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This paper presents an indirect adaptive control scheme for continuous-time systems.
The estimated plant model is controllable while the estimation model is free from
singularities. Such singularities are avoided through a modification of the estimated
plant parameter vector so that its associated Sylvester matrix is guaranteed to be
nonsingular. This property is achieved by ensuring that the absolute value of its
determinant does not lie below a prescribed positive threshold. A switching rule is used
in the estimates modification algorithm to ensure the controllability of the modified
estimated model while avoiding possible chattering. For that purpose, the switching rule
takes values at two possible distinct prefixed thresholds. In the event when the Sylvester
determinant takes the current value of the switching function then that one switches to
the alternative threshold. The convergence of both the unmodified and modified
estimates to finite limits guarantees that switching ends in finite time. Thus, the solution
to the controlled plant exist so that all the signals within the loop are well-posed.
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INTRODUCTION

The adaptive stabilization and control of linear continuous and dis-
crete systems has been successfully developed in the two last decades
[1—-4]. Usually, the plant is assumed to be stable inverse and its relative
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degree and its high-frequency gain sign are assumed to be known
together with an absolute upper-bound for that gain in the discrete
case. The assumption on the knowledge of the order can be relaxed by
assuming a nominal known order and considering the exceeding
modes as unmodeled dynamics [11,12,15]. The assumption on the
knowledge of the high frequency gain has been removed in [4] and [13].
The controllability of the estimated plant model has been successfully
guaranteed in the discrete case and, more recently, in the continuous
one [7-12]. The problem is solved by using either excitation of the
plant signals or a modification of the least-squares estimation by ex-
ploiting the properties of the standard least-squares covariance matrix
[8—12,14]. In {8—13], such a controllability of the estimated plant
model is guaranteed by using either excitation of the plant signals or
estimates modification. The estimates modification has been addressed
either by incorporating hysteresis switching functions in the estimation
schemes or guaranteeing the determinant of the Sylvester’s matrix to
be nonzero while exploiting the properties of the covariance matrix
[8—12]. This paper presents an adaptive stabilization algorithm of
pole-placement type for continuous-time systems. Generally speaking,
strategies of modification of the estimation are important since they
allow the maintenance the controllability of the estimated model so
that singularities in the control law are avoided since the diophantine
equation associated with the controller synthesis is solvable for all
time and at the limit (see [9—12,15] and references therein). The
modification mechanism which has been used in those references is re-
lated to the use of a hysteresis switching function that guarantees that
the Sylvester matrix of the modified estimated model is nonsingular
and the modified estimates converge to finite limits as the unmodified
ones do. The adaptive scheme proposed in this paper uses a parameter
modification mechanism while guaranteeing that the absolute value of the
determinant of the Sylvester matrix associated with the parameter
estimates is bounded from below by a positive threshold. The bound-
edness and convergence of all the unmodified and modified estimates
and controller parameters are guaranteed. The plant input and output
are bounded and converge to zero in the ideal perfectly modelled case.
The second section is devoted to the synthesis of the adaptive stabilizer
in the perfectly modelled case for unknown continuous-time plants.
The estimation scheme, used prior to the modification procedure, is of
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least-squares type. The third section presents the convergence and
stability properties of the proposed scheme. A numerical example is
then given and, finally, conclusions end the paper. The proofs of the
results are developed in Appendix A.

ADAPTIVE STABILIZER FOR A CONTINUOUS-TIME
PLANT

In the sequel, the time-argument is suppressed unless confusion can
arise and the constant parameters are denoted by a superscript .
Consider the following continuous-time controllable system

A*(D)y(r) = B*(D)u(t); D'y(0) =y (i=0,1,...,n—1) (1)

where D'=(d"/dt)(i=0,1,...,n—1) is the ith time-derivative opera-
tor, A*(D)=D"+3.",a!D"" and B*(D)=3Y.7,b!D™ with
n>m. Since (1) is controllable then its associated Sylvester resultant
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is nonsingular. Define the subsequent filtered signals:

n—1

E* (D)uf =u; E* (D)yf =y, EX(D)=D"+ Z e;an—i )
i=1
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with E*(D) being a strictly Hurwitz polynomial. The filtered control
law for a known plant (1) is generated as

§*(D)us = —R*(D)yy 3)

where §*(D) = D" + 3, stD", R(D) = D" + .7 riD™=i! satisfy
the diophantine equation:

A*(D)S*(D) + B*(D)R*(D) = C*(D)
where

o C*(D) =D"+ Y"1  e*D" ' of prefixed degree fulfilling the con-
straint n* <n-+deg(S*(D)) <2n is a strictly Hurwitz polynomial
(i.e., with roots in Re D < 0) which defines the closed-loop dynamics
being suitable for appropriate system’s performance; and

e S*(D) and R*(D) are polynomials being the unique solution to the
above diophantine equations since 4*(D) and B*(D) are coprime
because of the controllability of (1) and they satisfy the constraints
deg(S*(D)) < deg(E*(D)) < n and deg(R*(D)) < deg(4*(D)). [In par-
ticular, if E*(D) satisfies deg(E*(D))<n—1 then its exceeding
coefficients in (2) are zeroed]. In the following, the time argument
t is omitted in time-dependent signals and time-dependent param-
eters for the shake of notation abbreviation unless it is necessary
for a precise meaning in some expressions which require to em-
phasize time dependence of some terms against possible constant
terms.

Equation (3) is equivalent to its unfiltered version:
u=(E"(D) — §*(D))us — R*(D)ys (4)

The control objective in the adaptive case for unknown plant is to
update the controller parameter s;and 7; (i=1,2,...,n;,j=0,1,...,m)
in an adaptive way so that the plant (1), subject to the control law (4)
when replacing the parameters by their estimates, is asymptotically
stable in the large in the absence of disturbances. Simple direct cal-
culus with (1)—(2) yields for filtered signals the following reformulated
version of the plant (1):

D'yr = 874 & A*(D)yy = A" (D + (7i) (5)
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with
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— D" 2y =i 2y ) (6.b)

where f7i,(¢) is an exponentially decaying scalar signal that depends
on initial conditions associated with the various filters 1/E*(D), and
parametrized as the (nonnecessarily known) ej-vector, used to get
filtered signals (2) used for the process description. Each component
i{1) of the vector signal i,(7) is known and it has the form #e¥’ for
£=0,1,...,m—1 with my being the multiplicity of the root A; of
E*(D). There are my terms icy(#) of such a form for each A;. The
parameter vector #* is estimated by using a standard least-squares
algorithm of covariance matrix P(f) and estimated vector 6(f) =
(07 (1), eX(£))" with eo(f) being the estimated function of the initial
conditions ¢j. The incorporation of the estimation of the parameter
vector ej to the estimation scheme arises from the fact that (1) and its
filtered version (5) are not equivalent if the signal in parenthesis
associated with initial conditions in the state-space realization of (2) is
omitted when the initial conditions of (2) are nonzero. If such a signal
is not included in (5) then the closed-loop system may also be
stabilized at the expense of a worse transient performance.

The estimation algorithm below consists of a least-squares type
estimation procedure together with a rule to modify the estimates to
ensure the controllability of the modified estimates model:
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Parameter Estimation

Introduce the adaptation algorithm as follows:

e = D"y; — 67 p (prediction error) (7.a)
6 = Pye (7.b)
P = —Ppp"P; P(0)=PT(0)>0. (7.c)

The basic modification of the estimated plant model is performed
when necessary to maintain the controllability of the estimated model
in the sense that |Det(8(6p))| > p > 0 even if |Det(S(6y))| < p for some
positive real constant p while the Sylvester resultant matrices of the
estimates and modified estimates have the same structures as S(63) and
their values are obtained by replacing 67 with estimates 8y(f) and
modified estimates y(¢), respectively.

Features in the Modification Philosophy

The estimates modification philosophy is simply in summary as
follows for each > 0:

(a) If |Det(S(8y))| > p then the estimated model remains unmodified
since it is controllable, i.e., 8o(f) = 8y(f) = 6(¢) = 6(¢) and then the
control signal is generated based on this estimated vector since the
diophantine equation associated with the controller synthesis is
solvable with solution uniqueness.

(b) If |Det(S(6p))] < p then the estimated model is modified from
6o(2) to Gy(f) since it is either uncontrollable or close to loose
controllability, in order to achieve |Det(S(p))| > p, implying the
replacement = 6(f) — 6(¢). As a result, the diophantine equation
is singularity-free and, then, uniquely solvable after replacing the
estimates by the modified estimates. Then, the plant control signal
is generated based on the modified vector of estimates.

(¢) In order to avoid a possible chattering behavior (implying in-
finitely many switches) in view of the above features (a)—(b)
caused when |Det(S(8y(1)))| — p, from the left and the right, over
time intervals of nonzero measure in the above situation, two
distinct thresholds p and g’ are used so that when the determinant
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is fixed to any of those values the switching function A(#) defined in
the subsequent subsection below changes of value until another
switch, if any, occurs. Since the absolute Sylvester determinant is a
continuous function of the parameter estimates, it may be ensured
that it cannot be close to the other threshold value during some
nonzero finite interval (¢, ¢).

(d) Since the determinant of any square matrix is an analytic function
of the entries of such a matrix, the modified Sylvester determinant
may be calculated as a Taylor series expansion around the un-
modified one as Det(S(f)) = Det(S(6o)) + A(fo, 8o). The known
formula from Linear Algebra (d/d6y;)(Det(S(60)))| oo =
Trace(Sg, (6o) - S(6o)) S(6p) denoting matrix of cofactors [19], with
subscripts denoting partial derivatives with respect to the com-
ponents of the parameter vector may be used to calculate A(6p, 6p)
from which higher-order derivatives with respect to the various
parameter vector components can be directly obtained as well.

(e) If the estimated model is close to loose controllability then the
modified estimation is performed by a linear rule of the type § =
0+8= (80 +bo:e}) with 8y =6+ a(o1,...,0mme1) Wwith o;
taking values in the set {—1,0,1), the estimates of the initial
conditions remaining unmodified since they do not affect to the
solvability of the diophantine equation. The a-function is
calculated so that [Det(S(6p)) — Det(S(6o))| = |A(6o,80)| is max-
imized for each ¢ such that A(f) switches for all the set of possible
values of o;in {—1,0,1} (i=1,2,..., n+m+1). That means that
each estimate is modified by + « or it remains unmodified. The
strategy allows the modified determinant to take values far from
those implying uncontrollability of the estimation model. The
details of addressing the above ideas (a) to (e) are detailed in the
subsequent subsection.

The modification scheme to calculate § from @ is implemented
according to the following scheme:

Modification Procedure of the Estimation

The plant parameter estimates through the algorithm (7) are modified
as follows. First, define the switching rule through the functions é, and
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h as follows:

3h(t) ~ Det(S(6o(2)))
3
bat)=1{ - 3h(2) = [Det(S(80))ISign(C)Sign(Det(S%0))) ;¢ |pegs(gy)] < h(z)
€]

0 if |DetS(fo)| > h(?)
(8.a)

where (07 )= p; and

h(t™) if |DetS(8y(1"))| # p and |DetS(Bo(t7))| # ¢
h(t") { p  if [DetS(6o(r7))| = ¢’
p  if [DetS(6o(7))| = p

(8.b)

for some small positive real constants p' >2p, so that A(f)>p>0
for all 1 >0 even at discontinuity points, where A(t*)# h(t ™), with p
fulfilling p < (|o|/6(n+m)) in (8.b) and — |o| being the stability abscissa
of the polynomial C* (D) (which defines the control objective), with

C:.= C(&],&z,...,&n+m+1) (80)

n+m n+m+1 1

Clon, \Opmi) =Y. D X

k=1 iripy =1
i
Trace(Ss, (60)Ss, ..., (60)) [ [lo); o €{0,—1,1}

J=i

(8.d)

(81,825« -, Ongmp) i= {Arg(UI,UZ,'--»UnerH) H|C(o1,02, ., Onimst)]

= Max |C(oy,... . 8.e
Max [Cn o)l ). (80)
with S(6) being the matrix of cofactors of S(d,) whose first and
higher-order partial derivatives are denoted below by subscripts with
respect to the respective arguments. The first-order derivatives with
respect to the vector of parameter estimates are sparse matrices defined
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by:
[ Oix (rtm) ]
Sa,.(eo):—:%b(): """ ImOmxn """ — (i+1)-th row(i=1,...,n)
[ O
T 0 x (nm) T
by (60) = 5;'00: C Onem b —(j+1)-th row(i=0,1,...,m)

(8.£)

where the subscripts in the above zeros denote their orders as block
matrices and I, is the m-identity matrix. The modified estimates are
generated as follows:

=0+ (90, ) [50,131,...,1_7,.1,&1,212,...,Zz,,fsg]T (9.a)
8 = [6bo, 8b1, ..., 6bp, ba1.6as, ... ,6a,,0,...,0]" = [85,07]7  (9.b)

and the n+m+1 first components of the estimated vector #(f) are
modified according to the rule

a; = a; + ba; = a; + ad;;

- ) (9.¢)
bj=bj+6bj=bj+a&,,+1+j; i=12,...,n j=0,1,....,m
ba if 8, 2>1
*= { (6™ if 6, < 1 S

by using (8) in order to obtain the modified estimated vector 6(¢)
in (9.a).

Note that 7= (&1,62,...,6,,+m+1)T iS a non necessarily unique
vector, whose components take values in the set {0, —1,1} which
maximizes the function |C(0y,02,...,0,4+m41)| for the of constraints
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o;€{0,—1,1} for i=1,2,..., n+m-+1. The idea behind the above
modification method (8)—(9) is the following. Two different thresholds
p and p’' > 2p are used to modify the parameter components in (8.a).
The use of two distinct thresholds is only made for purposes of
avoiding chattering by involving the mechanism of switching between
them each time a discontinuity in the modification occurs. These
thresholds are sufficiently small compared to the stability abscissa of
the objective polynomial C*(D) in order to guarantee the closed-loop
stability (see Assumption 1 in the second section). Each absolute value
of a parameter estimate is either modified with an absolute amount o
(?) or it becomes unmodified (see (9.c)—(9.d)). The maximum value of
the modified Sylvester determinant depends on the threshold sizes (see
(8.a)—(8.b) and (9.d)). The mechanism which ensures that the absolute
value of the modified Sylvester determinant exceeds the size of the
minimum threshold p is the manipulation of its Taylor expansion
around its unmodified value. This is performed by checking the
maximum allowable absolute increasing the determinant through the
modification process by varying each estimate in + « or leaving it
unmodified.

In particular, assume that each ith parameter component of 6y is
modified by an additive increment « o; so that the modification scheme
is 8o =00+ a(o1,...,0nsms1) Wwith each o(,€{1,0,-1}. A well-
known equation from Linear Algebra is (d/d6y;)(Det(S(60)))| bomgo =
Trace(Sg, (6o) - S(60)), [19], from which higher-order derivatives
with respect to the various parameter vector components can be
directly obtained as well. Thus, a series Taylor expansion of the
analytic multivariable function of the modified estimates
Det(S(o1, - - - , Qo nim+1)) around Det(S(Boy, . - - ,00.m+m+1)) (later de-
noted as Det(S(6,)) for notation simplicity purposes) is stated. Such an
expansion is given by the identity Det(S(f)) = Det(S(6o)) + A(6o, fo)
with |A(6,80)| > |6,C|, with the value C being calculated from (8.2)—
(8.e) since each parameter estimate has a variation + « (ie., 0;= £ 1)
or zero (i.e., 0;=0).

Note from (8.b) that A(-) is a piecewise constant function which only
takes values at p and o’ and changes of value only when the absolute
Sylvester determinant reaches the current threshold p or o' to which
the function was previously set at the preceding switching time. Such
switches have as objective of avoiding chattering so that the existence
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of solution is ensured for all time. Chattering could potentially arise if
the Sylvester determinant would converge to a constant function A
while, at the same time, its time-derivative converges to zero with
changing sign. This phenomenon is avoided in this approach by using
the switching rule (8.a) by taking advantage of the fact that the
unmodified and modified parameter estimates converge asymptotically
to finite limits. Thus, if the Sylvester determinant converges to p (or,
respectively, p) it cannot converge to p’ (or, respectively, p) since it
remains in a certain small neighborhood centered at p (or, respectively
p') after a large but finite time. The avoidance of chattering guarantees
directly the existence of solution. These features will be proved in the
following section.

1t is proved in Appendix A, as an intermediate step in the proof of the
subsequent controllability result, that C # 0 for all time because not all
the derivatives in (8.f) with respect to the estimates evaluated at the
parameter vector estimated from the algorithm (7) are zero. This feature
makes possible that the Sylvester determinant of the modified esti-
mates can always be modified with respect to its value prior to modifi-
cation. It becomes obvious from the above modification philosophy
that |C| can be replaced with any value of |C| which be bounded from
below by a positive constant.

The use of switching functions for the estimation modification
procedure was used in [9—-12] to ensure the controllability of the
modified estimated plant model. The mechanism used in those papers
to prove the boundedness and convergence properties of the modified
estimates was to take advantage of the properties of the least-squares
estimation. The procedure used to guarantee the above properties in
the modification algorithm of this paper is based on the properties of
the Sylvester matrices. It also involves the use of a rule with switching
functions to avoid possible chattering (see (8.a)—(8.b) and (9.d)). The
h(-)-function takes only two possible prescribed small threshold values
so as to avoid chattering caused by a possible convergence of the un-
modified Sylvester determinant to a discontinuity point. The switching
mechanism operates as follows. In the eventual case when the Sylvester
determinant of the unmodified estimates takes any of both prefixed
thresholds the switching function takes the alternative threshold
for the Sylvester determinant and a switching takes place. Since both
the unmodified and modified estimates converge to finite limits, what
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is proved in the next section, it is impossible the simultaneous
convergence of the absolute value of the Sylvester determinant to both
thresholds. The estimates convergence ensures, in addition, that
switching ends in finite time. In summary, it can be said that, in a
similar way as the modification schemes proposed in [9—12], the
modified estimates obtained by the procedure proposed in this paper
have the same convergence properties as the unmodified ones due to
two facts, namely:

(a) Switches in (8), if any, end in finite time as a direct consequence of
the convergence properties of the unmodified estimates since the
modifications are obtained by incremental values which are
calculated with the unmodified estimates through (8)—(9). This
property is proved in the subsequent section.

(b) The parameter estimates variations converge by construction as
the unmodified estimates converge.

In the proposed estimation-modification scheme, the covariance
matrix is not used to calculate the modifications, as it was in [9—12],
but it still plays a crucial role in guaranteeing the convergence of the
unmodified estimates which is a key point to ensure that of the
modified ones. Note also that the key point in the approaches used in
[9—12] was to exploiting the properties of the least-squares estimation
while the key point in the current approach is the use of the properties
of the Sylvester matrix to maintain it nonsingular after estimates
modification what ensures that the modified estimate model remains
controllable for all time and at the limit. In [9] and [11, 12], the use of
hysteresis switching functions was proposed to guarantee the con-
trollability of the modified estimated plant model without chattering
of the parametrical estimation (i.e., the abrupt switching between two
values of the estimated parameter vector). In [9] and [11], the esti-
mation modification method based on the use of a hysteresis switching
function is applied to a class of hybrid systems which consist of
coupled continuous and digital substates. In [10], a direct manipula-
tion of the Sylvester determinant was proposed to guaranteeing for
such a determinant to be sufficiently far away from zero. Only the
case of first-order plants was considered with the eventual modifica-
tion of only one estimated parameter to guarantee the estimation
model controllability.
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In this paper, a nth-order plant has been considered in contrast with
[10] and all its estimated parameters can potentially be modified in
order to guarantee the controllability of the estimated plant model.
Furthermore, the parameter modification technique applies to all the
parameters looking for the modified Sylvester determinant being less
close to zero according to prescribed thresholds of all possible
obtainable modified Sylvester’s determinants. The analysis technique
used is based on the analiticity of the unmodified Sylvester deter-
minant with respect to its parametrization. Also, the signs of the
modification amounts may be positive or negative for each individual
parameter estimate in order to look for the highest degree of con-
trollability among all possible modified estimated plant models.
Furthermore, two distinct thresholds p and p’ are used in (8.a) in
order to avoid possible chattering so that if the absolute determinant is
converging to any of these thresholds, the test threshold is changed via
the switching function A(-).

Stabilizing Adaptive Control Law

Introducing (9.a) into (7.a), we obtain

Dyf=e+8p=c+ (8 —&)p
= e+ A(D, 0)ys + B(D, t)us + 5 (1)i,(t) (10)

with A(D, 1) and B(D, t) being time-varying polynomials associated
with the estimates, obtained from (7), which define the estimated
model of the plant prior to eventual modification, and whose ad-
justable parameters are the components of the unmodified estimated
vector 0. The filtered and unfiltered control inputs are generated from
the adaptive version of (3)—(4),

S(D, )us(1) = —R(D, 1)ys (1) (11)

u(t) = (E*(D) — S(D, t))us(t) — R(D, t)ys(2) (12)

so that the following closed-loop diophantine equation is satisfied by
the controller polynomials R(D, ) and S(D,?) which are calculated
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from modified parameter estimates:
A(D,)S(D,t) + B(D,t)R(D,t) = C*(D) (13)

with A(D, )= A(D, )+ 8A4(D, 1), B(D,t) = B(D,t) + 6B(D, 1),
6A(D,t) =3¢ ba;D"" and 6B(D, ) = Y 1., 6b;D™ . The solution is
unique since the modified plant parameter estimated model is con-
trollable for ¢ >0 so that the time-varying polynomials 4(D, f) and
B(D, t) are coprime for > 0.

CONTROLLABILITY OF THE ESTIMATED MODEL
AND STABILITY RESULTS

The following result reflects the feature that the Modification Scheme
makes recover the controllability of the Modified Estimated Model,
with a prescribed degree, in the case when controllability of the
Unmodified Estimated Model is lost or close to be lost.

ProrosiTioN 1  The modified estimation scheme (8)—(9) of the plant
model estimated from (7) fulfils for all time |Det(S(8))| > p > 0 so that
such a model is controllable. Furthermore, there is no chattering caused
by switches in the estimates modification rule (8.a)—(8.b) and (9.d) and
then the solution to (1), subject to the control law, (12)—(13) exists for
all time. [ |

The following assumption is explicitly introduced to guarantee the
stability of the closed-loop system under modification of the estimates
while it is not required for the properties of boundedness and
convergence of the estimation algorithm.

AssuMpTION 1 The design constant p in (8.a) fulfils 0<p<
(lo|/6(n+m)) in the Estimation Modification Scheme of Section 11
Egs. (8)—(9). n

The constraint 0 < p < (jo|/6(n+m)) of Assumption 1 will be used
in the stability proof of Theorem 1 below which involves the use of
Gronwall’s Lemma to an equivalent dynamic system. Such a system
describes the combined dynamics of the plant and adaptive controller
so that it is a key feature in the proof of closed-loop stability.
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The properties of the adaptive scheme are given in the subsequent
main result proved in Appendix A.

TaeoreM 1 The adaptive control law (11)—(13), under the Estimation
Modification Scheme (1)—(9), has the following properties when applied
to the plant (1):

() 8, 8 and P are uniformly bounded and the modified estimated plant
model is controllable for all time.
(ii) e and P ¢ are in L,.

(i) 6, P, Det(S(8y)), 9, Det(S(Bo)), s; and r;(i=1,2,...,n;j=0,1,...,
m—1) converge asymptotically to finite limits for any bounded
initial conditions for the plant and the estimation algorithm.

(iv) If the Modification Scheme used satisfies Assumption 1 then D'uy,
Diyf (i=0,1,...,n—1) and u and y are bounded and converge
asymptotically to zero. |

Note that e€ LN L, from Theorem 1 {(i) and (iv)] so that e — 0 as
t— oo and 6 € L, and converges to a finite limit. Also, 5’] € Lo, from
(7.b) since P € L, and ¢ € L. These properties guarantee that both 8,
and Det(S(y)) are bounded and converge to finite limits so that the
modification § is bounded and converges.

NUMERICAL EXAMPLE

A numerical example is now tested for a nominally unstable and
inversely unstable plant (1) parametrized by A*(D)=D*+0.75D%+
0.5D?40.25D+0.25 and B*(D) =0.75D>+(2/3)D*+0.25D+0.25 with
initial conditions (-5, —7,0,0)7 with filter parameter E*(D)=
(D+6.93)%. A second-order additive unmodeled dynamics is assumed
to be present which is given by a second-order differential equation
1+ 0.12n — 7.8 = 7.8u under zero initial conditions with 7 being an
additive disturbance signal in the right-hand-side of (1). An absolute
overbounding signal #=1.04(1+107%Supy < , < ,(lle(1)e 1=7]))) >
|7l is known for all time for the filtered 7= (1/E*)n. The
Modification Scheme of Section II is used by incorporating a relative
normalized adaptation dead-zone so that the parameter estimation (7)
is frozen (i.e., = 0) if |e| < |7j| while (7.b) is replaced with = bPye and
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b= (1—1n/e|)/(1 +¢TPy), otherwise. This adaptation mechanism
ensures the closed-loop stability in the presence of stable unmodeled
dynamics with boundedness of the prediction error and regressor
and integrability of b|n}—e2| (see, for instance, [12] and [15]). The
basic determinant threshold for parameter modification of the esti-
mates is p=0.01. The adaptive stabilizer satisfies the constraints

|pet s|

0.035
0.03
0.025
0.02
0.015
0.01
0.005

10 20 30 40 50
Time
FIGURE 3 Sylvester Determinant of the estimates prior to modification versus time.

|pet s}

0.035¢}

0.03} /

0.025}

0.015¢

Time

FIGURE 4 Absolute value of the Sylvester determinant of the modified estimates
versus time.
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deg(R(D)) =deg(S(D))—1=1. The initialization of the estimation
algorithm is bo(0)=1, by = —0.008, b,(0)= —0.003, a,(0)=0.005,
a,(0) = —0.005, a5(0)=0, a4(0)=0. The parameter b} is assumed
known and deleted from the estimation algorithm. The estimates of
the initial conditions of the plant (1) are zero. The covariance matrix is
initialized to P(0)= Diag (10°). The output and input versus time are
shown on Figures 1-2, respectively. Figures 3 and 4 show Det(S(6,)),
whose initial value from initial conditions of the estimate, is
—9.85x 1077 and |Det(S(p))], respectively.

CONCLUSIONS

An adaptive stabilizer for a continuous-time plant has been proposed
without assuming the inverse stability of the plant, ‘a priori’ knowledge
on the plant parameters and knowledge of the high-frequency gain
sign. The adaptive stabilizer is of pole-placement based type. It
consists of a estimation algorithm with covariance matrix adaptation
with a subsequent parameter estimation modification of the parameter
estimates. A modification scheme has been proposed which ensure the
controllability of the modified estimated plant model. The modifica-
tion mechanism which guarantees such a controllability consists
basically of the additive perturbation of nonnecessarily all of the
estimated plant parameters according to a test on the Sylvester
determinant. In this way, the resulting modified Sylvester matrix
becomes nonsingular when the controllability of the unmodified
estimation model fails against the determinant test for non singularity.
The estimation scheme has suitable stability and convergence proper-
ties for both the unmodified and modified estimates. Also, all the
relevant closed-loop signals exist since chattering is avoided by using
two thresholds in the determinant test as well as switchings from
the current determinant threshold to the alternative one when a
discontinuity in the test for each current threshold is detected.
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APPENDIX A

Proof of Proposition 1 Firstly, note that the first-order derivatives of
the determinant with respect to any parameter estimate are calculated
as follows from elementary algebra (see, for instance, [19]):

a%Det(S(Qo)) = Trace (6—2(%0)3(00)) (A.1)
which holds when taking derivatives of determinants with respect to
any value of 6; for i=1,2,...,n+m+1. The derivatives are evalu-
ated at 6. However, it is clear from (8.¢) that Sg .9, =
(0%8(80))/(86;, - - 08;) = 0;k = 2,3,...,n+m+ 1 with all the partial
derivatives being evaluated at 6y. Also, since S(fp) is a matrix of
cofactors, it contains products of at most (n+m) parameters at each
one of its entries. Thus, the matrices of first and higher-order partial
derivatives of the matrix of cofactors with respect to the parameter
vector components S‘gi‘,,,o,.k (6o) =0 if k> n+m for any integers i;> 1
forj=1,2,...,k. Now, Det(S(f)) is expanded in Taylor series around
Det(S(6,)) by taking successive derivatives with respect to parameter
components evaluated at , by starting with (A.1) while zeroing any
derivatives of higher-order than (n+m). One obtains directly from
(8.c)~(8.f) and (9.c)—(9.d) that

Det(S(éo)) = DCt(S(ao)) + A(ao, 0_()) (A.2a)
with
n+m nym+l
G0 =>_ > % Trace (6, (60)S5,..5, (60) )H(eo,—ﬂo,)
k=1 i iz,.. ,tk=1 J=i
— : n+my __
> ||, Min  (e/) = |C|Min(a,o"*") = |Cbs|
(A.2.b)

by using ]_[1_“(00] bor) = 1T/ % . (070 for any values o € {0, —1,1}
with Max,, ¢ (0,-1,13(|A(60, 60)|) = |6oC| since "™ =6, <a <1 for
a=68,<1and a<ao"t"=4, for §,> 1 with o> 1 from (9.d). Now,
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it is proved by contradiction that

Trace (Sol.‘ (90)5‘9,.]“_0& (90)) =0
forall p€{l,...,.n+m+1}, k=12,....n+m (A.3)

is impossible since (A.3) depends on the estimates of the plant
parameters irrespective of the modification scheme. Assume with no
loss in generality, since o’ > p, that h(¢) = p in (8.a). Assume also that
|Det S(6p)| # ¢ < p with ¢ > 0. Then, note from the definition of S(6p)
that |Det(S(8))| = ¢ with arbitrary nonzero ( if the subsequent
modification rule is used after proceeding with the unmodified least-
squares estimation: éa;= —a;, 6b;= —b; and b, = + ¢ _p,. for
i=1,2,...,n, j=0,1,...,m. Assume that (A.3) holds. Since the
function |Det(S(6y))| is analytic in the overall parameter estimates
space, all values of |Det(S(fo))| can be obtained from a Taylor series
expansion around |Det(S(6p))|, as reflected in (A.2.a)—(A.2.b), with
only a finite number of derivatives and higher-order derivatives of
|Det(S(6o))| with respect to the unmodified estimates being structurally
nonzero due to the form of the Syivester determinant. Therefore, if
(A.3) holds then |Det(S(6p))| = |Det(S(6))| and A(6p,6p) =0 in
(A.2.a) irrespective of the modification rule used. Thus, one has the
impossible relationships ¢ = [Det(S(fp))| = |Det(S(6o))| # ¢ for the
maximum variation between both determinants when the unmodified
vector of estimates is 6y. This follows by using a Taylor series
expansion in the parameter space of the modified estimates around the
estimated ones obtained from (7) according to (A.2). Thus, (A.3) is
false, since all the derivatives used in (A.2.b) are not dependent on the
estimates modification scheme.

As a result, there is at least one parameter component §; of §, for
which Trace (Sp, (60)Ss, .0, (60)) #0 and then C in (8.c)—(8.¢) is
nonzero. Thus, Det(S(dy)) is not constant for all the values of the
components of § belonging to arbitrary real intervals and it is feasible
that a modification §, — , can be potentially carried out to guarantee
that |Det(S(fy))| > p from the analyticity of the function |Det(S(6p))|
in all the space of estimates 6,. This is now specifically proved.

Note from (8.a)—(8.b) that, if §, is continuous at certain time ¢,
then (2p/|C]) < 84 < (3p/|C|) and 0 < a < Max(|6y), |64/ ™) from
(9.d) with o =0 if and only if |Det(S(6y))| > Max(p, p') > p from (8.b)
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and (9.d) and no modification is required. If 4, is discontinuous
at ¢ then [6,(t7)|>(2p/IC|) if h(t*)=p and A(t")=p and
16(t9)] = (20'/|C)) if h(t*)=p' and h(t")=p. In any of the above
situations a(f) #0. The switches in A(¢f) make this eventual discon-
tinuities to occur only at isolated time instants. Direct calculations
with (8.2)—(8.c) and the above considerations yield that if A(t*)=p
and A(t ™) = ¢’ = |Det S(fp)| then:

[Det(S(60))| > X (1A (8o, 60)1) — Det(S(6o))|

> 16.C| — [Det(S(6o))|
> 3p — Det(S(6p))Sign(C) — |Det(S(6))]
> 3h — 2|Det(S(6))| = p > 0 (A4)

for all time since Max,,¢ 0,—1,13(|A(6bo, 0o)|) > |6,C| from (A.2.b).
Similarly, if A(t7)=p’ then (A.4) still holds. Thus, the first part of
Proposition 1 has been proved. The absence of chattering and
existence of the closed-loop solution follow directly since the eventual
switches in (8.a), and then in (8.b) and (9.d), are isolated because of
the continuity of the Sylvester determinant function with respect to the
unmodified estimates and the fact that the a-function is continuous at
bo=1since a = &, = [(6,)/ ™), [ |

o

Proof of Theorem 1

()—(i) Note that P~ = —P~1PP~! = " from (7.c). Define the
Lyapunov function candidate V = §" P16 where § = § — §* is the para-
metrical error before modification of the estimates. Thus, (7.a) can be
rewritten as e = —§ ¢ and V= —(0 ©)? = —e2 <0 after dlrect cal-
culations w1th V' and (7) [91. Thus, e€l, and oo > § P14 >
Amin (P~ )9 6 with Amin(P~") being the minimum eigenvalue of P~'
so that 6 is uniformly bounded since the maximum eigenvalue of P,
Amax (P), is upper-bounded by a positive finite constant and then

Amin(P71) = AL (P) > 0 for all #> 0. Thus, P, § is uniformly bounded
and ||P|}, ||6]| and ||8]| are in L, from (9) since 8 = (6], 5)" and 6, and
Det(S(fp)) are uniformly bounded for all ¢ > 0. Thus, the modified
parameter vector § = (ég, el)" is also uniformly bounded for all ¢ > 0.
The modified estimated plant model is controllable since
oo > [Det(S(8y))| > p > 0 from (8)—(9) and the fact that fp is uniformly
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bounded for all £ > 0. On the other hand, Py € L, since Trace (P) =
—||Polf? € Ly from (7.c) with |-||, denoting the spectral (or Euclidean)
vector norm. Thus, propositions (i)—(ii) have been proved.

(iii) It is standard to prove that P and 6 converge asympto-
tically from (7.b) and the fact that lim, .o (J;]6)ld7) <
(1/2)[lim oo ([ Pep]*d7) + lim; o  fy €*d7)] < 00 since Pp€L, and
e€ L, what implies #€L; and the 6 converges from (ii) (see [18]).
Also, 6, converges since 6 converges and, thus, Det(S(6g)) converge
to a finite constant values as time tends to infinity. From the fact that
6, converges, the possible switches in (8.a)—(8.b) end in finite time
since there exists a large finite time 7, such that § and Det(S(y)) are
close to their limits and the piecewise-constant A-function maintains a
constant value (p or o’ > 2p) for all time ¢ > 7. As a result o, o(.), 7,
and C converge (see (8.a)-(8.b) and (9.d)). Thus, the modified
parameter vector 6, and then Det(S(6y)), converge asymptotically to
finite limits. As a result, each controller parameter, namely, each
coefficient of R(D, 1) and S(D, ), converges to a finite limit value and
(iii) has been proved.

(iv) Note that direct calculation from (12) yields for m <n—1:
m n
D"yf =e+ (H_T - ST)(,O =e+ Z B,’Dm‘"iuf - Z(—Z,‘Dn_iyf - Sgg&’o
i=0 i=1

and the substitution D"u, made explicit from (13) into (12) yields for
m=n:

n n—1
Dnyf =e— 1_7() [Z S,‘Dn—iuf + Z riDn”i—lyf:I
i=1 i=0

n n-1

_ -} - i —T

+ [E 1b,-D” ‘up — .Eo a;. D" IYf] —bp%0
1= j=l

Thus, the substitution of the above identities together with (13) yield
the following extended auxiliary dynamic system which describes the
combination of the closed-loop dynamics and control law:

x=Ax+w (A.5.a)

t=Az4+w (A.5.b)
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with
w=[e+efi, — 50,0 =W+ wi; A6a)
W= [~850,0"; w1 = [e+ebi,, 0] o
- pT -
In—l : 0 ()
_I .
—_ | - _Jp fm<n-1
A= 4 s p= {ﬁ(z) i omen (A.6.b)
5T
L0 : I,
T ) n—m—1 L _ _
1—)(1) = [—1_11, —ag, .., —0,:0,77.7,0:bg, by, . ... ,bm] (A6C)
1_7(2)1 = [~ (@1 + boro), —(@2 + bor1), - . ., —(@n + boFn_1) : (b1 — bos1),
(52 - Bos2)7 CER ] (Bn - I_JOSn)] (A6d)
VT = [r(),r],...,rnSSI,S2,...,Sn] (A6e)

with X(O) = Z(O) =Xg, X= (Dn— lyf, ey Dyf,yf, D"~ luf, sy Duf, uf)T
and Yo = (Dn‘ lyf, ees Dyf, yf,D"uf, D"~ luf, ey Duf, uf)T. The pI'OOf
of boundedness and convergence to zero of the input, output, their
filtered versions and the time- derivatives of those ones up till (n — 1)-th
order of the closed-loop system is immediate by first proving that
(A.6.b) is asymptotically stable in the large. Thus, by wvector
construction, |D"uq < K'||x|| from the controller equation (11) and,
then, ||@ol < Max(|D"u, ||x||) < K]||x|| with K=1+K'. The eigenval-
ues of A(¢) are less than or equal to (— o) for some real constant o >0
being less than or equal to the minimum absolute value of the roots of
the strictly Hurwitz C* (D)-polynomial for all > 0 (equality applies
when both roots are distinct, [17,18]). Also, A(¢) is uniformly
bounded and f:”" lA(T)||d7 < uTo + po for positive constants p and
Lo, With o small, all £ >0 and some finite Ty. This follows directly in
the absence of modification on the integration interval since the time-
derivative of the estimates and controller parameters are bounded as
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follows from Theorem 1. Assume that there are oo > 5; > 0 modifica-
tion switches on [¢, 2+ Tg]. Their number is finite since the integration
interval is finite and |Det(S(fy))| is a continuous function of time so
that existing switches are isolated (i.e., there is no accumulation point
of modification switches). Also, their associate discontinuities in A(f)
are given by bounded steps, whose norms are upper-bounded by a
positive finite constant k from Theorem 1 (i), since 6y € Loo. As a result,
the above inequality for the local integral of [|A(7)|| also holds if there
are modification switches on (¢, t+ Tg) for all 1> 0.

As a result, the common unforced version of both time-varying
systems (A.5) is exponentially stable in the large ({12, 15]). Now, direct
calculus with the differential systems (A.5.a) and (A.5.b) yields that
their solutions are related as follows:

x(t) = 2(6) + /0 (7)) (A7)

with ¥(z, 7) being the fundamental matrix of the unforced system of
both (A.5.a) and (A.5.b), ie., x(t)=z(f)=¥({,0)x, for all 1>0 if
w=w; =0. Since such a system is exponentially stable in the large, one
has for any matrix norm that ||¥(z,7)|| < Kye ?¢-") for any ¢ and 7
fulfilling ¢ > 7 > 0. Since A(?) is exponentially stable and, furthermore,
wy € LN Ly from (1)—(ii), z€ L,NLy, 2€ LN Ly and z converges
exponentially to zero for any bounded initial condition (see [18]).
Thus, one gets directly from the definition of w in (A.5.a):

X < Nzl + /0 te“’“‘”lelgollllx(T)IldT (A.8)

Now, z(2) converges to zero exponentially with rate non less than — |o|
(i.e., ||z(D)]|e”* < oo for all £>0) since z€ L,,N Ly and w; €L N L,.
This property follows directly, for instance, by applying Bellman-
Gronwall’s Lemma [17], to the solution of the forced system (A.5.b).
Thus, one gets from (A.8) that

T _
e”|lx(8)|| < e™z(1) +/ Ky||bolle’||x(r) a7
0

t
51_(—1—/ Ky |lbo]|€° || x(T)|ldT (A.9)
0
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where co > K > Sup, > o(llz(2)||e”*) so that ||x(2)]| < Rel-o1+8) < o6 for
all >0 where 60 KoSup < , < o ([180(2)]l) after applying Bellman-
Gronwall’s Lemma to (A.9). Thus, ||x()|| and |x(¢)|| are bounded
from (A.8), and the boundedness of both the estimation error and §;
and (A.5)—(A.6). Equation (A.9) implies that x(f) — 0 as ¢ — oo since
8, is bounded from (i).

The proof is completed as follows. From (8.a)—(8.c) and (9), and
since the stability property is independent of the used norm, one has
for ||-||l, (ie., spectral) — matrix norms: ||8oll, < |6.ClIZ]l, < 8 <3
Max(p, p')(n + m) = 6p(n+ m), where ¥ =(X;) is the matrix of signs
used for modification in (9.c), i.e., ¥; is one of the elements in the set
{6s,i=1,2,...,n+m+ 1} with 5;€{-1,1,0}(i=1,2,...,n+m+1),
and S(0y) — 8(6p) = (6,C)E. As a result, x € L, X € Ly, and x— 0 and
x—0 as 1t—oo. Thus, (iv) follows directly from the calculation of
x:[0, 00) — R®" from (A.5.a) for any initial conditions. [
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