
Adaptive Star Grammars⋆

Frank Drewes1, Berthold Hoffmann2, Dirk Janssens3,
Mark Minas4, and Niels Van Eetvelde3 ⋆⋆

1 Ume̊a universitet, Sweden
2 Universität Bremen, Germany

3 Universiteit Antwerpen, Belgium
4 Universität der Bundeswehr München, Germany

Abstract. We propose an extension of node and hyperedge replacement
grammars, called adaptive star grammars, and study their basic proper-
ties. A rule in an adaptive star grammar is actually a rule schema which,
via the so-called cloning operation, yields a potentially infinite number of
concrete rules. Adaptive star grammars are motivated by application ar-
eas such as modeling and refactoring object-oriented programs. We prove
that cloning can be applied lazily. Unrestricted adaptive star grammars
are shown to be capable of generating every type-0 string language. How-
ever, we identify a reasonably large subclass for which the membership
problem is decidable.

1 Introduction

Software engineering tools for model transformation or refactoring do often rep-
resent models and programs by graphs. Our earlier research in this area [1] re-
vealed that the structure of such graphs cannot be captured by graph schemas,
because models and programs have a recursive syntactical structure. Graph
grammars are among the most natural candidates for specifying for specifying
recursively structured graphs. For example, a graph grammar could be designed
to generate the set of all program graphs as defined in [1].

The purpose of this paper is to introduce adaptive star grammars and to
study their basic properties. Being context-free devices with nice computational
properties, hyperedge and node replacement grammars [2–4] have proven partic-
ularly useful for defining graph languages. Unfortunately, these types of graph
grammars turn out to be too weak to generate program graphs in a reasonable
way. Therefore, we propose an extension, called adaptive star grammar, that is
not only able to capture the context-free structure of object-oriented programs,
but also aspects such as scope rules, overriding of methods, and references of
variable and parameter uses to their definitions.

A star rule is a rule which replaces a nonterminal node together with its
outgoing edges – a star – with another graph. This graph is glued to the border

⋆ Supported by SeGraVis (www.segravis.org), a European research training network.
⋆⋆ On leave to Universität Bremen on a SeGraVis grant (October 2005–January 2006).

nodes of the star, i.e., to the nodes pointed to by the outgoing edges of the
nonterminal node. The replacement process is similar to the well-known notion
of hyperedge replacement, where the nonterminal node corresponds to the hy-
peredge being replaced. To increase the generative power of the device, border
nodes of the left-hand side of a star rule may be designated as so-called multi-
ple nodes. These nodes can be cloned prior to the application of the star rule.
Cloning simply replicates a multiple node together with its incident edges any
number of times (including 0). Thus, a star rule containing multiple nodes is
actually a rule schema. In fact, even the host graph may contain multiple nodes,
and these can be cloned as well in order to make a rule applicable.

We note here that the set nodes of Progres [5] and Fujaba [6] are similar to
our multiple nodes. In the model transformation language Gmorph [7], a more
general notion of cloning is provided whose collection containers correspond to
the notion of a multiple subgraph. A similar concept is addressed in [8].

As our first main result, we show that cloning can be applied in both an eager
and a lazy manner. Thus, derivations can be carried out effectively. Our second
and third results concern the generative power of adaptive star grammars and
the membership problem. Unrestricted adaptive star grammars can generate all
recursively enumerable string languages (encoded as chain graphs in the usual
way). Thus, these grammars are too powerful if given structures need to be
parsed. However, in our third main result, we identify a reasonably large class
of adaptive star grammars for which membership is decidable.

The structure of this paper is as follows. In the next section, we define the ba-
sic notions regarding stars and star replacement. Section 3 introduces the cloning
operation. Based on this, adaptive star grammars are introduced in Section 4. In
this section we also discuss a nontrivial example that applies adaptive grammars
to generate program graphs. Two derivation strategies, eager and lazy cloning,
are studied in Section 5 and demonstrated on the example. In Section 6, the
generative power and the membership problem of adaptive star grammars are
investigated. Section 7 concludes the paper.

2 Star Replacement

We start by defining the type of graphs considered in this paper. Throughout the
paper, let Σ be a set of labels which is partitioned into two disjoint, countably
infinite sets Σ̇ and Σ̄ of node and edge labels, resp. A finite subset Σ of Σ is
called a labeling alphabet. Its two components are Σ̇ = Σ ∩ Σ̇ and Σ̄ = Σ ∩ Σ̄.

Intuitively, in the type of grammars to be defined later on, stars are the
nonterminal items to be replaced. Therefore, we reserve an infinite supply N ⊆ Σ̇
of node labels called nonterminals. (We assume that the remaining set Σ̇ \ N
of terminal labels is infinite as well.) In the following definition of graphs, we
prohibit edges that point to nonterminal nodes. In particular, nonterminal nodes
cannot be connected by edges. In this way, stars become a generalised version
of the hyperedges known from hyperedge replacement grammars [2, 3].

Definition 1 (Graph). A graph G = 〈Ġ, Ḡ, sG, tG, ℓ̇G, ℓ̄G〉 consists of finite
sets Ġ of nodes and Ḡ of edges, of source and target functions sG, tG : Ḡ → Ġ,
and of node and edge labeling functions ℓ̇G : Ġ → Σ̇ and ℓ̄G : Ḡ → Σ̄. For all
edges e ∈ Ḡ, it is required that ℓ̇(tG(e)) /∈ N .

The set of all graphs labeled over a labeling alphabet Σ is denoted by GΣ .

We use common terminology regarding graphs. For instance, an edge is said
to be incident with its source and target nodes, and makes these nodes adjacent
to each other. For A ⊆ Ġ, G \ A denotes the subgraph of G induced by Ġ \
A. Morphisms and isomorphisms are defined as usual. The notation G ∼=m H
denotes the fact that graphs G and H are isomorphic via the isomorphism m.

Next, we define a central notion of this paper, the star.

Definition 2 (Star). For a graph G and a node x ∈ Ġ, G(x) denotes the
subgraph of G consisting of x, all its incident edges, and all its adjacent nodes.
A graph of the form G(x) is a star if ℓ̇G(x) ∈ N . In this case, G(x) is also called
a star occurrence in G.

Thus, a star is a graph S that consists of a nonterminal node x and its
adjacent nodes. In the following, these will be called the center node of S and
the border nodes of S, resp. The edges are called the arms of x. By Definition 1,
each arm points from the center node to a border node. A star is straight if the
target nodes of its arms are pairwise distinct.

Definition 3 (Star Rule). A star rule S ::= R consists of a star S, called its
left-hand side, and a graph R, called its right-hand side, that share precisely the
border nodes of S. When we modify such a rule, it is considered to be a single
graph, namely the union of S and R.

Example 1 (Star Rules). Two examples of star rules are shown below:

p1 =

N

a b

A A

1 2

::=

N
b

A

a

A A

1 2

p2 =

N

a a

A A

1 2

::=

N
a

A

a
a

A A

3 4

1 2

Nonterminal nodes are drawn as boxes; they have two border nodes labeled A,
and two arms. For both rules, the border nodes 1 and 2 are drawn twice: they
belong both to the right-hand side and to the left-hand side.

Definition 4 (Star Replacement). Let G be a graph, and p = (S ::= R) a
star rule so that S ∼=m G(x) for some node x ∈ Ġ. The replacement of x by
R yields the graph H which is obtained from the disjoint union of G and R by
removing x and its arms, and identifying every border node b of S in R with its
image m(b) ∈ Ġ. In this situation, we also write G ⇒x,p,m H .

Obviously, star replacement is a restricted form of DPO graph transforma-
tion [9] (with injective occurrence morphisms). In fact, star replacement is more
or less equivalent to hyperedge replacement [2, 3], because the center node of a
star together with its arms can be seen as a hyperedge.

Star replacement does not cover node replacement [4], as the left-hand side of
a star rule has a fixed number of arms, whereas nonterminals in node-replacement
grammars can be replaced independently of the number of edges incident with
them. The notion of cloning introduced in the next section is a formal mechanism
that makes it possible to overcome this limitation of star replacement. Rules are
specified in a generic way so that they adapt to several contexts of a nonterminal,
but not necessarily to all. Next, we formalize the adaptation process, which we
call cloning, and then we use it to define adaptive star grammars.

3 Cloning

In this section, we formalize the notion of cloning. We use a special set of labels
designating so-called multiple nodes. A similar mechanism can be found in the
Progres graph transformation language [5].

Formally, we assume from now on that Σ̇\N contains a subset Σ̈ of multiple
node labels. The remaining node labels are said to be singular ones. Further, we
assume that there is a bijection :̈ Σ̇ \ (N ∪ Σ̈) → Σ̈. Thus, every singular node
label l has a copy l̈ among the multiple node labels. A node is said to be singular
or multiple depending on its label. The set of multiple nodes in a graph G is
denoted by G̈, i.e., G̈ = {v ∈ Ġ | ℓ̇G(v) ∈ Σ̈}. In figures, we draw multiple nodes
as nodes with a “shadow”, as is seen in Definition 6.

We can now define the cloning operation. Using this operation, a multiple
node can be turned into any number of singular nodes, its clones. However, we
also want to be able to create clones that are multiple nodes. Thus, we define
G x

(m,n) to be obtained from G by replacing the multiple node x with m clones

which are still multiple, and n singular clones.

Definition 5 (Cloning Operation). Let G be a graph, x ∈ G̈ a multiple node,
and m, n ≥ 0. The clone G x

(m,n) is the graph constructed as follows. Let G′(x)

be obtained from G(x) by replacing the label l̈ of x by l. Then take the disjoint
union of the graph G \ {x}, m copies of G(x), and n copies of G′(x). Finally,
identify the m + n + 1 copies of each node in Ġ(x) \ {x} with each other.

The m+n copies of x in G x
(m,n) are called the clones of x. Obviously, G x

(m,n)

is defined only up to isomorphism. However, G \ {x} is of course isomorphic to
the subgraph of G x

(m,n) induced by the nodes that are not clones of x.

The process of cloning can be described by graph transformation. The rules
in the following definition should be considered as rules in the DPO approach,
where the interface graph is the discrete graph consisting of the nodes 1, . . . , p+q.

Definition 6 (Cloning Rules). The set ∆ of cloning rules consists of all rules
of the form

1 p

· · ·
· · ·

l̈

· · ·
· · ·

p + 1 p + q

::=

1 p

· · ·

· · ·
p + 1 p + q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 p

· · ·
· · ·

l

· · ·
· · ·

p + 1 p + q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 p

· · ·

· · · · · ·

l̈ l̈

· · · · · ·

· · ·
p + 1 p + q

for all l̈ ∈ Σ̈ and all p, q > 0.5 The three rule schemas will be denoted by rem(l̈),
sing(l̈), and copy(l̈), respectively.

The application of a cloning rule performs a cloning operation, in which a
multiple node is either removed, turned into a singular node, or copied. It should
be clear that the cloning rules suffice to describe all clonings. More precisely, let
G be a graph containing a multiple node x. For all m, n > 0, G x

(m,n) is derived

from G using the cloning rules, as follows: G x
(0,0) is obtained by an application

of rem(l̈). Moreover, for m+n > 0, G x
(m,n) is obtained by m+n−1 applications

of copy(l̈) and n applications of sing(l̈).
The result obtained by cloning a number of nodes is independent of the order

in which those nodes are treated.

Lemma 1 (Cloning is Commutative). For a graph G with distinct multiple
nodes x and y, and for m, n, m′, n′ ≥ 0,

(

G
x

(m, n)

)

y

(m′, n′)
∼=

(

G
y

(m′, n′)

)

x

(m, n)
.

Proof. Obviously, if two rules in ∆ are applied to distinct multiple nodes of G,
the result does not depend on the order of these rule applications. As argued
above, ∆ describes cloning correctly. This yields the statement. ⊓⊔

We define a cloning operation for a set of multiple nodes in a graph. For each
multiple node in the set, the necessary information about the number of desired
clones is given by a so-called multiplicity function.

Definition 7 (Iterated Cloning). Let G be a graph. A multiplicity function
for G is a function µ : G̈ → N

2. If G̈ = {x1, x2, . . . , xk} (where x1, . . . , xk are
pairwise distinct), then Gµ is the graph defined by

Gµ =

(

. . .

((

G
x1

µ(x1)

)

x2

µ(x2)

)

. . .
xk

µ(xk)

)

.

By Lemma 1, Gµ is defined uniquely up to isomorphism. In the following,
when defining a multiplicity function µ, we will specify only those multiplicities
µ(x) which are not equal to (1, 0).

5 The labels of the nodes 1, . . . , p + q as well as the edge labels have been omitted to
avoid cluttering the figure. They carry over from the left-hand side to the right-hand
sides in the obvious way. Note also that the nodes 1, . . . , p + q may be multiple.

4 Adaptive Star Grammars

In this section, we define adaptive star grammars. The rules of these grammars
are star rules which may contain multiple nodes that can be cloned before a rule
is applied. The graphs being derived may contain multiple nodes as well, and so
they may also be cloned in order to make a rule applicable. Let us first define
the cloning of (nodes in) star rules.

Definition 8 (Star Rule Clone). Let p = (S ::= R) be a star rule. A star
rule clone of p is a star rule p′′ such that p ⇒∗

∆ p′ for some p′ from which p′′

can be obtained by taking a quotient, i.e., identifying pairs of border nodes (that
have the same label). The set of all star rule clones of a set P of star rules is
denoted by P∆.

Note that neither edges nor non-border nodes are identified by taking quo-
tients. Clearly, every star rule clone is a star rule. We can now define adaptive
star grammars and the graph languages they generate.

Definition 9 (Adaptive Star Grammar). An adaptive star grammar Γ =
〈Σ, N, P, Z〉 consists of

– a labeling alphabet Σ containing only terminal labels,
– a finite set N ⊆ N of nonterminals,
– a finite set P of star rules over Σ ∪ N with straight left-hand sides, and
– an initial nonterminal Z ∈ N .

The language generated by Γ is L(Γ) = {G ∈ GΣ\Σ̈ | Z ⇒+
∆P G}. Here, Z

denotes the graph consisting of a single node labeled Z, and ∆P = ∆ ∪ P ∆.

Thus, derivation steps in adaptive star grammars can be of two different
types: On the one hand, multiple nodes in the host graph can be cloned, and,
on the other hand, star rule clones can be applied.

We now discuss a particular application of star grammars.

Example 2 (A grammar for program graphs). As a nontrivial example we now
discuss a star grammar modeling the structure of object-oriented programs by
generating graphs called program graphs. This type of graphs has been devel-
oped for studying refactoring in [1]. Due to space restrictions, only a simplified
method body specification is considered here, where method bodies contain only
assignments and method calls. The grammar is shown in Fig. 1. A more complete
specification based on star grammars can be found in [10].

We use terminal node labels B,E,V,M that correspond to method body root,
entity occurrence, variable, and method, respectively. Furthermore we have non-
terminal node labels BODY,STS,ST,EXP,ACC,ASS,CALL,APS. The label
BODY is the initial nonterminal. It generates an STS star (statement sequence),
connected to a B node, and to a multiple N node. The latter is a shorthand
covering both V and M. From the modeling point of view, it can be seen as a

E

N

def

V

ACC

E

N V

::=

a

refref

1

3

1

32 2

N

E

def

ref

EXP

 E

N

CALL

def

ref

1

2

E

N

def

ACC

ref

::=

1

2

1

2

 E

N

def

M

ref ref

N

c

M

ref

CALL

def

::=

 E
1

2 3

1

2 3

ap E E

N

E

def

ref

APS ::=

N

def

N

E

EXPAPS

def

ref ref

1

2

1

2

3 1

2

N

B

ref

::=

1 1

22

3

E

N

B

ref ref

def def def

1

2

N

B

STSTSSTS

E

N

::=ST

 E

N

ASS

 E

N

CALL

def defdef

ref ref ref

1

2

1

2

1

2

N

def

ref

::=

N

u

V

ref

V

Eval

def

ref

ASS

 E E
1

23

1

32

ref

EXP

N

B

ref

def

STSBODY ::=

1

2

ref

APS

e

Fig. 1. A star grammar method body syntax tree specification

supertype of nodes of type V and M. Any singular node cloned out of a mul-
tiple N node becomes a node of type V or M. Alternatively, to stay within the
formalism of adaptive star grammars, the rules of the grammar can be modified
by applying copy(N) to each of the N nodes and relabeling the two clones into
a V node and an M node.

The STS star generates recursively a number of statements (ST), each of
which can be rewritten into an assignment (ASS) or a method call (CALL). The
right-hand side of an assignment is an expression (EXP). Expressions are either
calls or variable accesses (ACC). Calls can have actual parameters (generated
by APS) which are expressions.

The edge labels are e, a, u, c, val, ap, def, ref. The first six of these stand for
syntax tree expression, variable access, variable update, method call, assignment
value and actual parameter respectively. The edge labels def and ref are used for
the arms of nonterminal nodes. The body root node B groups a set of E nodes,
connected by e edges (cf. Fig. 2). Each of these nodes represents an occurrence
of a variable, or a method call in the syntax tree. In the first case it is connected
by an outgoing a or u edge to a variable and in the second case by a c edge to
a method. Assignment and call occurrences may have additional val or ap edges
to other E nodes.

Every nonterminal has a ref arm. It is always connected to a multiple node of
type N representing all the referable symbols (visible methods, variables, formal
parameters, types) that can be used in the program part derived from the non-

B E

V
m1

e
val

M

VM

E

E

E

e
u c

a

c
ap

m2

v1 v2

b

{v1 := m1(); m2(v2);}

Fig. 2. Method body graph example

B

M M V V

m1 m2 v1 v2

STS

b

ref ref ref ref

def
2

(0,4)

BODY

Fig. 3. Eager cloning derivation

terminal. The ACC star has three arms: the def arm shows the start node of the
statement. The two others are ref arms. This has the effect of selecting out of
the complete set of referred elements one particular variable that is of particular
relevance, all the other referable elements are represented by the multiple node.
The nonterminal node disappears and an a edge is created between the E node
and the V node (cf. Fig 1). The CALL and ASS rules are similar but create c

and u edges and an additional EXP nonterminal.

An example of a method body graph that can be generated by the grammar
is given in Figure 2, together with its textual equivalent. The node identifiers
relate the program entities with their graphical representations.

By using adaptive star grammars instead of context-free string grammars
for generating models of object-oriented programs, typical properties of object-
oriented languages, such as the fact that every use of an identifier has a matching
declaration, can be modeled. This is realized by the ref arms, which record the
existing entities that can be used in a function. It can also be shown that the use
of adaptive star grammars makes it possible to enforce the visibility constraints
for class attributes, i.e. to ensure that method bodies in derived program graphs
never contain accesses to private attributes of other classes. However, adaptive
star grammars seem to be unable to cope with more complex constraints like the
parameter correspondence. It does not seem to be possible to generate exactly
as many actual parameters as formal parameters and make their types match.

5 Eager and Lazy Cloning

In this section, we will study an important aspect regarding derivations, namely
the interplay between cloning and rule application. Cloning can be performed
eagerly, where cloning on the host graph is done as early as possible. The fol-
lowing lemma shows that when a star replacement is followed by a cloning step
in which one of the nodes of the host graph is cloned, then this results in the
same graph as the one obtained by performing the cloning operation before the
star replacement. If the cloned node is a border node of the star occurrence
that is replaced, then an appropriate cloning of the rule used is needed. The
straightforward proof is omitted.

Lemma 2 (Eager Cloning). Let G, H be graphs, let p be a star rule, and let
G ⇒x,p,m H be a star replacement. Let y ∈ G̈ and let k, l > 0.

1. If y is not a border node of G(x), then G y
(k,l) ⇒x,p,m H y

(k,l) .

2. If y is a border node of G(x), then let ỹ = m−1(y) and p̃ = p ỹ
(k,l) . Let m̃

be an extension of m, mapping the k + l clones of ỹ bijectively to the k + l
clones of y. Then G y

(k,l) ⇒x,p̃,m̃ H y
(k,l) .

Consequently, we obtain a normalform nf (P) of a set P of star rules, such that
nf (P) is the subset of all star rule clones in P∆ that do not contain multiple
nodes. In particular, rule application creates only singular nodes.

Example 3 (Eager cloning in program graphs). The example program of Figure 2
can be derived using eager cloning. We consider the STS star in Figure 3. It is
obtained by executing the initial rule being cloned by 2

(0,4) to generate all the

needed variables and methods in advance. From that point, the star rules have
to be cloned by 3

(0,3) for the CALL, ACC and ASS rules and 2
(0,4) for the other

rules.

Corollary 1. For every adaptive star grammar Γ = 〈Σ, N, P, Z〉, it holds that
L(Γ) = {G ∈ GΣ\Σ̈ | Z ⇒+

nf (P) G}.

When constructing a derivation of an adaptive star grammar, it would obvi-
ously be desirable to postpone cloning as much as possible: we use incremental
cloning rules to construct derivations so that cloning is kept at a minimum. In
order to characterize which clonings can be postponed until after a given star
replacement, the following auxiliary notion is useful.

Definition 10 (Indistinguishability). Let p̃ = (S̃ ::= R̃) ∈ P∆ be a quotient
of a rule p′ that is obtained by cloning a rule p = (S ::= R) ∈ P . For a border
node y of S̃, its set of precursors is the set of nodes x of S such that y is the
image of either x or a clone of x under the quotient. Two border nodes y1, y2

of S̃ are indistinguishable (in p̃) if they have the same set of precursors in S
and there exists an automorphism of p̃ that interchanges them while leaving the
other nodes invariant.

Definition 11 (Lazy Cloning). Let p̃ = (S̃ ::= R̃) ∈ P∆. A derivation
G=⇒∗

∆ G̃=⇒x,p̃,m H constitutes a lazy step if only border nodes of G(x) are

cloned in G=⇒∗
∆ G̃, and, moreover, there do not exist distinct border nodes

y1, y2 of S̃ such that y1 and y2 are indistinguishable in p̃, and m(y1) and m(y2)
are clones of the same node of G(x).

Note that p̃ can in general be obtained in different ways from a rule p ∈ P ,
and hence the notion of a lazy step is defined only with respect to a fixed choice
of p, p′ and a quotient map. However for our purposes it is sufficient to consider
a step as lazy if there exists such a choice.

The next result shows that lazy cloning is correct: every derivation can be
rearranged into a sequence of lazy steps followed by a number of cloning steps.

Theorem 1 (Correctness of Lazy Cloning). Let P be a set of star rules.
For every derivation G=⇒∗

∆P H there is a graph Ĥ that can be derived from G

by a sequence of lazy steps, such that Ĥ =⇒∗
∆ H.

Proof. It suffices to consider a derivation of the form G=⇒n
∆ G̃ =⇒x,p̃,m H which

is not a lazy step, and to prove that one of its cloning steps can be postponed
until after the star replacement. For this purpose, assume that p̃ = (S̃ ::= R̃)
is a quotient of some rule obtained from p = (S ::= R) ∈ P by a sequence of
cloning steps.

If G=⇒n
∆ G̃ clones a node that is not a border node of G(x), then we may

assume that the corresponding step is the last step of G=⇒n
∆ G̃ (see Lemma 1).

This step is parallel independent of the star replacement, and thus the de-
sired result follows from well-known results about DPO graph rewriting. So
assume that all steps in G=⇒n

∆ G̃ clone border nodes of G(x). By assumption,
G=⇒n

∆ G̃=⇒x,p̃,m H is not a lazy step. Hence, there exist distinct nodes y1, y2

of S̃, a multiple border node z of G(x) and two clones z1, z2 of z in G̃ such that
y1 and y2 are indistinguishable, m(y1) = z1, and m(y2) = z2. If at least one of
z1, z2 is singular, then it is obtained by an application of sing(l̈), and obviously
this step can be postponed until after the star replacement. So assume that both
z1 and z2 are multiple. Again by Lemma 1 one may assume that the cloning step
that produces z2 is the last step of G=⇒n

∆ G̃. Moreover, since both z1 and z2

are clones of z, z2 can be obtained as a clone of z1. Thus, G=⇒n−1
∆ G′ =⇒∆ G̃,

where G′ is the graph obtained from G̃ by deleting z2 and its incident edges,
and G̃ = G′ z1

(2,0) . Now let p′ = (S′ ::= R′) and H ′ be obtained from p̃ and H

by deleting y2, z2 and their incident edges, respectively. Then G′ =⇒x,p′,m′ H ′,
where m′ is the restriction of m to S′. Moreover, p̃ = p′ y1

(2,0) , because y1 and

y2 are indistinguishable, and it follows from the definition of a star replacement
that H = H ′ z1

(2,0) . The result follows. ⊓⊔

Example 4 (Lazy cloning in program graphs). A lazy derivation of the first state-
ment v1 := m1() of the method body example would, after applying the initial
rule, immediately apply the STS and ST rule without cloning to arrive at the
ASS nonterminal. The rest of the derivation is shown in Fig. 4. To clarify which
of the possible rules is used for star replacement, rule names carry an index.
Note that all star replacements together with the preceding cloning steps are
lazy steps.

6 The Membership Problem

This section consists of two parts. In the first part, we show that adaptive star
grammars can generate every recursively enumerable string language. We will do
this by sketching how to simulate a slightly modified version of the well-known
counter machines. Hence, in particular, the membership problem is unsolvable.
In the second part of the section, a restriction is studied under which this problem
becomes decidable.

 E

N

M

 E

N V

 E

def

ref ref

val

u

x
1

x
2

y

ref

CALL

v1m1

 E

N V

 E

N V

 E E

N V

 E

M

 E

N V

 Eval

uc

x
1

x
2

y v1m1
M

 E

 V

 E

def

ref

def

ref

def

ref ref ref

val

def

ref ref

u

val

u

u

ASS EXP CALL

c

x
1

y y

x
1

x
1

x
1

x
1

x
2

x
2

x
2

y y

y
(1,1)

ASS
1

2
(1,1)

EXP
2

3
(1,2)

CALL
1

; y
(0,0)

v1 v1 v1

v1m1

2
(1,2)

APS
2

y
(1,1)

ASS

val

Fig. 4. A lazy derivation for a call statement

Let us first define a variant of (nondeterministic) counter machines that turns
out to be particularly suitable for our situation. An offline counter machine
(OCM, for short) with k > 1 counters is a system M = (Q,A, I, q0, F) con-
sisting of a finite set Q of states, a finite input alphabet A, a finite set I of
instructions, an initial state q0 ∈ Q, and a set F ⊆ Q of final states. Each
instruction has the form (q, i, z) 7→ (q′, j), where q, q′ ∈ Q, 1 6 i 6 k, and
(z, j) ∈ {(zero, +1), (nonzero,−1), (nonzero, +1)}.

A configuration (q, c1 · · · ck) ∈ Q × N
k consists of a state q and k counter

values c1, . . . , ck. There is a computation step (q, c1 · · · ck) 7→M (q′, c′1 · · · c
′
k) if I

contains an instruction (q, i, z) 7→ (q′, j) with z = zero ⇐⇒ ci = 0 and

c′l =

{

cl + j if l = i
cl otherwise.

Suppose A = {a1, . . . , am−1} (using an arbitrary but fixed order on the sym-
bols in A). The initial configuration for an input string w = ai1 · · · ain

is given
by initialM (w) = (q0, c 0 · · · 0). Here, c is obtained by interpreting i1 · · · in as
a number written in base-m notation. The OCM M accepts w if a configura-
tion (q, c1 · · · ck) with q ∈ F (called a final configuration) can be reached from
initialM (w). As usual, the recognized language is the set of all strings accepted
by M . It is well known that counter machines recognize all recursively enumer-
able languages (see, e.g., [11]). As the reader may easily check, this holds also
for the variant defined above.

Let us now see how star rules can simulate an OCM. For this, consider
an OCM M as above. We use the states in Q as nonterminals. There is only
one further node label in Σ̇ \ Σ̈. The corresponding nodes and their multiple
counterparts are considered to be unlabelled in the following.

q

aux 1c1 kck
· · ·

v

v′

A configuration C = (q, c1 · · · ck) is represented by the
non-straight star gr(C) shown on the right. It consists of a
nonterminal center node v labelled q, a terminal border node
v′, and 1 +

∑k
i=1 ci parallel edges from v to v′. One of these

edges is labelled with aux, whereas ci edges are labelled with
i, for 1 6 i 6 k. Here, an edge label carrying an exponent abbreviates the
respective number of parallel edges. The edge labelled aux ensures that gr(C) is
a star even if c1 = · · · = ck = 0.

It is now rather easy to define a set PM of star rules which simulate the
instructions of M by removing or adding the appropriate number of arms in each
step. For example, if k = 3 and the instruction in question is (q, 3,nonzero) 7→
(q′, +1), the resulting star rule looks like this:

q
aux

1 2 3

3

::=

q′

aux
1 2 3

32

To see that this rule has the desired effect, note that its application to a graph
of the form gr(C) requires taking a quotient which identifies all border nodes.
Intuitively, this means that the arms in the rule are parallel edges in disguise.
Hence, the rule applies to gr(C) if counter 3 has a nonzero value and will in this
case increase the number of edges labelled 3 by one.

By adding terminating rules (which remove the nonterminal node if the non-
terminal is a final state of M), we get the following lemma.

Lemma 3. For every configuration C of M , there is a derivation gr(C) ⇒+
∆PM

G for some terminal graph G if and only if there exists a computation of M
that turns C into a final configuration. Furthermore, in this case, G is the graph
consisting of a single node and no edges.

Using Lemma 3, we can now prove the promised result. For this, we identify
a string b1 · · · bn ∈ A∗ with the graph consisting of unlabelled nodes v0, . . . , vn

and edges e1, . . . , en, where ei points from vi−1 to vi and is labelled with bi.

Theorem 2. Every recursively enumerable string language can be generated by
an adaptive star grammar.

Sketch of Proof. Consider any recursively enumerable string language L, and let
M be an OCM recognizing L. Without loss of generality, we may assume that L
does not contain the empty string. An adaptive star grammar generating L may
work as follows. In a preprocessing phase, it generates an arbitrary string w ∈ A+

in a nondeterministic fashion. At the same time, the subgraph gr (initialM (w))
is built. In the second phase, the star rules in PM are used to simulate M .

To see that the first phase can really be implemented, note that we can turn
n edges labeled with 1 into nm + j such edges using the rule

Z
end

aux

1
1

::=

Z
end

aux 1j

1mbj
1

Using such rules, we can generate exactly the graphs G of the form

q0 v
b1 b2

· · ·

bn
1s

aux

with b1, . . . , bn ∈ A and s the representation of b1 · · · bn in base-m notation
for some n > 1. Thus, the star occurrence G(v) equals gr(initialM (b1 · · · bn)).
Together with Lemma 3, this proves the theorem. ⊓⊔

If adaptive star grammars shall be practically used, it is necessary to come
up with restrictions that guarantee the decidability of the membership problem.
Therefore, we now study a reasonably restricted class of star grammars that
allows to decide this question. We consider simple adaptive star grammars first.
In the following, let us call an edge e in a graph G terminal if it is not incident
with a nonterminal node (i.e., if ℓ̇G ◦ sG(e) 6∈ N); otherwise, e is nonterminal.

Definition 12 (Simple adaptive star grammar). An adaptive star gram-
mar Γ = 〈Σ, N, P, Z〉 and its set P of rules are called simple if P does not
contain any rule whose right-hand side is either just its set of border nodes or
contains a non-straight star.

Following Corollary 1 (p. 9), we restrict derivations to the set nf (P) of rules
without multiple nodes and to graphs without multiple nodes. Simple adaptive
star grammars cannot produce parallel nonterminal edges as right-hand sides do
not contain non-straight stars. Hence, in the following, we can ignore rules in
nf (P) that are obtained by taking quotients. Let ñf (P) be the corresponding
set of rules.

Lemma 4. There is an algorithm that decides whether G ⇒∗
ñf (P)

G′ for every

finite set P of simple star rules and all graphs G and G′ without multiple nodes.

Proof. We measure the size of a graph G by τ(G) = |Ġ|+ |{e ∈ Ḡ | e terminal}|.
Each derivation H ⇒ñf (P) H ′ removes a nonterminal node, but adds at least

one other node or a terminal edge, i.e., τ(H) 6 τ(H ′). We prove the lemma by
showing that the set of all graphs G′ with G ⇒∗

ñf (P)
G′′ and τ(G′′) 6 τ(G′)

is finite. The number of graphs G̃ that can be derived from another graph in a
single step such that τ(G̃) 6 τ(G) is finite. We, therefore, have to show that there
is no infinite derivation sequence G = G0 ⇒p0

G1 ⇒p1
. . . such that Gi 6∼= Gj

for all i 6= j and pi ∈ ñf (P), τ(Gi) 6 τ(G′) for each i. If we assume that there is
such an infinite derivation sequence, there must be an index s such that, for each
i > s, τ(Gi) = τ(Gs) and pi ∈ ñf (P) is obtained from a rule whose right-hand
side is a straight star as Γ is simple. Hence, each graph Gi for i > s has the
same number of nodes resp. edges and, as a consequence, there must exist two
indices i, j > s, i 6= j such that Gi

∼= Gj . �

Next, we consider straight adaptive star grammars. An adaptive star grammar
is called straight if its rules are straight, meaning that their right-hand sides do
not contain non-straight stars. Hence, each simple adaptive star grammar is a
straight one, but the converse does not hold. The method body grammar in
Figure 1 is an example of a straight grammar that is not simple. In order to
show that membership is decidable for straight adaptive star grammars, we will
use the following lemma:

Lemma 5. There is an algorithm that decides whether G ⇒∗
ñf (P)

G \ {x} for

every finite set P of straight star rules and all straight stars G without multiple
nodes, where x is the center node of G.

Proof. The existence of a derivation G ⇒∗
ñf (P)

G \ {x} requires that no applied

rule adds either a new terminal node or a terminal edge. Hence, the number of
terminal nodes remains constant in the derivation, and the derivation does not
contain graphs containing terminal edges.

Let Pn be the (finite) subset of all rules (S ::= R) ∈ ñf (P) such that |Ṡ| 6 n
and R contains neither terminal edges nor terminal nodes that are not border
nodes of S. Obviously, G ⇒∗

ñf (P)
G \ {x} iff G ⇒∗

Pn
G \ {x} where n = |Ġ|.

Now, G ⇒∗
Pn

G\{x} is equivalent to the (decidable) question whether an ap-
propriately constructed context-free Chomsky grammar G′ generates the empty
string. To see this, construct G′ by using as nonterminals the set of all isomor-
phism classes S such that S is a star occurring in one of the rules in Pn. Now,
let G′ contain the rule [S] → [S1] · · · [Sk] if Pn contains a rule S ::= R, where
S1, . . . , Sk are the stars occurring in R. It should be clear that G′ generates the
empty string if and only if there is a derivation G ⇒∗

Pn
G \ {x}. ⊓⊔

This result allows to prove the following theorem:

Theorem 3. The (uniform) membership problem is decidable for straight adap-
tive star grammars, i.e., there is an algorithm deciding whether G ∈ L(Γ) for
every straight adaptive star grammar Γ and every graph G.

Proof. For Γ = 〈Σ, N, P, Z〉, we construct a new rule set P ′ iteratively, as fol-
lows. Initially, P ′ is the (finite) set of all rules in ñf (P) whose left-hand sides
consist of not more than |Ġ| + 1 nodes. Now, if P ′ contains a rule S ::= R such
that there occurs a star with center node x in R, then the rule S ::= R \ {x}
is added to P ′ provided that R(x) ⇒∗

ñf (P)
R(x) \ {x} (which can be decided

by Lemma 5). This process is repeated until no new rule can be added to P ′.
Finally, each rule is removed from P ′ whose right-hand side is just its set of
border nodes. Obviously, for every nonempty graph G, we have G ∈ L(Γ) iff
Z ⇒+

P ′ G. The result follows by Lemma 4 if G is not empty (as P ′ is simple),
and from Lemma 5 otherwise. ⊓⊔

7 Conclusions

Adaptive star grammars are more expressive than context-free graph grammars
while retaining a context-free flavour. The extended expressive power is indis-

pensable for generating structures such as object-oriented program models. In
this paper the authors have joined their earlier work: The mechanisms presented
here are much simpler than those proposed in [12]. Future work will investigate
how star grammars can be used in graph transformation rules to define parts
of a rule that may be variable, but have a fixed shape. This is useful for mod-
eling refactorings rules, in which complex, variable structures like syntax trees
are manipulated as atomic parts. All these concepts will be implemented in the
graph transformation language and tool Diaplan [13].

References

1. Tom Mens, Serge Demeyer, and Dirk Janssens. Formalising behaviour-preserving
transformation. In Andrea Corradini, Hartmut Ehrig, Hans-Jörg Kreowski, and
Grzegorz Rozenberg, editors, First International Conference on Graph Transfor-
mation (ICGT’02), number 2505 in LNCS, pages 286–301. Springer, 2002.

2. Annegret Habel. Hyperedge Replacement: Grammars and Languages. Number 643
in LNCS. Springer, 1992.

3. Frank Drewes, Annegret Habel, and Hans-Jörg Kreowski. Hyperedge replacement
graph grammars. In Rozenberg [14], chapter 2, pages 95–162.

4. Joost Engelfriet and Grzegorz Rozenberg. Node replacement graph grammars. In
Rozenberg [14], chapter 1, pages 1–94.

5. Andy Schürr, Andreas Winter, and Albert Zündorf. The Progres approach: Lan-
guage and environment. In Gregor Engels, Hartmut Ehrig, Hans-Jörg Kreowski,
and Grzegorz Rozenberg, editors, Handbook of Graph Grammars and Computing
by Graph Transformation. Vol. II: Applications, Languages, and Tools, chapter 13,
pages 487–550. World Scientific, Singapore, 1999.

6. Jörg Niere and Albert Zündorf. Using fujaba for the development of production
control systems. LNCS, 1779:181–191, 2000.

7. Shane Sendall. Combining generative and graph transformation techniques
for model transformation: An effective alliance? In Proc. OOPSLA’03-
Workshop on Generative Techniques in the Context of MDA, 2003. URL:
www.softmetaware.com/oopsla2003/mda-workshop.html.

8. Berthold Hoffmann, Dirk Janssens, and Niels Van Eetvelde. Cloning and expanding
graph transformation rules for refactoring. ENTCS, 152(4), 2006. Proc. Graph and
Model Transformation Workshop (GraMoT’05).

9. Hartmut Ehrig. Introduction to the algebraic theory of graph grammars. In
V. Claus, Hartmut Ehrig, and Grzegorz Rozenberg, editors, Graph Grammars and
Their Application to Computer Science and Biology, number 73 in LNCS, pages
1–69. Springer, 1979.

10. Berthold Hoffmann and Niels Van Eetvelde. A graph grammar for program graphs.
Technical report, University of Antwerp, March 2006. UA WIS/INF 2006.

11. John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, Reading, Massachusetts, 1979.

12. Berthold Hoffmann. Graph transformation with variables. In H.-J. Kreowski et al.,
editors, Formal Methods in Software and System Modeling, volume 3393 of LNCS,
pages 101–115. Springer, 2005.

13. Frank Drewes, Berthold Hoffmann, Raimund Klein, and Mark Minas. Rule-based
programming with diaplan. ENTCS, 117(1), 2005.

14. Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation, Vol. I: Foundations. World Scientific, Singapore, 1997.

