

{

// construct anther DGsolution v_h and use adaptive Lagrange interpolation to

approximate the exact solution

const double refine_eps_ext = 1e-6;

const double coarsen_eta_ext = -1;

OperatorMatrix1D<HermBasis, HermBasis> oper_matx_herm_herm(all_bas_herm,

all_bas_herm, boundary_type);

OperatorMatrix1D<LagrBasis, LagrBasis> oper_matx_lagr_lagr(all_bas_lagr,

all_bas_lagr, boundary_type);

DGAdaptIntp dg_solu_ext(sparse, N_init, NMAX, all_bas_alpt, all_bas_lagr,

all_bas_herm, hash, refine_eps_ext, coarsen_eta_ext, is_adapt_find_ptr_alpt,

25



is_adapt_find_ptr_intp, oper_matx_lagr_lagr, oper_matx_herm_herm);

auto final_func = [=](std::vector<double> x, int i)

{

double sum_x = 0.;

for (int d = 0; d < DIM; d++) { sum_x += x[d]; };

return cos(2.*Const::PI*(sum_x - DIM * final_time));

};

dg_solu_ext.init_adaptive_intp(final_func);

// compute L2 error between u_h (numerical solution) and v_h (interpolation to exact

solution)

double err_l2 = dg_solu_ext.get_L2_error_split_adaptive_intp_scalar(dg_solu);

std::cout << "L2 error at final time: " << err_l2 << std::endl;

}

We report the convergence study of the sparse grid method at t = 1 in Table 4.2, including the

L2 errors and the associated orders of accuracy. It is observed that the sparse grid method has

about half-order reduction from the optimal (k + 1)-th order for high-dimensional computations,

which is expected from our analysis [19].

To further demonstrate the efficiency of the sparse grid algorithm, we report the L2 errors versus

the average CPU cost per time step for k = 1, 2 and d = 2, 3, 4 in Fig. 4.1. It is observed that, to

achieve a desired level of accuracy, the sparse grid DG method with a larger k requires less CPU

time as expected. Moreover, the CPU time is approximately proportional to the DOF. In addition,

the slopes for all the lines in Fig. 4.1 are approximately the same with different dimensions. This

indicates that our method has potential in the computations in high dimensions.

4.2 Hamilton-Jacobi equation

In this example, we consider the following Hamilton-Jacobi-Bellman (HJB) equation [7]











φt +max
β∈B

(

d
∑

m=1

bm · ∇φ
)

= 0, x ∈ [0, 1]d,

φ(x, 0) = g(‖x− a‖),
(4.3)

where a = (0.5, 0.5, . . . , 0.5) and B = {β = (b1, b2, . . . , bd), bm = ±1, m = 1, · · · , d} is a set of 2d

vectors corresponding to 2d possible controls. The function g(z) is given by

g(z) =
1

r0
(z2 − r20), (4.4)

with r0 =
1
8 . Note that this HJB equation is equivalent to the following HJ equation











φt +

d
∑

m=1

|φxm | = 0, x ∈ [0, 1]d

φ(x, 0) = g(‖x − a‖),
(4.5)
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Table 4.2: linear hyperbolic equation with constant coefficients, L2-error and convergence order at
t = 1.

k = 1 k = 2

N DOF L2-error order N DOF L2-error order

d = 2

5 448 1.59e-2 - 4 432 1.50e-3 -
6 1024 3.84e-3 2.05 5 1008 3.95e-4 1.93
7 2304 9.80e-4 1.97 6 2304 3.54e-5 3.48
8 5120 2.75e-4 1.84 7 5184 6.70e-6 2.40
9 11264 7.33e-5 1.91 8 11520 7.10e-7 3.24

d = 3

4 832 4.60e-1 - 4 2808 8.92e-3 -
5 2176 1.48e-1 1.63 5 7344 1.66e-3 2.42
6 5504 3.30e-2 2.16 6 18576 3.85e-4 2.11
7 13568 7.55e-3 2.13 7 45792 4.29e-5 3.17
8 32768 2.15e-3 1.82 8 110592 1.07e-5 2.00

d = 4

5 8832 5.19e-1 - 4 15552 3.44e-2 -
6 24320 2.12e-1 1.29 5 44712 6.08e-3 2.50
7 64768 5.50e-2 1.94 6 123120 1.20e-3 2.35
8 167936 1.24e-2 2.15 7 327888 2.77e-4 2.11
9 425984 3.91e-3 1.66 8 850176 5.90e-5 2.23

10−4 10−3 10−2 10−1
CPU time per time step

10−8

10−6

10−4

10−2

100

er
ro
r

d=2, k=1
d=2, k=2
d=3, k=1
d=3, k=2
d=4, k=1
d=4, k=2

Figure 4.1: linear hyperbolic equation with constant coefficients. L2-error versus CPU time per
time step. Sparse grid DG. t = 1
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The exact solution can be hence derived from (4.5):

φ(x, t) = g(‖(x − a))⋆t‖).

Here, for a vector c, c⋆t := min(max(0, c − t), c + t) in the component-wise sense. We apply the

adaptive algorithm to simulate (4.5). The outflow boundary conditions are imposed. Note that the

Hamiltonian is nonsmooth and in [21] we regularize the absolute function to ensure stability:

H̃(∇φ) =
{

H(∇φ), if ‖∇φ‖ ≥ δ
1
2δH(∇φ)2 + 1

2δ, otherwise.
(4.6)

It can be easily verified that H̃ is C1. In the simulation, we choose δ = 2h, where h is the mesh

size, and hence the regularization will not affect the accuracy of the original method.

This numerical test has been already examined in [21] by a local DG (LDG) method and here,

we only present the sample code and focus on the CPU time study. The code is included in the

GitHub repository ./example/04_hamilton_jacobi_adapt_hjb.cpp. Due to the page limit, we

will only present the time evolution code.

The first part in the time evolution is to compute the time step size based on the finest mesh

size in all the dimensions. Note that we use adaptive finite element space, so the finest mesh size

is changing during the time evolution. The second part is to use the Euler forward time stepping

to predict the numerical solution in the next time step. Here we use the LDG method in [35] to

reconstruct the first-order derivatives of φ, i.e., φxm, m = 1, · · · , d. In particular, the LDG method

computes two auxiliary variables in each dimension, which approximate the first-order derivatives

with opposite one-sided numerical fluxes. Therefore, there are totally (2d + 1) unknown variables

in the scheme including the unknown φ and the other 2d auxiliary variables. For the 2d auxiliary

variables, the LDG bilinear forms are linear, and we evolve them by assembling the matrices stored

in grad_linear in the code. For the evolution of φ, we first use Lagrangian interpolation basis to

approximate the nonlinear Hamiltonian nonlinear_Lagr_fast and then apply fast matrix-vector

multiplication. Since the assembling matrix is independent for each auxiliary variable, we use

OpenMP here to improve the computational efficiency. After this, we call the function and then

rhs_nonlinear to evaluate the residual (i.e. the right-hand-side of the weak formulation of φ and

then call the time integrator to update the solution φ in the next time step.

The third part is to refine the numerical solution based on the prediction. After this refinement,

the fourth part is to do the time evolution using the third-order SSP RK method [30]. Note that

this part is similar to the prediction part by calling the same function. The only difference is to

use RK3SSP instead of ForwardEuler. In the end of the time evolution, we do coarsening to remove

the redundant elements.

28



while (curr_time < final_time)

{

auto start_evolution_time = std::chrono::high_resolution_clock::now();

// --- part 1: calculate time step dt ---

const std::vector<int> & max_mesh = dg_solu.max_mesh_level_vec();

// dt = cfl/(c1/dx1 + c2/dx2 + ... + c_dim/dx_dim)

double sum_c_dx = 0.; // this variable stores (c1/dx1 + c2/dx2 + ... + c_dim/dx_dim)

for (size_t d = 0; d < DIM; d++)

{

sum_c_dx += std::pow(2., max_mesh[d]);

}

double dt = cfl / sum_c_dx;

dt = std::min(dt, final_time - curr_time);

// --- part 2: predict by Euler forward ---

{

std::vector<HJOutflowAlpt> grad_linear(2 * DIM, HJOutflowAlpt(dg_solu,

oper_matx_alpt, oper_matx_alpt_inside, 1));

omp_set_num_threads(2 * DIM);

#pragma omp parallel for

for (int d = 0; d < 2 * DIM; ++d) // 2 * DIM matrices for computing the gradient of

phi via LDG

{

int sign = 2 * (d %

int dd = d / 2;

grad_linear[d].assemble_matrix_flx_scalar(dd, sign, -1);

grad_linear[d].assemble_matrix_vol_scalar(dd, -1);

}

HamiltonJacobiLDG HJ(grad_linear, DIM);

// before Euler forward, copy Element::ucoe_alpt to Element::ucoe_alpt_predict

dg_solu.copy_ucoe_to_predict();

ForwardEuler odeSolver(dg_solu, dt);

odeSolver.init_HJ(HJ);

dg_solu.set_rhs_zero();

odeSolver.compute_gradient_HJ(HJ); // compute the gradient of phi

interp.nonlinear_Lagr_fast(LFHamiltonian, is_intp, fastintp); // interpolate the

LFHamiltonian

fastRHShj.rhs_nonlinear();

odeSolver.rhs_to_eigenvec("HJ");

odeSolver.step_stage(0);
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odeSolver.final_HJ(HJ);

}

// --- part 3: refine base on Element::ucoe_alpt

dg_solu.refine();

const int num_basis_refine = dg_solu.size_basis_alpt();

// after refine, copy Element::ucoe_alpt_predict back to Element::ucoe_alpt

dg_solu.copy_predict_to_ucoe();

// --- part 4: time evolution

std::vector<HJOutflowAlpt> grad_linear(2 * DIM, HJOutflowAlpt(dg_solu,

oper_matx_alpt, oper_matx_alpt_inside, 1));

omp_set_num_threads(2 * DIM);

#pragma omp parallel for

for (int d = 0; d < 2 * DIM; ++d) // 2 * DIM matrices for computing the gradient of

phi via LDG

{

int sign = 2 * (d %

int dd = d / 2;

grad_linear[d].assemble_matrix_flx_scalar(dd, sign, -1);

grad_linear[d].assemble_matrix_vol_scalar(dd, -1);

}

HamiltonJacobiLDG HJ(grad_linear, DIM);

RK3SSP odeSolver(dg_solu, dt);

odeSolver.init_HJ(HJ);

for (int stage = 0; stage < odeSolver.num_stage; ++stage)

{

dg_solu.set_rhs_zero();

odeSolver.compute_gradient_HJ(HJ); // compute the gradient of phi

interp.nonlinear_Lagr_fast(LFHamiltonian, is_intp, fastintp); // interpolate the

LFHamiltonian

fastRHShj.rhs_nonlinear();

odeSolver.rhs_to_eigenvec("HJ");

odeSolver.step_stage(stage);

odeSolver.final_HJ(HJ);

}

// --- part 5: coarsen

dg_solu.coarsen();

const int num_basis_coarsen = dg_solu.size_basis_alpt();

curr_time += dt;

}

30



In this example, the viscosity solution is C1, a rarefaction wave opens up at the center of the

domain, which is well captured by the adaptive sparse method, see the solution profile in [21].

In Table 4.3, we summarize the convergence study for d = 2, 3, 4 and k = 1, 2. Note that when

ǫ = 10−6, the error does not decay, and the reason is that the error has saturated already with

the maximum level N = 7. In Figure 4.2, we plot the L2 errors versus the average CPU cost per

time step. It is again observed that, the errors with larger polynomial degree k decays faster when

reducing the refinement threshold ǫ and thus increasing DOF. The slopes with the same polynomial

degrees in Figure 4.2 are almost the same with different dimensions. This again domenstrates the

capability of our method in high dimensions.

Table 4.3: Hamilton-Jacobi equation, d = 2, 3, 4, k = 1, 2. Adaptive sparse grid. T = 0.1 and the
maximum mesh level N = 7.

k = 1 k = 2

ǫ DOF L2-error Rǫ RDOF DOF L2-error Rǫ RDOF

d = 2

1e-3 204 4.17e-3 - - 63 8.62e-3 - -
1e-4 444 1.62e-3 0.41 1.21 135 1.89e-3 0.66 1.99
1e-5 860 7.01e-4 0.36 1.27 207 6.26e-4 0.48 2.59
1e-6 876 6.43e-4 0.04 4.69 459 4.24e-4 0.17 0.49

d = 3

1e-3 608 5.44e-3 - - 270 1.12e-2 - -
1e-4 1328 2.12e-3 0.41 1.20 594 2.98e-3 0.58 1.68
1e-5 2576 9.15e-4 0.37 1.27 918 7.89e-4 0.58 3.05
1e-6 2624 8.39e-4 0.04 4.74 2052 4.36e-4 0.26 0.74

d = 4

1e-3 1616 6.65e-3 - - 1053 1.35e-2 - -
1e-4 3536 2.60e-3 0.41 1.20 1701 6.17e-3 0.34 1.63
1e-5 6864 1.12e-3 0.37 1.27 2997 1.24e-3 0.70 2.84
1e-6 6992 1.02e-3 0.04 4.69 6237 4.90e-4 0.40 1.26

4.3 Wave equation

In this example, we consider the isotropic wave propagation in heterogeneous media [11] in the

domain [0, 1]d with periodic boundary conditions:

utt = ∇ · (c2(x)∇u). (4.7)

For 2D case, the domain Ω = [0, 1]2 is composed of two subdomains Ω1 = [14 ,
3
4 ] × [0, 1] and

Ω2 = Ω\Ω1. The coefficient c2 is a constant in each subdomain:

c2 =

{

1, in Ω1,
5
37 , in Ω2

(4.8)

With this setup, the exact solution is a standing wave

u =

{

sin(
√
20πt) cos(4πx1) cos(2πx2), in Ω1,

sin(
√
20πt) cos(12πx1) cos(2πx2), in Ω2.

(4.9)
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Figure 4.2: Hamilton-Jacobi equation. L2-error versus CPU time per time step. Sparse grid DG.
t = 1

For 3D case, Ω1 = [14 ,
3
4 ]× [0, 1] × [0, 1] and Ω2 = Ω\Ω1

c2 =

{

1, in Ω1,
3
19 , in Ω2.

(4.10)

In this case, the exact solution is a standing wave

u =

{

sin(
√
24πt) cos(4πx1) cos(2πx2) cos(2πx3), in Ω1,

sin(
√
24πt) cos(12πx1) cos(2πx2) cos(2πx3), in Ω2.

(4.11)

This numerical example has been presented in [23]. Here, we show the sample code and focus

more on the CPU cost study.

The main code is included in the GitHub repository ./example/03_wave_02_heter_media.cpp.

Since the refinement and coarsening procedures are the same as the Hamilton-Jacobi equation, we

only present the time evolution part. Here, we use the interior penalty DG [3] for the spatial dis-

cretization. In the weak formulation, we assemble the matrix for the linear part−σ
h

∑

i,j[u]i+ 1

2
,j+ 1

2

[v]i+ 1

2
,j+ 1

2

where σ is the penalty constant, h is the mesh size, u is the solution and v is the test function.

Then, we use Lagrangian interpolation to approximate c2ux, c
2uy, (c

2)−u and (c2)+u and apply

fast matrix-vector multiplication to evaluate the residual terms.

// --- part 4: time evolution

// -sigma/h * [u] * [v]

DiffusionAlpt operator_ujp_vjp(dg_solu, oper_matx_alpt, sigma_ipdg);
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operator_ujp_vjp.assemble_matrix_flx_ujp_vjp();

dg_solu.set_source_zero();

RK4ODE2nd odesolver(operator_ujp_vjp, dt);

odesolver.init();

for (size_t stage = 0; stage < odesolver.num_stage; stage++)

{

dg_solu.set_rhs_zero();

// interpolation of k * u_x and k * u_y

interp.var_coeff_gradu_Lagr_fast(coe_func, is_intp, fastLagr);

diffuseRHS.rhs_flx_gradu();

diffuseRHS.rhs_vol();

// interpolation of k- * u

interp.var_coeff_u_Lagr_fast(coe_func_minus, is_intp_d0, fastLagr);

diffuseRHS.rhs_flx_k_minus_u();

// interpolation of k+ * u

interp.var_coeff_u_Lagr_fast(coe_func_plus, is_intp_d0, fastLagr);

diffuseRHS.rhs_flx_k_plus_u();

odesolver.rhs_to_eigenvec();

// [u] * [v]

odesolver.add_rhs_matrix(operator_ujp_vjp);

odesolver.step_stage(stage);

odesolver.final();

}

In Table 4.4, we show the convergence study for d = 2, 3 and k = 1, 2, 3. For d = 2, 3 with

k = 1, the errors saturate because we use ǫ = 10−5. Moreover, to reach the same magnitude of

error, the DOF with higher polynomial degree will be much less that that with lower polynomial

degree. In Figure 4.3, we plot the L2 errors versus the average CPU cost per time step. It is

again observed that, the errors with larger polynomial degree k decays faster when reducing the

refinement threshold ǫ and thus increasing DOF. The slopes with the same polynomial degrees in

Figure 4.3 are almost the same with different dimensions. This indicates that the proposed method

is resistant to the curse of dimensionality.
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Table 4.4: wave equation with d = 2, 3 and k = 1, 2, 3. Adaptive sparse grid DG. N = 8, t = 0.01.
d = 2 d = 3

ǫ DOF L2-error Rǫ RDOF DOF L2-error Rǫ RDOF

k = 1

1e-1 784 1.97e-3 - - 3840 4.96e-3 - -
1e-2 2816 4.17e-4 0.68 1.22 16832 1.24e-3 0.60 0.94
1e-3 8496 7.31e-5 0.76 1.58 70656 1.37e-4 0.96 1.54
1e-4 24384 4.18e-5 0.24 0.53 249664 3.86e-5 0.55 1.00
1e-5 56960 4.10e-5 0.01 0.02 862528 3.19e-5 0.08 0.15

k = 2

1e-1 3204 7.72e-3 - - 5238 1.12e-3 - -
1e-2 13842 1.17e-3 0.82 1.29 16794 1.71e-4 0.82 1.61
1e-3 23544 1.12e-4 1.02 4.42 43416 3.33e-5 0.71 1.72
1e-4 40320 1.39e-5 0.91 3.88 117558 5.32e-6 0.80 1.84
1e-5 75042 6.32e-6 0.34 1.26 691632 1.10e-6 0.69 1.73

k = 3

1e-1 1472 3.29e-3 - - 2304 5.59e-4 - -
1e-2 3904 8.00e-5 0.61 1.45 7040 1.28e-4 0.64 1.32
1e-3 8256 7.71e-5 1.02 3.13 18176 1.65e-5 0.89 2.16
1e-4 23488 1.47e-5 0.72 1.58 41472 1.55e-6 1.03 2.87
1e-5 39360 1.15e-6 1.11 4.94 92928 2.58e-7 0.78 2.22
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Figure 4.3: wave equation with d = 2, 3 and k = 1, 2, 3. L2-error versus CPU time per time step.
Adaptive sparse grid DG. N = 8, t = 0.01.
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5 Conclusions and future work

In this paper, we showcased the main components of our adaptive sparse grid DG C++ package

AdaM-DG for solving PDEs. We focused on the details of the implementation, including the data

structure, assembling of the operators, fast algorithms, and further demonstrated how to implement

the package by three examples.

We would like to emphasize that this is still an on-going project, and many efforts are still

needed to improve the software in various aspects. In particular, in the near term, we would

like to improve some details of the code, including a more flexible definition of the computational

domain, C++ implementation to further improve the memory and CPU time efficiency, a clear

and comprehensive code documentation, a user-friendly Python interface, and a more efficient

linear/nonlinear solver such as PETSc [5]. More importantly, we would like to generalize the code

to an HPC platform with efficient parallel implementations on multicore CPU (using MPI) and

GPU (using CUDA). Many aspects of the computational algorithms can also be further developed,

including the hybridization with other numerical discretizations and a multi-domain approach which

is more friendly to heterogeneous computing architecture.
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