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Adaptive sparse grids
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Abstract

Sparse grids, as studied by Zenger and Griebel in the
last 10 years have been very successful in the solution of
partial differential equations, integral equations and classi-
fication problems. Adaptive sparse grid functions are ele-
ments of a function space lattice. Such lattices allow the
generalisation of sparse grid techniques to the fitting of very
high-dimensional functions with categorical and continuous
variables. We have observed in first tests that these general
adaptive sparse grids allow the identification of the anova
structure and thus provide comprehensible models. This is
very important for data mining applications. Perhaps the
main advantage of these models is that they do not include
any spurious interaction terms and thus can deal with very
high dimensional data.
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1 Introduction

Data is currently collected at an enormous rate. We have seen collec-
tions with GBytes, TBytes and even PBytes of data. Increasingly,
not only are more data records collected but the complexity of the
data is growing as well. We are now analysing image and multi-
media data, temporal and spatial data, and text. An important
task in modelling this data is the development of predictive models
or functional relationships between selected features. The identifi-
cation of such predictive models is hampered by the complexity of
the data. This is the curse of dimensionality [2] and results in very
high dimensional function spaces from which the model is selected.
In order to control the complexity we advocate an adaptive strat-
egy where, starting from simple functions (constant, for example),
increasingly complex functions are fitted to the data until the best
approximation is reached. The main question discussed here is how
to choose the function spaces. In particular, we suggest a class of
functions which allows good approximation for a reasonable cost.
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Adaptive function fitting is nothing new. Maybe one of the
most popular tools in machine learning, decision and regression
trees [3, 10] deal with data complexity in an adaptive way. They are
based on a successive partitioning of the data domain and approx-
imating the predictive model with constants on each subdomain.
Piecewise constants, however, do not lead to continuous functions
in the case of real variables. This was rectified by the Multivari-
ate Adaptive Regression Splines (mars) [4], for a stabilised version
of this see [1]. Methods for feature and variable selection allow
substantial simplifications and attack the curse of dimensionality
by dimension reduction. Another approach to adaptive complexity
management can be seen in the Analysis of Variance. Here one first
identifies main effects of the variables and then looks for successively
higher order interactions. This leads to anova decompositions [11]
of the form

f(x1, . . . , xd) = f0 +
∑

i

fi(xi) +
∑
i,j

fi,j(xi, xj) + · · · ,

where the components are successively identified. This approach is
also applied in the mars algorithm and it is suggested in [4] that
typically one needs interactions of order two or three, at most of
order five. Note that, in addition to the computational difficulties,
the interpretation of interactions of many factors gets more prob-
lematic. A simple case of the anova decomposition approach are
the Additive Models [7] and a smoothing approach for anova de-
composition [11].

In recent years, sparse grid techniques [12, 6] have provided a
tool to substantially reduce computational complexity of high di-
mensional problems. They are based on combinations of solutions
on different grids. The framework for sparse grid approximations
are tensor products of hierarchical component function spaces. The
sparse grid approximations are linear combinations of solutions in
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tensor products of appropriately chosen subspaces of the component
function spaces. An adaptive sparse grid has been described in [5].
In the following we discuss a general framework for adaptive sparse
grids for data fitting. We show that lattices of function spaces pro-
vide such a framework. In particular, projection formulas for very
general spaces will be derived, a greedy algorithm will be suggested
and tested for the case of interpolation. The function space lattice
framework also allows the analysis of the complexity of the search
procedure. We will see that this framework includes the earlier ap-
proaches like regression trees and multivariate splines in addition to
the sparse grids.

The next section introduces lattices of function spaces. We also
review a probabilistic model of data fitting. In Section 3 we see how
any function space lattice can be used to construct a new function
space lattice by combination of functions from the primary lattice.
In Section 4 the adaptive search algorithm for the new lattice is
presented and initial comparisons with the traditional sparse grid
and with full grid approximation will be discussed. We conclude
(§5) by mentioning some open questions.

2 Data fitting in lattices of function

spaces

Data fitting consists of finding a function f : T → R such that, for
two random variables X and Y with domains T and R respectively
the expected squared residual

J (f) := E
[
(Y − f(X))2

]
(1)
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is minimised where E[·] denotes the expectation. The solution is
well known to be the conditional expectation

f(x) = E [Y | X = x] , (2)

However, as the joint distribution of X and Y is unknown this
formula cannot be easily applied. To make things more specific, one
determines the function f from a function space V which satisfies

J (f) ≤ J (g) , for all g ∈ V . (3)

We will rely on linear function spaces and can thus represent f by
a linear combination of basis elements bi of V as:

f =
m∑

i=1

γibi . (4)

Inserting this into equation (1) one gets

J (f) = E[Y 2]− 2γT E[Y b] + γT E[bbT ]γ , (5)

and for the coefficient vector γ of the minimising f one obtains:

γ = E[bbT ]−1E[Y b] . (6)

As the probability distribution is not known one approximates
these terms using observed data. For simplicity, we assume that we
have a data set DN = {(X(i), Y (i))} of independent, identically dis-
tributed data. Then, an approximation fλ is found which minimises
the functional

Jλ(f) =
1

N

N∑
i=1

[
Y (i) − f(X(i))

]2
+ λ‖Lf‖2 . (7)

The second term is introduced to reduce the variance of the error
and the parameter λ controls the tradeoff of variance (large λ gives
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simple functions and small variance) and bias (large λ introduces
a potentially large approximation error). From the family of func-
tions fλ the best one uses a smoothing parameter λ:

λ = argmin
λ

E
[
(Y − fλ(X))2 | DN

]
. (8)

We will now assume that the function f is approximated in a
lattice of function spaces Vα where the index α is typically from
a lattice Nd of integer tuples and characterises the complexity (or
information) of the function space Vα . Recall that a lattice is a
partially ordered set in which any two elements have a least upper
bound and a greatest lower bound. The ordering is given in our
case by Vα ⊂ Vβ . The greatest lower bound is the space with index
which contains as components the pairwise minima of the respective
components of the two spaces and so Vα ∩ Vβ = Vα∧β . Examples of
function space lattices include:

1. Functions defined on [0, 1] which are constant on the subinter-
vals [i/2n, (i + 1)/2n] . This leads to Haar wavelets and more
generally, wavelets, which form a chain, the simplest case of a
lattice.

2. Continuous functions on [0, 1] which are linear on the subin-
tervals [i/2n, (i + 1)/2n] , or more generally, splines.

3. When one allows different sizes of subintervalls (for example,
for adaptive local grid refinement) one gets the continuous
functions on [0, 1] which are linear on each [ij/2

n, (ij+1)/2
n] ,

where typically n is fixed.

4. Furthermore, functions f : C → R which are constant on Ai

where
⋃

Ai = C is a partition of the set of classes C.

5. Finally, regression trees and multivariate splines form a lattice.
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An important function space lattice is obtained when the func-
tion space is a tensor product V = V1 × · · ·Vd and each component
function space Vk is hierarchical:

Vj,0 ⊂ Vj,1 ⊂ · · ·Vj,mj
= Vj . (9)

In this case a function space lattice is defined by

Vα = V1,α1 × · · · × Vd,αd
. (10)

The hierarchies of the component function spaces may have a variety
of origins, including: approximation (splines), symmetries (Fourier),
domain knowledge (biological taxonomies) or the data. Given fam-
ilies of projections Pi,αi

: Vi → Vi,αi
one obtains projections Pα =⊗

Pi,αi
. More concisely, one gets directly:

Proposition 1 (Projections in Lattice Spaces) For every lat-
tice space generated from a tensor product of hierarchical spaces
there are linear operators Pα on V with range R(Pα) = Vα and
PαPβ = Pα∧β . Furthermore P 2

α = Pα and PαPβ = PβPα .

For a fixed λ (which can be chosen as before) one now looks for
a function fα such that

Jλ(fα) ≤ Jλ(f) , for all f ∈ Vα . (11)

The choice of the index α is done adaptively, where one starts
with α = 0 and obtains a chain 0 � α1 � α2 . . . where the index
is determined to get the best fα such that

αk+1 = argmin
β�αk

E
[
(Y − fβ(X))2|DN

]
. (12)

(As before the expectation will have to be estimated from the data.)
One then gets a chain of approximation spaces V0 ⊂ Vα1 ⊂ Vα2 · · · ⊂
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Vαm and, starting from the top, one improves the quality through
pruning by choosing the best α to be

α′
k−1 = argmin

β�α′
k

E
[
(Y − fβ(X))2|DN

]
. (13)

This algorithm may, in many cases, give a reasonable approxima-
tion of f . For higher dimensions the approximation may contain
many degrees of freedom which are wasted, as they are not used to
model anything useful, just noise. In general, however, lattices of
function spaces provide a useful tool in the adaptive approximation
of functions from very large and high-dimensional function sets.

3 Combination of function spaces

A common difficulty of the tensor-product based lattices is that to
obtain a good approximation order high dimensional spaces are re-
quired. Sparse grid approximations [12] combine several spaces from
the lattice to get better approximations at lower costs. In the com-
bination technique [6] the appropriate multiples of the lower order
approximations are added up to form the higher order approxima-
tions. In this section we see how these ideas can be implemented
adaptively, in particular, how the multiples in the combination tech-
nique are updated when new spaces are included in the combination.

In ordered sets a downset I is a subset which contains with any
elements all the smaller elements, that is,

α ∈ I and β ≤ α ⇒ β ≤ I . (14)

The set of all downsets O(A) of a lattice A forms a lattice of subsets
and for each I ∈ A we denote by ↓ I the smallest downset which
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Figure 1: Cover for the case of N2 and the combination lattice.

contains I. The the combination space lattice is

VI =
∑
α∈I

Vα . (15)

The combination space is a subspace of the lowest upper bound,
VI ⊂

∧
α∈I Vα . While equality holds for chains, the combination

space can be substantially smaller for more complex lattices. In [5]
these sets I are called active indices.

The fitting in lattice spaces algorithm of the previous section
is now applied to the combination space lattice. It is instructive
to compare the cover relation α � β in the original lattice and the
combination lattice. Recall that β covers α or α � β if α ≤ β and
there is no element γ such that α ≤ γ ≤ β . In the case of the lattice
of indices Nd one has α � β when |α − β| = 1 , whereas in the the
second lattice one has I � J if J = I ∪ {α} such that for all β � α
one has α ∈ I , see Figure 1.

The projections of the original lattice space give rise to projec-
tions in the combined space and one has:

Proposition 2 [Projection theorem] If the lattice Vα has projec-
tions Pα as in Proposition 1 then there are linear operators PI on V
with range R(PI) = VI such that PIPJ = PI∩J . Conversely, if PI is
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a family of projections with these properties, then Pα = P↓α defines
a family of projections as in Proposition 1.

Proof: We define the linear operators

PI = 1−
∏
α∈I

(1− Pα) (16)

As PαPβ = Pβ if β ≤ α one gets PI = 1 −
∏

α∈Max I(1 − Pα) .
Similarly, it follows that

PI =
∑
α∈I

cαPα (17)

and the combination coefficients cα are zero if α is not in the sub-
lattice generated by Max I , the maximal elements of I. Thus the
range of PI is VI .

Finally, introduce Q = PIPJ − PI∩J . See that the range of
this operator is VI∩J . Furthermore, VI∩J is in the nullspace of Q.
Observe that PI maps elements of VI onto themselves, that is, PI

is a projection and it follows that Q2 = Q and thus Q = 0 . The
converse follows directly. ♠

A direct consequence of the projection theorem provides formu-
las to compute the projections of a covering element. The proof is
obtained by using the basic properties of PI .

Corollary 3 (Updating Formulas) Let J = I ∪ {β} be a cover-
ing element of I and the family of projections PI as in Proposition 2
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and Pα = P↓α . Then one has

PJ − PI = (1− (1− Pβ))
∏
α∈I

(1− Pα) = PIPβ (18)

= Pβ

∏
α∈Max I

(1− Pα) (19)

=
∑

〈Max I,β〉

dαPα . (20)

The combination coefficients dα of the update satisfy dβ = 1 and
dγ∧α = −dγ for all γ and α ∈ Max I .

With these tools we now implement the standard lattice space al-
gorithm for fitting.

4 The adaptive algorithm and first

results

Using the updating formulas from Section 3 we now implement the
lattice space adaptive fitting algorithm for the combination lattice,
see Algorithm 1.

The grids obtained with this method range from very sparse
grids for additive functions f(x) = f1(x1) + · · ·+ fd(xd) , somewhat
less sparse grids for very smooth functions and relatively full grids
for functions with near singularities, see Figure 2.

The adaptive techniques deal with the curse of dimensionality
by approximating in simpler spaces. However, the search space for
the method can be very large. We have in particular:
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Figure 2: Three examples index sets I for the combination method
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Algorithm 1: The fitting algorithm for the combination spaces

I = 0
f0 = P0f
while J (fI) > ε do

J = argminJ ′�I J (PJ ′f)
if J (PJf) < J (fI) then

I = J , possibly pruned
else

choose simple (random) I close to old ones
fI = PIf

Proposition 4 For a given index set I the search space of the adap-
tive algorithm is of the size:

σ(I) = |Min IC | , (21)

where |Min IC | denotes the size of the set of minimal elements of
the complement of (the downset) I.

Proof: The search needs to be done over all the elements β 6∈ I
which cover elements in I. These are just the minimal elements
of IC . ♠

Some special cases illustrate the variety of sizes possible:

• In many cases, only a finite number of features contribute
to the predictor. This is modelled by J ⊂ Nk and I =
{(j, 0, . . . , 0) | j ∈ J} . In this case the algorithm is scal-
able in the dimension: σ(I) = σ(J) + d− k . This means that
the search will have to consider either including one of the
other d− k variables or improving the model with the current
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variables. Typically this bound will be combined with one of
the bounds below.

• In the case of additive models one has I = {m1e1, . . . ,mded}
for some mi ∈ N . In the case where all mi 6= 0 one gets
σ(I) = d +

(
d
2

)
=

(
d+1
2

)
as either an interaction between two

variables is included or alternatively, the additive model is
improved.

• In the case of full grids the options are to refine any of the
variables and so the search space is of size σ(I) = d .

• Sparse grids may occur for smooth functions which depend on
all the variables. Here one has σ(I) =

(
m+1
d−1

)
= O(md−1/(d−

1)!) where m = |α| for α ∈ Max I .

While sparse and even full grids can be obtained from the adaptive
algorithm, one can also recast the sparse and full grid algorithms in
the combination framework, see Algorithms 2 and 3. Note that for a
sparse grid derived from a m×m×· · ·×m grid one requires O(m×
log2(m)m−1) storage space and time and for an m×m×· · ·×m grid
the full grid approximation requires O(md) storage space and time.

Algorithm 2: Sparse Grid Algorithm

I = 0
f0 = P0f
while J (fI) > ε do

J = argminJ ′�I |J |
I = J
fI = PIf

Finally, we have implemented the algorithm in order to pro-
vide a proof of concept. We have used the algorithm to compute
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Algorithm 3: Full Grid Algorithm – Combination Version

I = 0
f0 = P0f
while J (fI) > ε do

J = argminJ ′�I |J |∞
I = J
fI = PIf

an adaptive approximation for a given function by interpolation
which provides a projection of the kind required. In particular we
display in Figure 3 the results for the function f(x1, x2, x3, x4) =
exp[−x2

1]+exp[−(x2
1 + x2

2)] which is four-dimensional but only three
dimensions contribute and at most two dimensional components oc-
cur. The error term was estimated using a random test data set.
See the “plateaus” for the full and sparse grids where a further
increase in complexity (likely related to the variable x4 and inter-
actions between x1 and the other variables) did not improve the
approximation. This is actually a type of overfitting.

5 Conclusion

We have seen that function space lattices are a basic tool for data
fitting in high dimensions. Starting with any function space lat-
tice one can obtain a flexible approximation space through combi-
nation. We have found in further experiments that the algorithm
presented here is good in recovering the anova structure of the
underlying function and we have been able to recover functions for
cases with up to around 40 variables. Many open questions re-
main, however. Some of these questions revolve around the anova
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structure of functions which occur in practice. Can functions be
reduced to ones with relatively small numbers of variables? Are
the interactions limited? And how do these properties relate to the
smoothness of functions? We believe that these questions are closely
related to the concentration of measure, see [8]. The combination
technique is exact if one has available the projections Pα . What if
one only has approximations of such projections? The sparse grid
technique has been applied for the finite element solution of par-
tial differential equations, and in some cases one can show that the
combination method actually corresponds to extrapolation [6]. It
would be of interest to understand when the adaptive method can
really recover the exact anova structure, and under which condi-
tions an anova structure is stable, that is, not further modified in
later iterations. Finally, we are now working on the implementa-
tion of the technique using the penalised least squares fitting algo-
rithm tpsfem [9] and plan to have a first prototype available soon,
see http://datamining.anu.edu.au for further information.
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