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�e stabilizing problem of stochastic nonholonomic mobile robots with uncertain parameters is addressed in this paper. �e
nonholonomic mobile robots with kinematic unknown parameters are extended to the stochastic case. Based on backstepping
technique, adaptive state-feedback stabilizing controllers are designed for nonholonomic mobile robots with kinematic unknown
parameters whose linear velocity and angular velocity are subject to some stochastic disturbances simultaneously. A switching
control strategy for the original system is presented. �e proposed controllers that guarantee the states of closed-loop system are
asymptotically stabilized at the zero equilibrium point in probability.

1. Introduction

In the past decades, the control of nonholonomic systems
has been widely pursued. By the results of Brockett [1],
the nonholonomic system cannot be stabilized at a single
equilibrium point by any static smooth pure state-feedback
controller. To solve this problem, lots of novel approaches
have been considered: discontinuous feedback control [2–4],
smooth time-varying feedback controller [5], and themethod
of LMI [6].�e control of nonholonomicmobile robots plays
an important role in that of nonholonomic systems because
they are a benchmark for these systems. �ere is much
attention devoted to the control of nonholonomic mobile
robots. �e nonholonomic mobile robots were classi�ed into
four types, which were characterized by generic structures
of the model equations [7]. Based on the backstepping
technique, the control for nonholonomic mobile robots was
discussed: tracking problems [8] and stabilizing problems
[9, 10]. Hespanha et al. introduced the mobile robot with
parametric uncertainties [11], which were further discussed
[12, 13]. But all the above articles discussed the nonholonomic
systems in the deterministic case, which was not considered
a stochastic disturbance.

In recent years, stochastic nonlinear systems have
receivedmuch attention [14, 15], especially for stochastic con-
trol when backstepping designs were �rstly introduced [16,
17]. For stochastic nonholonomic systems, there were a few
papers. �e almost global adaptive asymptotical controllers
of stochastic nonholonomic chained form systems were
discussed by using discontinuous control [18]. �e adaptive
stabilization problem of stochastic nonholonomic systems
with nonlinear dri�s was considered [19–21]. By using state-
scaling method, backstepping controllers were proposed to
deal with exponential stabilization for nonholonomic mobile
robots with stochastic disturbance [22, 23]. But the above two

papers did not consider unknown parameters. To our knowl-

edge, the problem of adaptive state-feedback stabilization

for nonholonomic mobile robots with kinematic unknown

parameters, whose linear velocity and angular velocity are

subject to some stochastic disturbances simultaneously, has

not been reported. So, there exists a natural problem which

is how to extend the models in [11–13] to the stochastic case

and design an adaptive state-feedback stabilizing controller
for stochastic nonholonomic mobile robots with uncertain
parameters.
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�e purpose of this paper is to design adaptive state-
feedback stabilizing controllers for stochastic nonholonomic
mobile robots with unknown parameters. �e main idea of
this paper is highlighted as follows.

(i) We extend the models of nonholonomic mobile
robots with unknown parameters in [11–13] to
the stochastic case. �e stabilizing controllers are
designed for stochastic nonholonomic mobile robots
with unknown parameters by adaptive state-feedback
backstepping technique.

(ii) A switching control strategy for the original system
is presented. It guarantees that the states of closed-
loop system are asymptotically stabilized at the zero
equilibrium point in probability.

�e paper is organized as follows. Section 1 begins with
the mathematical preliminaries. In Section 2, the adap-
tive state-feedback backstepping controller is designed. In
Section 3, a switching control strategy for the original system
is discussed. Finally, a simulation example is given to show
the e�ectiveness of the controller in Section 4.

2. Preliminaries and Problem Formulation

2.1. Preliminaries. Consider the following stochastic nonlin-
ear system:

d� = � (�) d� + � (�) d�, � (�0) ∈ R
�, (1)

where � ∈ R
� is the state, the Borel measurable functions � :

R
� → R

� and � : R� → R
�×� are locally Lipschitz in �, and� ∈ R

� is an �-dimensional independent standard Wiener
process de�ned on the complete probability space (Ω,F, ).

�e following de�nitions and lemmas will be used in the
paper.

De�nition 1 (see [16]). For any given �(�) ∈ C
2, associated

with stochastic system (1), the di�erential operator L is
de�ned as follows:

L� (�) = ���� � (�) + 12 Tr{�� (�) �
2���2 � (�)} . (2)

De�nition 2 (see [24]). �e equilibrium � = 0 of system (1) is

(i) globally stable in probability if for ∀� > 0, there exists
a classK function �(⋅) such that

 {|� (�)| < � (����� (�0)����)} ≥ 1 − �, ∀� ≥ 0, � (�0) ∈ R
� \ {0} ;

(3)

(ii) globally asymptotically stable in probability if it is
globally stable in probability and

{ lim
�→∞

|� (�)| = 0} = 1, ∀� (�0) ∈ R
�. (4)

De�nition 3 (see [25]). A stochastic process �(�) is said to
be bounded in probability if the random variable |�(�)| is
bounded in probability uniformly in �; that is,

lim
�→∞

sup
�>�0

 {|� (�)| > �} = 0. (5)

Lemma 4 (see [24]). Considering the stochastic system (1), if

there exist a C
2 function �(�), class K∞ functions �1(⋅) and�2(⋅), constants �1 > 0, �2 ≥ 0, and a nonnegative function�(�) such that
�1 (|�|) ≤ � (�) ≤ �2 (|�|) ,

L� (�) = ���� � + 12 Tr{�� �
2���2 �}

≤ −�1�(�) + �2,
(6)

then

(i) for (1), there exists an almost surely unique solution on[�0,∞) for each �(�0) ∈ R
�;

(ii) when �2 = 0, �(0) = 0, �(0) = 0, and �(�) is
continuous, then the equilibrium� = 0 is globally stable
in probability and

{ lim
�→∞

�(� (�)) = 0} = 1, for ∀� (�0) ∈ R
�. (7)

Lemma 5 (see [26]). Let � and " be real variables. �en, for
any positive integers #, $ and any real number � > 0, the
following inequality holds:

|�|	����"����� ≤ ## + $�|�|	+� + $# + $�−	/�����"����	+�. (8)

2.2. Problem Formulation. Hespanha et al. introduced the
mobile robot with parametric uncertainties [11], which were
further discussed in [12, 13] as follows:

̇& = '∗1*, �̇� = '∗2 V cos &,
̇"� = '∗2 V sin &, (9)

where V and * are two control inputs to denote the forward
velocity and angular velocity, respectively.

Here we assume that the forward velocity V and the angu-
lar velocity * are subject to some stochastic disturbances.
Based on the similar methods in [27, Page 1-2], velocity V

and the angular velocity * with stochastic disturbances can
be expressed as follows:

* (&) = *1 (&) + *2 (&) �̇ (�) ,
V (��, "�, &) = V1 (��, "�, &) + V2 (��, "�, &) �̇ (�) , (10)

where �̇(�) is the derivative of a Brownian motion �(�).
Remark 6. �e second equality of (10) is the same as that
of Remark 2 in [19]. Moreover, (10) means that *(&) can be
divided into two parts, with the second parts being stochastic
disturbances and the same for V(��, "�, &).

Substituting (10) into (9), the system (9) can be trans-
formed into

d& = '∗1*1d� + '∗1*2d�,
d�� = '∗2 V1 cos &d� + '∗2 V2 cos &d�,
d"� = '∗2 V1 sin &d� + '∗2 V2 sin &d�,

(11)
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where '∗1 is unknown parameter taking values in a known
interval ['min, 'max] with 0 < 'min < 'max < ∞; '∗2 is
unknown positive parameter.

For system (11), we introduce the following state and input
transformation:

�0 = &, -0 = *1, - = V1,
�1 = �� sin & − "� cos &,
�2 = �� cos & + "� sin &,

(12)

and it is easy to see that

d�0 = '∗1 -0d� + '∗1*2 (�0) d�, (13a)

d�1 = '∗2�2-0d� − 12('∗1 )2�1*22d�
+ '∗1'∗2 V2*2d� + '∗1�2*2d�,

d�2 = '∗2 -d� − ('∗1�1-0 + 12('∗1 )2�2*22) d�
+ ('∗2 V2 − '∗1�1*2) d�.

(13b)

Remark 7. �e main di�erence between this paper and [22]
is that the unknown parameter exists in this paper. �e
controller design of systems (13a) and (13b) will be more
di�cult.

Remark 8. For system (13a) and (13b), the variable �2 appears
in the term '∗1�2*2d� in the �rst equation of (13b); this
is di�erent from the traditional stochastic backstepping
technique in [16, 17, 24].

3. Adaptive Controller Design

In this section, we will design state-feedback controllers such
that all the signals in closed-loop system are regulated to the
origin in probability. �e following assumptions are needed.

Assumption 9. For the smooth function *2(&), there exists a
known positive constant#1, such that

*2 (&) = #1&. (14)

Assumption 10. For smooth function V2(��, "�, &) and any
positive constant 4, there exists a known nonnegative con-
stant#2, such that

����V2 (��, "�, &)���� ≤ #2 ���������2 − 4
�1-0
�������� . (15)

Remark 11. For the adaptive controllers’ design in the fol-
lowing, if we let 4 = �1, this assumption will change to|V2(��, "�, &)| ≤ #2|�2|, where �2 is de�ned in (25) and �1 is
the same as that in (28) in the following Section 3.2.

Firstly, we will consider the problem of stabilization for
systems (13a) and (13b) under the condition of �0(�0) ̸= 0. �e
case of �0(�0) = 0 will be discussed in Section 3.

3.1. �e First State Stabilization. Let us consider the subsys-
tem (13a) of stochastic nonholonomic nonlinear systems (13a)
and (13b):

d�0 = '∗1 -0d� + '∗1*2 (�0) d�. (16)

In order to guarantee that �0 converges to zero, one can
take -0 as follows:

-0 = −60�0, 60 = 7 + 32#21'max, (17)

where 7 > 0 is a design parameter.
If we employ a Lyapunov function of the form:

�0 (�0) = 14'∗1 �
4
0. (18)

From (13a), (17), (18), and Assumption 9, one can obtain

L�0 ≤ �30-0 + 32'∗1 �
2
0('∗1 )2*22 ≤ −7�40. (19)

�eorem 12. If Assumption 9 holds, one can choose positive
constants #1, 7, and 'max and the controller -0 as (17),
respectively, then

(i) the closed-loop subsystem composed by (13a) and (17)
has an almost surely unique solution on [�0,∞) for∀�0(�0);

(ii) the equilibrium �0 = 0 of the closed-loop subsystem
composed by (13a) and (17) is globally asymptotically
stable in probability.

Proof. Choosing Lyapunov function as (18), by (19), 7 >0, and Lemma 4, (i) holds and the equilibrium �0 = 0
of the closed-loop subsystem which contained (13a) and
(17) is globally stable in probability and for ∀�0(�0) ̸= 0,{lim�→∞(|�0(�)| = 0)} = 1. From De�nition 2, (ii) holds.

Remark 13. From �eorem 12, one has the state �0 bounded
in probability; that is, there exists a positive constant#3, such
that

lim	3→∞
sup
�>�0

 {�����0 (�)���� > #3} = 0. (20)

Substituting (17) into the subsystem (13a), one gets

d�0 = −'∗1 60�0d� + '∗1#1�0d�. (21)

Proposition 14. For initial state �0(�0) ̸= 0, the solution of (21)
will never reach the zero, which avoids the uncontrollability of
the subsystem (13b).

Proof. FromLemma2.3 ([27, Page 93]), the following equality
will be the solution of (21):

�0 (�) = �0 (�0) exp{∫�
�0
(−'∗1 60 − 12('∗1#1)2) dA
+ ∫�
�0
'∗1#1d*} .

(22)
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From the above expression of �0(�) and �0(�0) ̸= 0, it is easy to
see that �0(�) will never cross the origin at the time interval� ∈ (�0, +∞).

In the following Section 3.2, the other states will be
regulated to the origin in probability by the design of the
control input -.
3.2. Other States Stabilization. In order to design a smooth
adaptive state-feedback controller, the following state-input
scaling discontinuous transformation is needed:

C1 = �1-0 , C2 = �2. (23)

Remark 15. For the initial state �0(�0) ̸= 0, from
Proposition 14, one can obtain that transformation (23)
is meaningful.

Under the new C-coordinate, the subsystem (13b) is
transformed into

dC1 = '∗1 (−60z2 − 0.5'∗1 C1*22 − '∗1 C2*
2
2�20 + 60C1

+ '∗2 V2*2�0 + '
∗
1 C1*
2
2�20 ) d�

+ '∗1 (C2*2�0 − C1
*2�0 ) d�,

dC2 = '∗2 -d� + ('∗1 60C1�20 − 0.5('∗1 )2C2*22) d�
+ ('∗2 V2 − '∗1 C1�0*2) d�.

(24)

To invoke the backsteppingmethod, the error variables �1
and �2 are given by

�1 = C1, �2 = C2 − �1 (�1) . (25)

Step 1. De�ne the �rst Lyapunov candidate function:

�1 = 14'∗1 �
4
1 . (26)

By (24)–(26) and De�nition 1, one has

L�1 ≤ �31 {−60C2 − 12'∗1 C1*22 − '∗1 C2
*22�20 + 60C1

+ '∗2 V2*2�0 + '
∗
1 C1*
2
2�20 }

+ 3�21 {('∗1 )2C22 *
2
2�20 + ('

∗
1 )2C21 *

2
2�20 } .

(27)

�e virtual control can be chosen as

�1 (�1) = �1�1, (28)

where �1 is a positive constant, which will be chosen later.
From (27), Lemma 5, and simple operation, we have the
following inequalities:

−60C2�31 ≤ 60 {3K4 �41 + 34K3 �42} − 60�1�41 ,
−12�31'∗1 C1*22 ≤ 12'max#21#23�41 ,

−'∗1 �31C2*
2
2�20 ≤ 'max#21 {34 + �1} �41 + 14'max#21�42 ,

'∗2 V2*2�0 ≤
14�41 + 34(#1#2)4/3('∗2 )4/3�42 ,

'∗1 C1*
2
2�20 ≤ 'max#21�41 ,

3('∗1 )2�31C22 *
2
2�20 ≤ 3'

2
max

#21 {2�21 + 1} �41 + 3'2max
#21�42 ,

3('∗1 )2�31C21 *
2
2�20 ≤ 3'

2
max

#21�41 ,

(29)

where K > 0 is a design parameter. Substituting these above
inequalities into (27), it is easy to see that

L�1 ≤ { − 60�1N + (1 + 3K4 ) 60 − �160 (1 − N)

+ 'max#21 (2#23 + 4�1 + 24'max�21 )4
+'max#21 (36'max + 7) + 14 } �41

+ { 604K3 +
'max#214 + 3'2

max
#21} �42

+ 34(#1#2)4/3('∗2 )4/3�42 ,

(30)

where N is a design parameter and 0 < N < 1. If we select
parameters 60 and �1 to satisfy

�1 ≥ 4 + 3K4N ,
60 ≥ 'max#21 (2#23 + 4�1 + 24'max�21 + 36'max + 7) + 12�1 (1 − N) ,

(31)

one has

L�1 ≤ −�160 (1 − N)2 �41 + 34(#1#2)4/3('∗2 )4/3�42
+ { 604K3 +

'max#214 + 3'2
max

#21} �42 .
(32)
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Step 2. By (24), (25), (32), and ItR̂ formula (�eorem 6.2, [27,
Page 32]), one gets

d�2 = '∗2 - d� + {'∗1 60C1�20 − 12('∗1 )2C2*22
+ '∗1 �160C2 + 12('∗1 )2�1C1*22
− '∗1 �160C1 + ('∗1 )2�1C2*

2
2�20

−'∗1'∗2 �1V2*2�0 − ('
∗
1 )2�1C1*

2
2�20 } d�

+ ('∗2 V2 − '∗1 C1�0*2 − '∗1 �1C2*2�0 + '
∗
1 �1C1*2�0 ) d�.

(33)

To deal with the uncertain parameter '∗2 , de�ne parame-
ter

Θ = max{'∗2 , ('∗2 )4/3, 1'∗2 , (
1'∗2 )
4/3, ( 1'∗2 )

2} , (34)

and Θ̃ = Θ−Θ̂ being the parameter estimation error, Θ̂ being
the estimate of Θ. De�ne the second Lyapunov candidate
function:

�2 = �1 + 14'∗2 �
4
2 + 12Θ̃2. (35)

From (33), (35), and De�nition 1, one can obtain

L�2 ≤ −�160 (1 − N)2 �41 + 34(#1#2)4/3('∗2 )4/3�42
+ { 604K3 +

'max#214 + 3'2
max

#21} �42
+ �32 {- + '∗1'∗2 60C1�

2
0 − 12

('∗1 )2'∗2 C2*22
+ '∗1'∗2 �160C2 +

12
('∗1 )2'∗2 �1C1*22

− '∗1'∗2 �160C1 +
('∗1 )2'∗2 �1C2*22�20

−'∗1 �1V2*2�0 −
('∗1 )2'∗2 �1C1*22�20 } d�

+ 6�22 {'∗2 V22 + ('∗1 )2'∗2 C21�20*22
+('∗1 )2'∗2 �21C22 *

2
2�20 +

('∗1 )2'∗2 �21C21 *
2
2�20 }

− Θ̃Θ̂.

(36)

By (34), (36), and Lemma 5, we have the following
inequalities:

'∗1'∗2 60C1�
2
0�32 ≤ Θ34('max60#23)4/3�42 + 14�41 ,

− 12
('∗1 )2'∗2 C2*22�42

≤ Θ{12'2max
#23#21 + 38(�1'2max

#23#21)4/3} �42 + 18�41 ,
'∗1'∗2 �160C2�

3
2 ≤ Θ{�1'max60 + 34�8/31 '4/3

max
64/30 } �42 + 14�41 ,

12
('∗1 )2'∗2 �1C1*22�32 ≤ Θ38(�1'2max

#23#21)4/3�42 + 18�41 ,
−'∗1'∗2 �160C1�

3
2 ≤ Θ34(�160'max)4/3�42 + 14�41 ,

('∗1 )2'∗2 �1C2*22�20 �
3
2 ≤ Θ�1'2max

#21�42 + Θ34(�21#21'2max
)4/3�42

+ 14�41 ,
−'∗1 �1V2*2�0 �

3
2 ≤ 'max#1#2�1�42 ,

− ('∗1 )2'∗2 �1C1*22�20 �
3
2 ≤ 14�41 + Θ34('2max

�1#21)4/3�42 ,

6�22 {'∗2 V22C21�20 + ('∗1 )2'∗2 *22 + ('∗1 )2'∗2 �21C22 *
2
2�20

+('∗1 )2'∗2 �21C21 *
2
2�20 }

≤ Θ{6#22 + 3'4max
#83#41 + 12'2max

#21
+ 6'4

max
#41�41 + 3'4max

#41�41 } �42 + 12�41 .
(37)

Substituting the above inequalities into (36) and adding

and subtracting the term �2�42 on the right-hand side of (36),
we have

L�2 ≤ −{�160 (1 − N)2 − 13.5} �41 − �2�42
+ Y21�42 + �32- + ΘY22�42 − Θ̃ ̇̂Θ

≤ −�1�41 − �2�42 + �32- + Θ̃ {Y22�42 − ̇̂Θ}
+ {Y21 + √1 + Θ̂2Y22} �42 ,

(38)
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where

Y21 = 604K3 +
'max#214 + 3'2

max
#21 + 'max#1#2�1,

�1 = �160 (1 − N)2 − 13.5,
Y22 = �2 + 34('max60#23)4/3 + 12'2max

#23#21
+ �1'max60 + 38(�1'2max

#23#21)4/3

+ 34�8/31 '4/3
max

64/30 + 38(�1'2max
#23#21)4/3

+ 34(�160'max)4/3 + �1'2max
#21

+ 34(�21#21'2max
)4/3 + 6#22 + 12'2max

#21
+ 3'4

max
#83#41 + 6'4max

#41�41 + 3'4max
#41�41

+ 34('3max
�1#21)4/3 + 34(#1#2)4/3.

(39)

One can choose the actual control law - and the adaptive
laws Θ̂ as follows:

- = −{Y21 + √1 + Θ̂2Y22} �2,
̇̂Θ = Y22�42 .

(40)

Substituting (40) into (38), one gets

L�2 ≤ −�1�41 − �2�42 . (41)

Choosing the Lyapunov function as

� = �0 + �2, (42)

together with (19) and (41), we have

L� ≤ −7�20 − �1�41 − �2�42 . (43)

�eorem 16. If Assumptions 9 and 10 hold, one can choose
positive constants 7, #1, #2, #3, and 'max, with K > 0 and0 < N < 1 satisfying �1 > 0 and (31); for positive constant �2,
one has the following.

(i) �e closed-loop system composed by (13a), (17), (24),
and (40) has an almost surely unique solution on[�0,∞) for ∀�0(�0), C(�0) and Θ̂(�0).

(ii) �e equilibrium (�0, C, Θ̃) = (0, 0, 0) of the closed-loop
system is globally stable in probability.

(iii) For initial condition ∀�0(�0), C(�0), and Θ̂(�0),{lim�→∞(|�0(�)| + |C(�)|) = 0} = 1,{lim�→∞Θ̂(�) exists and is �nite} = 1, whereΘ̃ = Θ − Θ̂ and C(�) = (C1(�), C2(�)).
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Figure 1: �e responses of states &, ��, and "� with respect to time.

Proof. From conditions in �eorem 16, it is easy to see that
constants 7 > 0, �1 > 0, and �2 > 0. So,L� in (43) becomes
the same form as (3.19) in [21]. Using (43) and Lemma 4,
�eorem 16 can be proved.

4. Switching Control Stability

In Section 2, the case of �0(�0) ̸= 0 is discussed. We design
controllers -0 and - for systems (13a) and (13b) as in (17) and
(40), respectively. Now we turn to the case of �0(�0) = 0.
When the initial �0(�0) = 0, one can choose an open loop
control -0 = −-∗0 ̸= 0 to drive the state �0 away from zero in a
limited time.

In fact, when we choose an open loop control -0 =−-∗0 ̸= 0, system (13a) will be in the following form:

d�0 = −-∗0d� + '∗1*2 (�0) d�. (44)

For a given constant ` > 0, de�ne a stopping time a� = inf{� :� ≥ �0, |�0(�)| ≥ `}. With the similar analysis in Section V
in [22], we have (a� − �0 ≥ b) ≤ `/T-∗0 , which means that(a� = ∞) = 0 for any ` > 0. Letting �∗ = a�, it is easy to see
that

�����0 (�∗ )���� = �����0 (a�)���� = ` ̸= 0. (45)

So, there exists �∗ > 0, such that �0(�∗ ) ̸= 0. A�er that, at the
time � = �∗ , we switch the control inputs -0 and - to (17) and
(40) in � ∈ [�∗ , +∞), respectively.
�eorem 17. If Assumptions 9 and 10 hold, one can apply the
following switching control procedure to system (11):

(i) when the initial state belongs to

{(& (�0) , �� (�0) , "� (�0)) ∈ R
3 | & (�0) ̸= 0} , (46)
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Figure 2: �e responses of controllers -0 and - with respect to time.

(ii) when the initial state belongs to

{(& (�0) , �� (�0) , "� (�0)) ∈ R
3 | & (�0) = 0} . (47)

One designs control inputs -0 and - in form (17) and (40),
respectively; for � ∈ [�0, �∗ ), one can choose the control law-0 = −-∗0 ̸= 0 and - = -∗; for � ∈ [�∗ , +∞), at the time� = �∗ , one switches the control inputs -0 and - to (17) and
(40), respectively.

�en, for any initial condition in the state space, the states of
system (11) are asymptotically regulated to zero in probability.

Proof. Firstly, we consider the case that the initial state
belongs to

{(& (�0) , �� (�0) , "� (�0)) ∈ R
3 | & (�0) ̸= 0} . (48)

From �eorems 12 and 16, for the closed-loop system com-
posed by (13a), (17), (24), and (40), states �0 and C(�) are
regulated to zero in probability, Θ̂(�) is bounded in proba-
bility, and {lim�→∞(|�0(�)| + |C(�)|) = 0} = 1. �is implies
that states �0 and C(�) are globally asymptotically regulated
to zero in probability and bounded in probability. As a result
of (23), one gets that the states �0, �1, and �2 of closed-
loop system composed by (11), (17), and (40) asymptotically
converge to zero in probability and all bounded in probability.
By orthogonal transformation (12), one can obtain that the
states &, ��, and "� of closed-loop system composed by (11),
(17), and (40) are asymptotically stabilized in probability.

Secondly, when the initial state belongs to

{(& (�0) , �� (�0) , "� (�0)) ∈ R
3 | & (�0) = 0} , (49)

we use the constant control -0 = −-∗0 ̸= 0 in order to drive �0
far away from the origin, which guarantees that all the signals
are bounded in probability during [�0, �∗ ). �en, in view of�0(�∗ ) ̸= 0, the switching control strategy is applied to system
(11) at the time instant �∗ > 0. �is completes the proof.

0 0.5 1 1.5 2 2.5 3 3.5
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0.381

0.382

0.383

0.384

0.385

0.386

0.387

Time (s)

Θ̂

Figure 3:�e response of estimate parameter Θ̂with respect to time.

5. A Simulation Example

Consider the system (11) with *2 = 0.5& and V2 = �2 −(3.5�1/-0). In simulation, one can choose '∗1 = 0.2, '∗2 = 0.1,N = 0.5, 'max = 0.25, K = 1, �1 = 5.5, �2 = 0.2, 60 = 10.5,#1 = 0.5,#2 = 1, and#3 = 3 and the initial values &(0) = 2.8,��(0) = −0.678, "�(0) = 0.528, and Θ̂(0) = 0.38. Figures 1, 2,
and 3 give the responses of the closed-loop system consisting
of (11), (17), and (40).

From Figure 1, it is easy to see that the states &, ��, and "�
are asymptotically regulated to zero in probability in spite of
the stochastic disturbances. As shown in Figure 2, the control
inputs -0 and - are convergent to a small neighborhood
of zero asymptotically. Figure 3 indicates that the estimated

parameter Θ̂ is bounded.
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6. Conclusions

In this paper, we extend the nonholonomic mobile robots
with unknown parameters to the stochastic case. Based on
backstepping technique, adaptive state-feedback stabilizing
controllers are designed for stochastic nonholonomic mobile
robots with unknown parameters. A switching control strat-
egy for the original system is given, which guarantees that the
states of closed-loop system are asymptotically stabilized at
the zero equilibrium point in probability.

�ere exist some problems to be discussed, for example,
how to design the controller for the dynamic stochastic
nonholonomic systems with unknown parameters.
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