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*e sparrow search algorithm is a new type of swarm intelligence optimization algorithm with better effect, but it still has
shortcomings such as easy to fall into local optimality and large randomness. In order to solve these problems, this paper proposes
an adaptive spiral flying sparrow search algorithm (ASFSSA), which reduces the probability of getting stuck into local optimum,
has stronger optimization ability than other algorithms, and also finds the shortest and more stable path in robot path planning.
First, the tent mapping based on random variables is used to initialize the population, which makes the individual position
distributionmore uniform, enlarges the workspace, and improves the diversity of the population.*en, in the discoverer stage, the
adaptive weight strategy is integrated with Levy flight mechanism, and the fusion search method becomes extensive and flexible.
Finally, in the follower stage, a variable spiral search strategy is used to make the search scope of the algorithm more detailed and
increase the search accuracy. *e effectiveness of the improved algorithm ASFSSA is verified by 18 standard test functions. At the
same time, ASFSSA is applied to robot path planning. *e feasibility and practicability of ASFSSA are verified by comparing the
algorithms in the raster map planning routes of two models.

1. Introduction

With the continuous development of scientific research,
more and more swarm intelligence optimization algorithms
have been proposed. *e swarm intelligence optimization
algorithm basically abstracts a series of formulas based on
the life characteristics or behavior rules of organisms or
things and finds high-quality solutions in a certain solution
space based on these formulas. Scholars have proposed a
series of swarm intelligence optimization algorithms
through the behaviors of ant, cat, whale, wolf, and others.
Among them, the sparrow search algorithm (SSA) [1], which
finds optimal solutions through the sparrow foraging pro-
cess, is a novel swarm intelligence optimization algorithm
proposed by two scholars, Xue and Shen in 2020. *is al-
gorithm has fewer population roles and simple principles,
and it is easy to understand. Compared with gray wolf
optimizer (GWO) [2] and particle swarm optimization
(PSO) [3], SSA has higher accuracy, stronger convergence,
and better optimization capabilities. Moreover, SSA is now
more and more applied in practical engineering. However,

SSA also has the common shortcomings of swarm intelli-
gence algorithms, such as easy to get stuck in local and
excessive randomness during initialization.

In order to overcome these shortcomings of the swarm
intelligence optimization algorithm, scholars have studied
the algorithm and successfully applied to practical engi-
neering problems. Lei et al. [4] applied the Levi flight
strategy in SSA to avoid local convergence and improve
global optimization capabilities.*ey combine the improved
sparrow search algorithm with DV-Hop to enhance the
positioning accuracy in WSN. Xin et al. [5] used tent chaotic
sequence to initialize the population in turn, and Gaussian
mutation operator and tent chaotic disturbance balance the
global individual position. A series of strategies increase the
population diversity of the algorithm, strengthen the local
search ability of the algorithm, and improve the possibility of
jumping out of the local area. Tang et al. [6] introduced a
cubic mapping strategy to initialize the population, avoiding
the decrease of population diversity in the later iterations.
*e reverse learning strategy and elite particles are added to
effectively prevent the algorithm from falling into a local
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optimum. *e sine and cosine optimization algorithm is
incorporated into the follower position update to reduce
search blind spots and balance algorithm development and
search capabilities. Finally, a Gaussian walk strategy is used to
help the algorithm leave the stagnant state. *e good search
ability of the improved algorithm is tested through experi-
ments. Xin et al. [7] also proposed an improved algorithm,
adding the flying thoughts in the bird swarm algorithm to the
location update of the discoverer and the follower, ensuring
global convergence, increasing the diversity of the population,
and being able to jump out of the local optimum. In this
paper, the improved algorithm is also applied to the multi-
threshold image segmentation method, which solves the
original low segmentation accuracy and slow segmentation
speed. Mao et al. [8] used sin-cosine algorithm, nonlinear
dynamic learning factor, and Levy flight strategy to improve
the algorithm, speed up the convergence speed, and
strengthen the local escape ability. Song et al. [9] proposed to
introduce the skew tent map-based chaotic method to ini-
tialize the population and strengthen the individual quality of
the population. After that, the nonlinear decreasing weight
andmutation operator strategies were combined in each stage
to dynamically change the search space, increase the diversity
of the population, and improve the ability to jump out of the
local optimum. Wu and others [10] used tent chaotic map-
ping, adaptive weight control step size, Cauchy mutation, and
Gaussian mutation to improve the original algorithm in turn.
Such a series of strategies balance the global search and local
search capabilities, enhance the local development capabilities
of the algorithm, and improve the search accuracy. Finally, the
improved algorithm is applied to the mine intelligent ven-
tilation system, which proves the good optimization effect of
the improved algorithm. Zhang and Ding [11] initialized the
population by logistic mapping. In the discoverer phase and
the early warning phase, adaptive parameters are introduced
to expand the search range of the discoverer, dynamically
adjust the number of early warning individuals, and better
help the sparrow individuals find the best position. *e
mutation operator strategy is added to the global process to
increase the population diversity. *e whole improved al-
gorithm enhances the global search capability of SSA. Finally,
the improved CSSA is applied to the stochastic configuration
network. *e results show that CSSA has good performance
and improves the regression performance of SCN in solving
large-scale data problems. Zhang et al. [12] used the sine
cosine strategy to change the way the discoverer updates the
location, and improve global and local search capabilities of
the algorithm. A labor cooperation structure is added to the
discoverer stage and the early warning stage, allowing the
discoverer and the early warning individual to share their
locations to achieve cooperation, so as to converge to the
global optimal solution faster and more stably.

Although these improved strategies can better improve
the optimization ability of each algorithm, they do not
change the search mechanism of each algorithm itself. And
they only improved the search ability of the algorithm in the
neighborhood space, and the learning rate was not high,
resulting in the algorithm still having drawbacks.*is means
that when faced with high-dimensional complex problems,

these algorithms may also be stuck into the local optimal
situation. *erefore, based on the research of many scholars,
this paper proposes the adaptive spiral flying sparrow search
algorithm (ASFSSA).

In the following paper, Section 2 gives an introduction
to the overall work and motivation of the algorithm.
Section 3 introduces the sparrow search algorithm. Section
4 illustrates the improvements made by the adaptive spiral
flying sparrow search algorithm. Section 5 compares and
analyzes the improved algorithm with other intelligent
algorithms. In Section 6, the improved algorithm is applied
to path planning and compared with the other three al-
gorithms in two different grids. Section 7 summarizes this
paper.

2. Related Work and Motivation

In order to improve the search speed and convergence
accuracy of individual sparrows and reduce the possibility of
falling into the local optimum, adaptive weights and Levy
flight strategies are used in the discoverer stage. In order to
make the individual sparrow search more detailed and get a
better position, a variable spiral search strategy is introduced
in the follower stage. *e higher the quality of the solution,
the better the search ability.

To verify the convergence and optimization ability of the
proposed algorithm, six algorithms are used to compare the
optimization effects of 18 test functions. As can be seen from
the experimental results, the adaptive spiral flying sparrow
search algorithm has more significant advantages than other
algorithms. Finally, for the purpose of verifying the prac-
ticability and performance of the algorithm better, the four
algorithms are applied to the path planning of the robot. *e
results show that the path planning of the adaptive spiral
flying sparrow search algorithm is relatively stable and the
cost is the least, which reduces the constraints of the im-
mature and randomness in the path planning of the previous
algorithms.

3. Sparrow Search Algorithm

*e sparrow population is divided into two roles, namely,
the discoverer and the follower. *ey have three behaviors:
foraging, following, and reconnaissance. *e task of the
discoverer is to find food and inform the follower of the
location of the food. *erefore, the discoverer needs to
search in a large area, and the foraging range of the follower
is generally small. *is is the formula for updating the
position of the discoverer:

Xt+1
i,j �

Xt
i,j · exp

−t

α ·M
( ), if R2 < ST,

Xt
i,j + Q · L, if R2 ≥ ST.

 (1)

In formula (1), t andM, respectively, denote the current
number of iterations and the maximum number of iter-
ations. Xi,j represents the location of the i-th sparrow, and j
is the representative dimension. In the above formula, α
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and R2 are both a random number from 0 to 1 (not zero),
and R2 is an important parameter that controls the indi-
vidual’s flight behavior. ST (ST ∈ [0.5, 1]) is a safety
threshold and an important parameter to measure whether
the location of the discoverer is safe. L is a 1 ×D matrix
with all elements of 1. If R2 < ST, it means that the current
location is temporarily safe, there are no predators in the
surrounding environment, and the discoverer can search
for food in a large area. If R2 ≥ ST, it means that the
predator’s trace is found at the current location, and the
discoverer needs to go to other safe areas for foraging
activities at this time.

*e location update of followers is described as follows:

Xt+1
i,j �

Q · exp
Xt

worst −X
t
i,j

i2
 , if i> n

2
,

Xt+1
P + Xt

i,j −X
t+1
P

∣∣∣∣∣ ∣∣∣∣∣ · A+ · L, otherwise.


(2)

In formula (2), Xt+1
P refers to the optimal position

occupied by the discoverer in the t + 1-th iteration so far
(the t + 1-th iteration has not ended) and Xt

worst represents
the worst position occupied by the group in the t-th it-
eration. A is a 1 ×D matrix, and the elements in the matrix
are randomly assigned values of 1 or −1, and
A+
�AT(AAT)−1. If i > n/2, this means that the current

follower is at the edge of the entire population and has no
food. At this time, the follower needs to go elsewhere for
food. Otherwise, the follower will go after the pace of the
discoverer for food.

When being aware of the danger, the sparrow population
will make antipredatory behavior:

Xt+1
i,j �

Xt
best + β · Xt

i,j −X
t
best

∣∣∣∣∣ ∣∣∣∣∣, if fi ≠fg,

Xt
i,j +K ·

Xt
i,j −X

t
worst

∣∣∣∣∣ ∣∣∣∣∣
fi − fw( ) + ε

 , if fi � fg.


(3)

In formula (3), Xt
best is the global optimal solution ob-

tained in the t-th iteration. In the above formula, β, K, and ε
are all parameters in the formula. β is a random number that
obeys the standard normal distribution, and it is used to
control the step size. K is an arbitrary random number from
-1 to 1, it represents the direction in which the individual
sparrow moves, and it is also a step control parameter. ε is a
relatively small constant, and its function is to prevent the
denominator from being zero. fi represents the fitness value
of the i-th individual, and fg and fw are the best fitness
value and the worst fitness value of the current iteration
number, respectively.

If fi>fg, then this indicates that the individual is at the
edge of the population and is easily preyed by natural en-
emies. If fi�fg, then this means that the individual is located
in the center of the population. At this time, the sparrow
needs to be close to other individuals to reduce the prob-
ability of being captured.

4. Adaptive Spiral Flying Sparrow
Search Algorithm

4.1. Tent Chaotic Mapping Based on Random Variables.
Because SSA has the shortcoming of large randomness, it is
decided to introduce orderly and uniform tent mapping to
improve it. Many scholars have applied tent mapping to
solve the optimization problem [13]. However, tent mapping
is not very stable. In [7], in order to reduce this influence,
tent mapping based on random variables was adopted,
which has a good effect. *erefore, in this paper, the tent
mapping strategy based on random variables is introduced
to improve the initialization of SSA, so that the initialization
of the population is more orderly, and the controllability of
the algorithm is enhanced. Its specific formula is as follows:

zi+1 �

2zi + rand(0, 1) ×
1

N
, 0≤ z≤ 1

2
,

2 1 − zi( ) + rand(0, 1) ×
1

N
,

1

2
≤ z≤ 1.


(4)

*e expression after the Bernoulli transformation is

zi+1 � 2zi( )mod1 + rand(0, 1) ×
1

N
. (5)

In formula (5),N is the number of particles in the chaotic
sequence.

According to the characteristics of the tent mapping, the
sequence flow for generating chaos in the feasible domain is
as follows:

(1) Randomly generate the initial value z0 in (0, 1), and
let i� 1.

(2) Perform iteration by using that formula (5) to
generate a z sequence, and i is increased by 1.

(3) Stop if the number of iterations reaches the maxi-
mum, and store the generated z sequence.

4.2. Adaptive Weighting. Weight strategies are common in
particle swarm optimization algorithms [14]. Generally, the
particle swarm algorithm reduces to some extent the trap-
ping into local optimum by adaptively changing between the
set maximum and minimum values. Inspired by this, this
paper adds an inertia weightwwhich varies with the number
of iterations in the discoverer stage of sparrow optimization.
In the initial stage of the algorithm, it weakens the influence
of random initialization and balances the Levy flight
mechanism below, so as to enhance the local search and
global search of the algorithm.

*e discoverer guides other individuals in the pop-
ulation to search for food, so the introduction of adaptive
weights improves the quality of individual locations, en-
abling other individuals to converge faster to optimal
locations, and overall accelerates the convergence rate.
Based on the characteristics of sparrows, the formula for
adaptive weights is as follows:
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w(t) � 0.2 cos
π

2
· 1 −

t

itermax

( )( ). (6)

*emeaning of formula (6) is that w has the property of
nonlinear change between [0, 1]. According to the char-
acteristics of cos function, the weight value is smaller at the
beginning of the algorithm, but the optimization speed is
faster and the later weight value is larger, but the change
speed is slower, so the convergence property of the algorithm
is balanced. *e improved discoverer location is updated as
follows:

Xt+1
i,j �

w(t) ·Xt
i,j · exp

−i

α · itermax

( ), if R2 < ST,

w(t) ·Xt
i,j + Q · L, if R2 ≥ ST.


(7)

By introducing adaptive weights to dynamically adjust
the position changes of sparrows, different guidance modes
for the discoverer at different times make the algorithm
search flexible. As the number of iterations increases, the
individual sparrows converge toward the optimal position,
and a larger weight makes the individual move faster, thus
increased the convergence speed of the algorithm.

4.3. Levy Flight Mechanism. In SSA, there are few roles in
the population, and the same role update position formula
is the same, which will result in multiple individuals in the
same optimal position. Too high solution repetition rate
will reduce the efficiency of the algorithm, which is not
conducive to the optimization of the algorithm. *e dis-
coverer has a wide search range and globality, and the
adaptive weighting strategy is introduced to effectively
improve the convergence effect. However, when facing the
high-dimensional complex problems, there is still a
probability of falling into local optimum. *erefore, the
Levy flight strategy is introduced to improve the ran-
domness of the algorithm solution, thereby enriching the
diversity of population positions. *is can also effectively
improve the operating efficiency of the algorithm.

Levy flight obeys the Levy distribution. Principle [15]
and the Levy distribution is shown in Figure 1. It uses a
random long- and short-distance mechanism to cover a
large area. After adding the Levy flight mechanism, the
performance of the proposed algorithm can be improved.

*e location update format [16] for joining Levy flight
strategy is as follows:

xi′(t) � xi(t) + l ⊕ levy(λ). (8)

In formula (8), xi(t) represents the position of the i-th
individual in the t-th iteration, ⊕ is an arithmetic symbol
representing point-to-point multiplication. l denotes a step
length control parameter, which is obtained by this for-
mula: l � 0.01(xi(t) − xp). levy(λ) is a path that obeys the
Levy distribution, which represents the introduced Levy
flight strategy and satisfies the following:
levy～u � t− λ, 1< λ≤ 3.

Because Levy distribution is very complex, Mantegna
algorithm is usually used to simulate it [17, 18]. *e formula
for calculating the step size is as follows:

s �
μ

|v|1/c
,

μ ∼ N 0, σ2μ( ),
v ∼ N 0, σ2v( ),

σμ �
Γ(1 + c)sin(πc/2)

c · Γ[(c + 1)/2] · 2(c+1)/2
{ }1/c

.

(9)

Among them, σv � 1, and c is generally 1.5.
*e introduction of the Levy flight strategy makes the

sparrows more flexible at this stage and can also lead other
individuals to find a better location, free from the constraints
of local extremes. *erefore, the combination of Levy flight
mechanism and adaptive weights balances the search
method, and the quality of each solution obtained is im-
proved to a certain extent, which greatly improves the search
ability of the algorithm.

4.4. Variable Spiral Search Strategy. Followers update dy-
namically with the location of the discoverer, which leads to
blindness and singularity in the way they search. Inspired by
the rotation operation of the whale algorithm [19, 20], a
variable spiral location update strategy is introduced tomake
follower location updates more flexible, develop a variety of
search paths for location updates, and balance the global and
local search of the algorithm. *e spiral search diagram is
shown in Figure 2.

In the follower location update process, the helix pa-
rameter z cannot be a fixed shape, which results in mo-
notonous search methods and the possibility of falling into
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Figure 1: Levy flight diagram.
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local optimum, thus weakens the search ability of the al-
gorithm.*e parameter z is designed as an adaptive variable
to dynamically adjust the spiral shape of the follower search,
which broadens the ability of the follower to explore the
unknown region, improves both the search efficiency and
the global search performance of the algorithm.*e formula
for the variable spiral position update strategy is as follows:

Xt+1
i,j �

ezl · cos(2πl) · Q · exp
Xt

worst −X
t
i,j

i2
 , if i> n

2
,

Xt+1
P + Xt

i,j −X
t+1
P

∣∣∣∣∣ ∣∣∣∣∣ · A+ · L · ezl · cos(2πl), otherwise,

z � ek·cos π· 1− i/imax( )( )( ).


(10)

*e parameter z varies according to the number of it-
erations and is composed of an exponential function based
on e. *e size and amplitude of the helix are dynamically
adjusted according to the properties of cos function. k is the
coefficient of change. According to the optimization char-
acteristics of each function, in order to make the algorithm
have a suitable search range, k� 5. L is a uniformly dis-
tributed random number of [−1, 1]. With the range of
follower position updating is from large to small, more
quality solutions are found in the early stage, and late op-
timization reduces the increase of idle work, which improves
the global optimal search performance of the algorithm. At
the same time, according to the spiral characteristics, the
optimization accuracy of the algorithm is improved to a
certain extent.

4.5. Process for Improving Sparrow Search Algorithm. *e
sparrow search algorithm has better optimization perfor-
mance than other algorithms, but it still depends on the
initial population so that it is easy to fall into a local optimal
state. In order to improve these shortcomings, this paper

proposes an adaptive spiral flying sparrow search algorithm.
Initially, the population was initialized by tent chaotic
mapping based on random variables to provide adequate
preparation for the discoverer’s optimization.*en, adaptive
weights and Levy flight strategies were introduced to make
the discoverer’s position update method more extensive and
flexible, and then a variable spiral was proposed.*e strategy
makes the follower’s search more detailed, avoids premature
phenomenon, and speeds up the optimization speed of the
algorithm.

*e specific implementation steps of ASFSSA are as
follows:

Step 1: initialize the sparrow population parameters, for
example, the total population pop, the total number of
discoverers pNum, the total number of iterations iter,
and the solution accuracy ε.

Step 2: use tent mapping to initialize the position of
population individuals, and generate pop sparrow
individuals.

Step 3: use the correlation function to calculate the
fitness value fi of each population individual, and find
themaximum fitness valuefg and theminimum fitness
value fw.

Step 4: sort the population according to the fitness
value.

Step 5: select the individuals with the top pNum fitness
as the discoverer, and the rest are followers, and use
formulas (7) and (8) after adding the strategy to update
the position of the discoverer.

Step 6: use formula (10) to update the positions of pop-
pNum followers.

Step 7: use formula (3) to update the position of the
sparrow that is aware of the danger.

Step 8: after one iteration is completed, recalculate the
fitness value fi of each individual, and update the
maximum fitness value fg, the minimum fitness value
fw, and the corresponding position.

Step 9: judge whether the algorithm has reached the
maximum number of iterations or the accuracy of the
solution. If it has reached, the optimization result will
be output; otherwise, it will return to Step 4.

*e specific flowchart is shown in Figure 3.

5. Algorithm Performance Test

To test the optimization capability of the improved algo-
rithm, 18 standard test functions are selected to verify the
performance.*e test functions are listed in Table 1.*e first
10 are unimodal functions, the middle 4 are complex
multimodal functions, and the last 4 are fixed-dimension
function. In order to increase the experimental convincing, it
is necessary to compare the particle swarm algorithm (PSO),
gray wolf algorithm (GWO), beetle swarm optimization
(BSO), SSA, CSSA, and the proposed algorithm optimization
effect. Among them, CSSA is an improved sparrow search
algorithm in the literature [5], and BSO [21] is a new

Figure 2: Schematic diagram of spiral search.
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algorithm which combines beetle antennae search algorithm
(BAS) [22] and PSO, and the research on this algorithm is
very popular. *e complexity and parameters of all algo-
rithms are shown in Table 2.

*e population number of all algorithms is 100; the
number of iterations is 200. In PSO, c1� c2� 2,w� 0.728.*e
BSO parameter settings are as follows: eta� 0.95, c� 2, k� 0.4,
step0� 0.9, and step1� 0.2. *e upper and lower limits of all
algorithms are given in the test function table. *e experi-
mental environment is MATLAB 2018b, the Windows 10
operating system, and the running memory is 8G. In order to
enhance the experimental persuasion, exclude the influence of
accidental events, and count the minimum (min) value, av-
erage (aver) value, and standard (std) deviation of each al-
gorithm, which reflect the optimization ability and stability of
each algorithm. *e comparison table of optimization effect
of each algorithm is shown in Table 3, and the convergence of
each algorithm function is shown in Figure 4.

From Table 3, we can see that the ASFSSA has the best
performance in function optimization, especially in F1–F4,
F7–F9, F16, and F18, which can find the optimal value each time.
*e results of CSSA come later, and PSO and GWO are the
worst, especially when the boundary is complex. *e BSO has
good optimization characteristics in the F10, F11, and F17
functions, but the effect in other algorithms has great short-
comings, and the effect is the worst. It can be seen that BSO has
the limitation of the optimization ability. Among these three
functions, the optimization effect of ASFSSA is second only to
it. Generally speaking, ASFSSA has a good convergence speed
and accuracy on unimodal functions, and it has a strong ability
to resist local extremes on multimodal functions. *erefore,
the introduction of multiple strategies significantly improves
the stability and searching ability of the algorithm.

From Figure 4, we can see that ASFSSA has a significant
improvement in convergence speed and accuracy. Especially,
the ASFSSA has very fast convergence speed and very high
convergence precision in the functions of F1–F5, F7–F10, F15-F16
and has obvious ability of resisting local attraction in the
functions of F5, F10, and F15. ASFSSA has good convergence
effect in F6, F13, F14, and F17 functions, but there a few dif-
ferences with other algorithms. BSO has better performance in
the three functions of F11-F12 and F18, and ASFSSA has the
second best performance, but BSO has worse performance in
the other functions, and some functions have worse perfor-
mance than PSO.*e convergence effect of other algorithms is
insufficient. *us, it can be seen that the introduction of
multistrategy makes the algorithm get rid of the insufficient
search mode in the optimization process, open up a more
flexible and detailed search, and improve the convergence
ability of the algorithm.

5.1. Wilcoxon Rank Sum Test. It is not comprehensive to
simply calculate the indexes of the running results of each
algorithm. In order to highlight the superiority of the
ASFSSA algorithm, it is necessary to carry out the statistical
test. In order to reflect the fairness, the Wilcoxon rank sum
test [20] is used to verify whether the results of each run of
ASFSSA are significantly different from those of other al-
gorithms at the P � 5% significance level. If P< 5%, it can be
considered that there is a significant difference between the
two algorithms; if P> 5%, it means that the difference be-
tween the two algorithms is not obvious; that is, the

YES 

NO 

Start 

Initialize the population by formula 
(5), and determine the population 
number and number of iterations. 

End 

Has the maximum number
of iterations or solution accuracy

been reached? 

Calculate the �tness value of each 
individual and �nd the maximum 

and minimum values. 

Using formula (7) and formula (8) 
updating the discoverer’s location. 

Using formula (10) updating the 
follower’s location. 

Update the location of individuals 
who are aware of the danger through

formula (3). 

Sort individuals by �tness value.

Calculate the �tness value, and 
update the best and worst �tness 

values and their positions. 

Output best position and minimum 
�tness.

Figure 3: Algorithm flowchart.
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Table 3: Table of optimization results of each algorithm.

Function Algorithm Best Aver Std

F1(x)

ASFSSA 0 0 0
BSO 8.15851 26.3851 14.9876
CSSA 0 0 0
SSA 0 5.192E− 251 0
GWO 1.4406E− 103 1.56961E− 97 5.36616E− 97
PSO 3.8599E− 12 3.0697E− 11 2.7076E− 11

F2(x)

ASFSSA 0 0 0
BSO 0.212219 1.8836 2.13278
CSSA 0 3.8973E− 160 2.1346E− 159
SSA 0 2.2022E− 144 8.4437E− 144
GWO 1.6295E− 25 2.9050E− 23 4.4358E− 23
PSO 8.9056E− 08 2.5055E− 07 1.4584E− 07

F3(X)

ASFSSA 0 0 0
BSO 0.0004945 15.1459 34.9405
CSSA 0 4.2858E− 192 0
SSA 0 7.7137E− 210 0
GWO 2.2250E− 04 0.029431 0.070791
PSO 22.2592 49.9596 18.1286

F4(X)

ASFSSA 0 0 0
BSO 0.01503 0.015026 1.40522
CSSA 0 4.1077E− 141 2.2499E− 140
SSA 4.0636E− 14 1.9036E− 07 2.9266E− 07
GWO 2.4178E− 06 6.4757E− 06 2.1850E− 06
PSO 8.1218E− 14 6.9044E− 13 7.0838E− 13

F5(X)

ASFSSA 2.5510E− 09 9.6950E− 06 3.977E− 05
BSO 553.7041 2543.2161 1657.5282
CSSA 1.3357E− 08 2.6062E− 04 0.0015114
SSA 4.7653E− 09 0.00028325 0.00049636
GWO 45.8565 47.3855 0.89355
PSO 89.4507 234.8606 104.6002

F6(X)

ASFSSA 1.2670E− 17 2.5726E− 15 4.5874E− 15
BSO 1.4135E− 19 2.7997E− 10 1.4985E− 09
CSSA 1.2204E− 17 8.1489E− 15 1.1839E− 14
SSA 4.0636E− 14 1.0936E− 07 2.9266E− 07
GWO 2.4178E− 06 6.4757E− 06 2.185E− 06
PSO 8.1218E− 14 6.9044E− 13 7.0838E− 13

F7(X)

ASFSSA 0 0 0
BSO 10.9679 76.8897 44.1926
CSSA 0 2.6949E− 153 1.476E− 152
SSA 0 6.9176E− 139 3.7889E− 138
GWO 1.1787E− 06 2.2057E− 05 2.7228E− 05
PSO 30.8725 58.7189 18.8337

F8(X)

ASFSSA 0 0 0
BSO 1.4696 9.2489 5.9505
CSSA 0 1.7622E− 279 0
SSA 0 2.3385E− 270 0
GWO 6.7719E− 06 5.7427E− 05 5.9614E− 05
PSO 0.017546 0.18078 0.14242

Table 2: *e complexity and parameters of each algorithm.

Algorithm Time complexity Space complexity Iteration and population Parameter setting

ASFSSA

O (P×M×D) O (N×D) Iteration� 200, population� 100

ε� 1e− 50
BSO eta� 0.95, c� 2, k� 0.4, step0� 0.9, step1� 0.2
CSSA ε� 1e− 50
SSA ε� 1e− 50
GWO —
PSO c1� c2� 2, w� 0.728
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Table 3: Continued.

Function Algorithm Best Aver Std

F9(X)

ASFSSA 0 0 0
BSO 7.8221E− 46 2.0384E− 39 3.2288E− 39
CSSA 0 6.07E− 95 3.3246E− 94
SSA 0 8.7599E− 97 4.798E− 96
GWO 0 9.7069E− 251 0
PSO 1.6341E− 29 6.6714E− 24 1.2043E− 23

F10(X)

ASFSSA 1.0044E− 05 9.5155E− 05 8.3380E− 05
BSO 0.0038813 0.009674457 0.004701
CSSA 9.9226E− 06 0.00026062 0.00016246
SSA 5.318E− 05 0.00029582 0.00025735
GWO 0.00040374 0.0020252 0.89355
PSO 0.010201 0.030015 0.00096086

F11(X)

ASFSSA −12569.3148 −11107.0762 796.9218
BSO −12569.4418 −11820.3055 973.8153
CSSA −9859.7543 −8700.9989 615.6127
SSA −9374.4498 −8208.1416 501.1037
GWO −9055.703 −6452.354 1033.4608
PSO −8405.1316 −6176.2342 793.1086

F12(X)

ASFSSA 0.490047 1270.9199 964.1809
BSO 0.03331 848.2818 1061.7445
CSSA 2529.3974 3661.9962 725.5963
SSA 3471.670439 4292.617883 529.1990723
GWO 4866.1835 6134.3633 604.5177
PSO 5205.7803 7638.9387 1024.9673

F13(X)

ASFSSA 7.2046E− 11 3.1056E− 07 6.4439E− 07
BSO 3.5095 8.4787E+ 54 3.4748E+ 55
CSSA 3.6686E− 11 1.6611E− 05 6.0978E− 05
SSA 1.1633E− 09 6.0348E− 07 1.8076E− 06
GWO 1.0500E+ 54 1.4300E+ 57 5.7000E+ 57
PSO 1.5273E+ 60 1.9700E+ 60 2.1400E+ 59

F14(X)

ASFSSA 0 4.9628E− 05 2.5146E− 04
BSO 1.3048E− 23 4.77072E− 21 6.0171E− 21
CSSA 6.2203E− 08 0.0012751 0.0037596
SSA 2.9797E− 08 0.00034106 0.00062708
GWO 1.0500E+ 54 1.4300E+ 57 5.6800E+ 57
PSO 2.0728E+ 87 3.3100E+ 87 5.6800E+ 86

F15(X)

ASFSSA 1.3498E− 31 1.3498E− 31 0
BSO 1.3498E− 31 1.3498E− 31 0
CSSA 1.4730E− 31 2.3043E− 29 3.9261E− 29
SSA 1.3498E− 31 3.9049E− 29 5.2232E− 29
GWO 1.0606E− 08 8.9305E− 07 7.8567E− 07
PSO 1.30489E− 23 4.7707E− 21 6.0171E− 21

F16(X)

ASFSSA 0 0 0
BSO 1.2475E− 42 1.8013E− 41 1.9512E− 41
CSSA 0 4.9534E− 285 0
SSA 0 3.7547E− 237 0
GWO 2.6095E− 166 2.1062E− 131 1.0027E− 130
PSO 4.0625E− 25 6.4627E− 22 1.8985E− 21

F17(X)

ASFSSA 2.9038E− 25 2.3672E− 19 7.0572E− 19
BSO 0 0.2540 0.3592
CSSA 4.3789E− 21 3.2277E− 16 1.5937E− 15
SSA 2.7959E− 21 1.2661E− 16 2.7684E− 16
GWO 1.2267E− 08 4.0761E− 07 4.2024E− 07
PSO 1.1013E− 22 8.1661E− 20 1.7949E− 19

F18(X)

ASFSSA 0.998 0.998 0
BSO 0.998 1.0311 0.17843
CSSA 0.998 2.1068 2.9273
SSA 0.998 2.5594 3.6421
GWO 0.998 2.8013 2.8092
PSO 0.998 1.1968 0.3976
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Figure 4: Continued.
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(a) (b)

(c) (d)

Figure 5: 10 ∗ 10 shortest path planning diagram. (a) ASFSSA. (b) CSSA. (c) SSA. (d) PSO.

Table 4: Wilcoxon rank sum test P value.

Function BSO CSSA SSA PSO GWO

F1(X) 1.2118e− 12 N/A N/A 1.2118e− 12 1.2118e− 12
F2(X) 1.2118e− 12 8.8658e− 07 5.3750e− 06 1.2118e− 12 1.2118e− 12
F3(X) 1.2118e− 12 0.0216 N/A 1.2118e− 12 1.2118e− 12
F4(X) 1.2118e− 12 6.6096e− 05 6.6096e− 05 1.2118e− 12 1.2118e− 12
F5(X) 3.0199e− 11 0.0184 N/A 3.0199e− 11 3.0199e− 11
F6(X) 0.0010 1.0937e− 10 1.6132e− 10 3.0199e− 11 3.0199e− 11
F7(X) 1.2118e− 12 0.0056 1.4552e− 04 1.2118e− 12 1.2118e− 12
F8(X) 1.2118e− 12 0.0419 0.0419 1.2118e− 12 1.2118e− 12
F9(X) 1.2118e− 12 8.8658e− 07 3.4526e− 07 1.2118e− 12 1.6572e− 11
F10(X) 3.0199e− 11 0.0378 0.0242 3.0199e− 11 3.1589e− 10
F11(X) 1.1023e− 08 0.0025 5.5999e− 07 4.5043e− 11 1.2057e− 10
F12(X) 4.8011e− 07 0.0020 4.5726e− 09 3.0199e− 11 3.0199e− 11
F13(X) 3.0199e− 11 N/A N/A 3.0199e− 11 3.0199e− 11
F14(X) 3.0199e− 11 N/A N/A 3.0199e− 11 3.0199e− 11
F15(X) N/A 1.1970e− 12 1.6572e− 11 1.2118e− 12 1.2118e− 12
F16(X) 1.2118e− 12 N/A N/A 1.2118e− 12 1.2118e− 12
F17(X) N/A 2.9468e− 11 2.9468e− 11 2.9468e− 11 2.9468e− 11
F18(X) 4.4787e− 06 0.0071 0.0236 0.0200 1.4930e− 11
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optimization performance of the two algorithms is equiv-
alent. Table 4 shows the results for ASFSSA and PSO, GWO,
BSO, SSA, and CSSA are at a significance level of P � 5%,
where N/A indicates that the performance between the two
is similar and not comparable.

As can be seen from Table 3, each algorithm is sig-
nificantly different from the ASFSSA algorithm, with only a
few cases of comparable performance. It can be seen that
the introduction of multiple strategies improves the dis-
advantages of the original algorithm and enhances the
optimization ability of the algorithm.

6. Robot Path Planning Based on ASFSSA

To verify the feasibility and practicability of the improved
algorithm, this paper takes a classic case of robot route
planning to explore it. Each individual sparrow is a viable
path in routing. Assuming there are N possible paths,

dimension D is determined by the number of connections
from the starting point to the destination point. Using the
raster method to model the environment, the raster method
is to use 1 ∗ 1 raster to construct the equivalent working
environment, and use the raster value to equivalent the
obstacles in the location [23, 24]. *is effectively equates the
working environment of the robot to a plane, similar to the
lattice effect, and then determines the feasible and obstacle
zones based on the raster values.

*e raster number defines 0 as the feasible domain and 1
as the obstacle zone, so the robot can plan its path on the
raster with a value of 0. Dimension D is the number of
columns in the raster map and the cost function of the path
length of the i-th sparrow individual, as shown in the fol-
lowing equation:

f xi( ) � ∑D−1
j�1

����������������������
xj+1 − xj( )2 + yj+1 − yj( )2

√
. (11)

(a) (b)

(c) (d)

Figure 6: 15 ∗ 15 shortest path planning diagram. (a) ASFSSA. (b) CSSA. (c) SSA. (d) PSO.
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In equation (11), j is the j-th dimension of a sparrow
individual.

6.1. Experimental Environment Settings. To better verify the
practicability and feasibility of the improved algorithm, the
improved algorithm is used to route the raster maps of the
two models. Compared with CSSA, SSA, and PSO, the
number of population is 20 and the number of iterations is
100. Other environmental parameters are consistent with the
above.

6.2. Simulation Results and Analysis. *e optimal route of
each algorithm in the two model graphs is shown in Fig-
ures 5 and 6. In order to eliminate the influence of chance,
each algorithm is tested for 10 times, and the shortest,
average, and worst route of each algorithm are counted.
*ree indicators are used to measure the stability and fea-
sibility of each algorithm in this experiment. *e optimi-
zation statistical table of each algorithm is shown in Table 5,
and the average route convergence chart is shown in
Figure 7.

As shown in Figures 5 and 6, the ASFSSA route is the
simplest and clearest, followed by CSSA, while PSO and SSA
are obviously trapped in local optimum. From Table 5, we
can see that ASFSSA has the best searching ability and
stability in both of raster graphs, and CSSA has better

stability. However, from Figure 7, we can see that the
convergence of SSA and PSO is insufficient, and the opti-
mization results of SSA and PSO are extremely unstable and
poor. *erefore, in the two model diagrams, the introduc-
tion of multiple strategies makes the algorithm flexible in the
search, greatly improves the search ability of the algorithm,
and plans a route with the least cost.

7. Conclusion

*e sparrow search algorithm has better performance than
other algorithms in optimization, but it is still easy to get
stuck in local and rely on population initialization. *is
paper analyzes these defects and proposes an adaptive spiral
flying sparrow search algorithm. Firstly, tent mapping based
on random variables is used to initialize the population,
which makes the distribution of sparrow individuals uni-
form and helps the individuals to work better. Secondly, the
adaptive weights strategy and Levy flight mechanism are
used in the discoverer stage, which makes the discoverer
flexible and adaptable in the optimization process and re-
duces the traditional regular strategy. Finally, the variable
spiral search strategy is used in the follower stage, which
makes the follower search method more detailed and in-
depth, and improves the convergence accuracy of the al-
gorithm. *e effectiveness of the improved algorithm is
verified by 18 test functions and the comparison of other
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Figure 7: *e average route convergence graph of each algorithm. (a) 10 ∗ 10. (b) 15 ∗ 15.

Table 5: Statistics table of optimization route by algorithms.

Map size Performance index ASFSSA CSSA SSA PSO

10 ∗ 10
Shortest 12.7279 12.7279 15.5564 15.5564
Average 13.8593 14.4250 20.6475 21.2132
Worse 15.5564 20.6475 21.2132 41.0122

20 ∗ 20
Shortest 19.7990 22.6274 22.6274 25.4559
Average 20.9304 23.7588 24.3244 26.0215
Worst 22.6274 25.4559 31.1127 31.1127
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algorithms. Compared with other algorithms, ASFSSA has
significant optimization capabilities. At the same time, the
feasibility and practicability of the improved algorithm are
verified by the robot path planning study. *e path planned
by the improved algorithm is clear, and the cost function is
the smallest. It can be seen that the introduction of multiple
strategies has effectively improved the optimization ability of
the basic sparrow search algorithm. However, in some
functions, the optimization effect of ASFSSA is second only
to the BSO algorithm. In the future research phase, how to
improve these optimization effect is the research focus, and
it needs to be upgraded to more complex applications.
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wolf optimizer with Lévy flight for optimization tasks,” Ap-
plied Soft Computing, vol. 60, pp. 115–134, 2017.

[19] S. Mirjalili and A. Lewis, “*e whale optimization algorithm,”
Advances in Engineering Software, vol. 95, pp. 51–67, 2016.

[20] X. Tao, W. Guo, Q. Li, C. Ren, and R. Liu, “Multiple scale self-
adaptive cooperation mutation strategy-based particle swarm
optimization,” Applied Soft Computing, vol. 89, Article ID
106124, 2020.

[21] T. Wang and L. Yang, “Beetle swarm optimization algorithm:
theory and application,” 2018, https://arxiv.org/abs/1808.
00206.

[22] X. Jiang and S. Li, “BAS: Beetle Antennae Search Algorithm
for Optimization Problems,” https://arxiv.org/abs/1710.
10724.

[23] F. Xu, H. Li, C. M. Pun, and H. Hu, Y. Li, Y. Song, H. Gao, A
new global best guided artificial bee colony algorithm with
application in robot path planning,” Applied Soft Computing,
vol. 88, Article ID 106037, 2020.

[24] J. Li, “Robot path planning based on improved sparrow al-
gorithm,” Journal of Physics: Conference Series, vol. 1861, no. 1,
Article ID 012017, 2021.

16 Scientific Programming

https://kns.cnki.net/kcms/detail/51.1307.TP.20201124.1519.002.html
https://kns.cnki.net/kcms/detail/51.1307.TP.20201124.1519.002.html
https://arxiv.org/abs/1808.00206
https://arxiv.org/abs/1808.00206
https://arxiv.org/abs/1710.10724
https://arxiv.org/abs/1710.10724

