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ABSTRACT

HUGO [1] and MOD [2] are the most secure adaptive em-
bedding algorithms of 2011. These algorithms strive to hide
a secret message, while minimizing an ad hoc embedding im-
pact. They use a detectability map, which, if properly de-
fined, is correlated to the security. In this paper, we present
a new adaptive embedding scheme: Adaptive Steganography
by Oracle (ASO). It is based on an oracle used to calculate
the detectability map, and this oracle use the Kodovský’s en-
semble classifiers [3]. Our approach preserves both cover im-
age and sender’s database distributions during the embedding
process, which improves the security. In addition, it offers
to the sender the opportunity to choose the most reliable im-
age(s), during his secret communication. Experimental re-
sults show that our embedding scheme presents good secu-
rity performances, since the detection error of ASO is much
higher than that of HUGO.

Index Terms— Steganography, Steganalysis, Oracle, De-
tectability map, Security

1. INTRODUCTION

Steganography is the art of secret communication. The goal
is to hide a secret message in an unsuspicious object in such
a way that no one can detect it. With the Internet spread and
the emergence of digital supports (audio files, videos or im-
ages), several philosophies of designing steganographic meth-
ods were proposed. One of the most usual embedding meth-
ods used with real digital images is the steganography by
modification of the original cover object, which is based on
the principle of minimizing embedding impact.

Let x = (𝑥1, ..., 𝑥𝑛) be a cover support composed of 𝑛
elements. The goal of steganography by minimizing the em-
bedding impact1 is to communicate a secret message m =
(𝑚1, ...,𝑚𝑚) by making small perturbations of cover object
x to produce a stego object y = (𝑦1, ..., 𝑦𝑛). For this, we

1The principle of minimizing the embedding impact was proposed in
2007 [4]. It is based on the adaptivity of the embedding operation by the
use of a detectability map.

define a distortion function 𝐷(x, y) that we minimize under
the constraint of a fixed payload. This distortion function is
generally based on the use of a detectability map 𝜌 ∈ ℝ

𝑛
+

which assigns to each cover element 𝑥𝑖 with 𝑖 ∈ {1, ..., 𝑛},
a detectability cost 𝜌𝑖 ∈ ℝ+ that models the impact on the
security caused by the modification of the 𝑖𝑡ℎ element.

Most proposed steganographic algorithms by minimizing
the embedding impact use the information of current cover
image to calculate their detectability map. The HUGO2 al-
gorithm [1] used during the BOSS3 competition [5] uses a de-
tectability map, which attributes to each pixel of the cover im-
age a detectability cost 𝜌𝑖 ∈ [0, ∞], as suggested in [6]. The
calculation of detectability cost is based on the use of high-
dimensional features, which are calculated from the cover im-
age. These features correspond to the conditional probabil-
ities in each pixel of the filtered image. The MOD4 algo-
rithm proposed in 2011 [7], extends the HUGO proposal by
defining a parametric detectability cost 𝜌𝑖 ∈ [0,∞], which
is parametrized by a high number of parameters. Through the
downhill simplex optimization algorithm, the search of the pa-
rameters leading to the highest level of security is performed
by repeating iteratively message embedding, and parameter
modification. The authors use at each iteration the size of
the margin of SVM5 as a criterion for evaluating the security
level.

In this paper, we propose an Adaptive Steganographic
scheme by Oracle (ASO) in spatial domain based on the use
of an oracle for the computation of the detectability map. Dur-
ing the computation of the detectability map, ASO scheme
takes into account not only the model distribution of the cur-
rent cover image, but also the sender’s database distribution.
It thus preserves both of the distributions during the embed-
ding process. Unlike Fillers approach [7] that uses a para-

2HUGO: Highly Undetectable steGO [1].
3BOSS (Break Our Steganography System) is the first challenge on Ste-

ganalysis. The challenge started the September 9th 2010 and ended the 10th
of January 2011. The goal of the player was to figure out, which images
contain a hidden message and which images do not. The steganographic al-
gorithm was HUGO [1]. http://www.agents.cz/boss/BOSSFinal/.

4MOD: Model Optimized Distortion [2].
5SVM: Support Vector Machine.



metric method to reduce the SVM margin separating the cov-
ers and the stegos, we propose a non-parametric method that
uses the Kodovský’s ensemble classifiers [3] as an oracle to
calculate the detectability map. Thus, both cover image infor-
mation and sender’s database information are fully exploited.
Moreover, the proposed ASO approach manages to resolve
the complexity problem of [7] when using high-dimensional
feature spaces. It has a good numerical stability and scales
well as the feature space increases, which is not the case with
MOD [7].

One should point out that even if the proposed scheme can
be confused with the FCM6 approach [8], these two embed-
ding algorithms are very different. The FCM approach strives
to preserve the model distribution of the original cover image
by performing a feature restoration of the used model. The
DCT coefficients of the cover JPEG image are split into two
disjoint sets. The first set is used to embed the secret mes-
sage, while the second set is used to restore the feature vec-
tor, by making additional modification. In contrast to FCM,
ASO brings the stego image distribution closer to cover im-
ages distribution. There is no features restoration as FCM.
The detectability cost calculated for each pixel fosters the
modification of pixels implying a displacement of the stego
feature vector towards the covers distribution. Through this
paper we introduce a general methodology for oracle based
approaches. Of course, such an approach may suffer from
the incompleteness of the used feature space [8], but the algo-
rithm may easily been improved by increasing the number of
well chosen feature sets.

The rest of this paper is organized as follows. In Section 2,
we recall some preliminary notions. In Section 3, we intro-
duce and describe our adaptive steganographic algorithm by
oracle. The experimental results are given in Section 4. The
paper is concluded in Section 5 with a discussion of possible
future directions.

2. PRELIMINARIES

In this section, we recall some fundamental concepts. For
sake of simplicity, we denote by x = (𝑥1, ..., 𝑥𝑛) ∈ 𝒳 =
{0, ..., 255}𝑛 and y = (𝑦1, ..., 𝑦𝑛) ∈ 𝒴 = {0, ..., 255}𝑛
grayscale cover and stego images with 𝑛 pixels.

2.1. Minimizing embedding impact

All practical steganographic algorithms by minimizing em-
bedding impact strive to hide a given message m = {0, 1}𝑚
in a cover support x, while minimizing an ad hoc embed-
ding impact [4, 6]. To achieve this goal, it is important to
establish a distortion measure 𝐷 that can model the statistical
detectability caused by the embedding.

The authors in [6] propose to model the embedding impact
by an additive function 𝐷 : 𝒳 × 𝒴 → ℝ+ that is defined by:

6FCM: Feature Correction Method.

𝐷(x, y) =

𝑛∑
𝑖=1

𝜌𝑖∣𝑥𝑖 − 𝑦𝑖∣, (1)

where 0 ≤ 𝜌𝑖 ≤ ∞ is the cost of changing the 𝑖𝑡ℎ cover
pixel 𝑥𝑖 to 𝑦𝑖, and such that the additivity of the distortion
function 𝐷 implies that the embedding changes do not inter-
act between each other. In other words, the modification of a
cover element does not affect the detectability of neighboring
elements.

For an additive distortion function (Eq. 1), and binary em-
bedding changes, i.e. ∣𝑥𝑖 − 𝑦𝑖∣ ≤ 1, the solution to the prob-
lem of minimizing embedding impact, under the payload-
limited sender constraint, takes the following form [4]:

min𝐷(x, y) =

𝑛∑
𝑖=1

𝑝𝑖𝜌𝑖, (2)

where 𝑝𝑖 is the probability of modification of the 𝑖𝑡ℎ pixel is
defined by [4]:

𝑝𝑖 =
𝑒−𝜆𝜌𝑖

1 + 𝑒−𝜆𝜌𝑖
. (3)

The parameter 𝜆 is obtained by solving the following
equation:

−
𝑛∑

𝑖=1

(
𝑝𝑖log2𝑝𝑖 + (1− 𝑝𝑖)log2(1− 𝑝𝑖)

)
= 𝑚. (4)

This formalization of adaptive steganography by mini-
mizing embedding impact allows us to split the embedding
process into two successive steps: a) the computation of a
detectability map, and b) the embedding step by a practical
adaptive algorithm. The major advantage resulting from this
separation is that the security evaluation of the detectability
map does not require to use a classical algorithm for the em-
bedding. In practice, if we want to insert a given message
while minimizing the embedding impact (which means that
the detectability map 𝜌 is known) under the fixed-payload
constraint, it is possible to simulate the optimal embedding
by: a) looking for the parameter 𝜆 (Eq. 4), and then b) flip-
ping each pixel 𝑥𝑖 with probability 𝑝𝑖 as defined in Eq. 3.

2.2. The Kodovský’s ensemble classifiers

Modern steganographic schemes, such as HUGO [1], are de-
signed to approximately preserve a high-dimensional repre-
sentation of covers7, which constitutes a real problem for ste-
ganalysis. To address the curse of dimensionality, Kodovský
et al. [3] propose a new machine learning tool alternative to
steganalysis tools such as SVM or neural networks. Their
classifier is composed by a set of weak classifiers of low com-
putational complexity. They use for learning and classifica-
tion a set ℱ = {𝐹1, ..., 𝐹𝐿} of binary FLD8 classifiers.

7The dimensionality of the feature set used by HUGO is about 107.
8FLD: Fisher Linear Discriminant.



Let 𝒜 = {f𝑖, 𝑐𝑖}𝑖=𝑁
𝑖=1 be a training base of size 𝑁 with

cover and associated stego images, where f𝑖 ∈ ℝ
𝑑 is a vector

of dimension 𝑑 characterizing the 𝑖𝑡ℎ image, and 𝑐𝑖 ∈ {0, 1}
is the associated class number (0 for a cover image, and 1 for
a stego image).

During the learning phase, each FLD classifier learns to
associate to each feature vector f𝑖, the correct class number 𝑐𝑖:

𝐹𝑙 : ℝ
𝑑 → {0, 1}

f𝑖 → 𝐹𝑙(f𝑖).

For this, each FLD classifier uses the training base 𝒜 to cal-
culate the vector w(𝑙) orthogonal to the hyperplane separating
the two classes.

One should note that each FLD classifier performs its
learning on a subspace of 𝑑𝑟𝑒𝑑 dimension, with 𝑑𝑟𝑒𝑑 ≪ 𝑑.
In practice, each classifier pseudo-randomly selects some fea-
tures from the feature vector f𝑖 ∈ ℝ

𝑑.

The classification of an input observation f ∈ ℝ
𝑑 is made

by merging all the votes of the FLD classifiers. The final de-
cision is obtained by a majority vote [3]:

𝑅 : ℝ
𝑑 → {0, 1}

f → 𝑅(f),

where: 𝑅(f) =

⎧⎨
⎩

1 if
∑𝐿

𝑙=1 𝐹𝑙(f) > 𝐿/2,

0 otherwise.

The decision threshold of the FLD base learners is ad-
justed to minimize the total detection error, under equal priors
on the training data [3]:

𝑃𝐸 = min
𝑃FA

1

2
(𝑃FA + 𝑃MD (𝑃FA)) ,

where 𝑃FA and 𝑃MD are the probabilities of false alarm and
missed detection. In this paper, the probability of error (𝑃𝐸)
is used to report the efficiency of detection.

3. THE ASO SCHEME

3.1. The detectability map

Our steganographic strategy is based on the principle of
minimizing embedding impact (section 2.1). The adaptive
steganographic algorithm by oracle (ASO), that we propose is
based on the adaptivity of the embedding by the use of a de-
tectability map 𝜌 = {𝜌𝑖 ∈ [0,∞[}𝑛𝑖=1, which is calculated by
an oracle. The functionalities of Kodovský’s ensemble clas-
sifiers [3] and the acquired information of the learning phase
are exploited during the computation of the detectability map.
By using the information of the sender’s database, we seek to
increase the security of the embedding process.

Let us consider a grayscale cover image x = (𝑥1, ..., 𝑥𝑛)
with 𝑛 pixels, a feature vector fx characterizing the image x,

an additive distortion function 𝐷 as defined in Eq. 1, and an
adaptive LSB-matching9 embedding.

We wish to calculate the detectability map 𝜌 ∈ ℝ
𝑛 that

assigns a detectability cost 𝜌𝑖 to each pixel 𝑥𝑖. To do this, we
define the detectability cost 𝜌𝑖 as in HUGO [1] by:

𝜌𝑖 = 𝑚𝑖𝑛
(
𝜌
(+)
𝑖 , 𝜌

(−)
𝑖

)
, (5)

with 𝜌
(+)
𝑖 (resp. 𝜌

(−)
𝑖 ) the detectability cost of changing the

𝑖𝑡ℎ pixel by +1 (resp. −1).

We propose to calculate the detectability cost 𝜌(+)
𝑖 (resp.

𝜌
(−)
𝑖 ) thanks to an oracle that is made of 𝐿 Kodovský’s FLD

classifiers [3]. For this, we define the detectability cost 𝜌(+)
𝑖

(resp. 𝜌
(−)
𝑖 ) as an unweighted sum of the detectability cost

𝜌
(𝑙)
𝑖 of each classifier 𝐹𝑙, 𝑙 ∈ {1.., 𝐿}:

𝜌
(+)
𝑖 =

𝐿∑
𝑙=1

𝜌
(𝑙)(+)
𝑖 , and 𝜌

(−)
𝑖 =

𝐿∑
𝑙=1

𝜌
(𝑙)(−)
𝑖 , (6)

with 𝜌
(𝑙)(+)
𝑖 (resp. 𝜌(𝑙)(−)

𝑖 ) the detectability cost provided by
the 𝑙𝑡ℎ classifier.

For a classifier 𝐹𝑙, 𝑙 ∈ {1, ..𝐿}, we define the detectability
cost 𝜌(𝑙)(+)

𝑖 , 𝑙 ∈ {1.., 𝐿}, as:

𝜌
(𝑙)(+)
𝑖 =

w(𝑙).fx∼xi
(𝑙)(+) −w(𝑙).fx

(𝑙)

𝑠(𝑙)

=
w(𝑙).

(
fx∼xi

(𝑙)(+) − fx
(𝑙)
)

𝑠(𝑙)
, (7)

In the same way, the detectability cost 𝜌(𝑙)(−)
𝑖 is defined by:

𝜌
(𝑙)(−)
𝑖 =

w(𝑙).
(
fx∼xi

(𝑙)(−) − fx
(𝑙)
)

𝑠(𝑙)
, (8)

with 𝑠(𝑙) ∈ ℝ+ the normalization factor of the 𝑙𝑡ℎ classifier
(𝐹𝑙), w(𝑙) the vector orthogonal to the hyperplane separating
the two classes calculated by the classifier 𝐹𝑙, fx

(𝑙) the fea-
ture vector that we wish to classify by the classifier 𝐹𝑙, and
fx∼xi

(𝑙)(+) (resp. fx∼xi
(𝑙)(−)) the feature vector obtained af-

ter the modification of the 𝑖𝑡ℎ pixel by +1 (resp. −1).

Our goal is to obtain a low value of 𝜌(𝑙)(+)
𝑖 (resp. 𝜌(𝑙)(−)

𝑖 ),
when the modification of pixel by +1 (resp. −1) causes a
displacement (fx∼xi

(𝑙)(+)−fx
(𝑙)) (resp. (fx∼xi

(𝑙)(−)−fx
(𝑙)))

towards the cover class. The strong assumption of our ASO
scheme is that changing pixel brings closer the stego image to
the cover images. By construction, the vector w(𝑙) is always
directed in the direction cover to stego. By using Eq. 7 and
Eq. 8 for computing 𝜌

(𝑙)(+)
𝑖 and 𝜌

(𝑙)(−)
𝑖 , we get exactly the

required behavior. Indeed, the detectability costs 𝜌(𝑙)(+)
𝑖 and

9LSB-matching: Modification of each pixel by ± 1. It has been proved
that this trivial modification of the LSB replacement is much harder to de-
tect [9].



𝜌
(𝑙)(−)
𝑖 are minimal when the vectors w(𝑙) and (fx∼xi

(𝑙)(+) −
fx

(𝑙)) (resp. (fx∼xi
(𝑙)(−) − fx

(𝑙))) are co-linear and opposite
in directions, i.e, when:

w
(𝑙)

.
(
fx∼xi

(𝑙)(+) − fx
(𝑙)

)
< 0 or when w

(𝑙)
.
(
fx∼xi

(𝑙)(−) − fx
(𝑙)

)
< 0.

(9)

Furthermore, one can easily understand the necessity of
a scaling factor for each classifier. Since the detectability
costs are obtained by an unweighted sum of 𝜌(𝑙)(+)

𝑖 or 𝜌(𝑙)(−)
𝑖 ,

each FLD classifier must provide a detectability cost 𝜌(𝑙)(+)
𝑖

or 𝜌(𝑙)(−)
𝑖 of the same order of magnitude.

Thus in order to bring the values within the interval [0,1],
we define the scale factor 𝑠(𝑙) as:

𝑠(𝑙) = (𝜇
(𝑙)
1 −𝜇

(𝑙)
0 )w(𝑙)+2(

√
w(𝑙)𝑇Σ

(𝑙)
0 w(𝑙)+

√
w(𝑙)𝑇Σ

(𝑙)
1 w(𝑙))

(10)

with 𝜇
(𝑙)
0 (resp. 𝜇

(𝑙)
1 ) the mean vector of the cover (resp.

stego) class, and Σ
(𝑙)
0 (resp. Σ(𝑙)

1 ) the covariance matrix of the
cover (resp. stego) class.

Note that for an FLD classifier, the vector w(𝑙) and the
normalization factor 𝑠(𝑙) are calculated during the learning
phase. We thus do not need to calculate them during the com-
putation of 𝜌(𝑙)(+) and 𝜌(𝑙)(−) (Eq. 7 and Eq. 8). The com-
putational complexity of the construction of the detectabil-
ity map, only comes from the computation of fx∼xi

(𝑙)(+)

and fx∼xi
(𝑙)(−). To address this problem, we do not calcu-

late separately the feature vectors fx∼xi
(𝑙)(+) and fx∼xi

(𝑙)(−),
we only calculate, on a reduced image area, the variation
(fx∼xi

(𝑙)(−) − fx
(𝑙)) and (fx∼xi

(𝑙)(+) − fx
(𝑙)) introduced by

the modification +1 or -1 of the 𝑖𝑡ℎ pixel.

At the end of the process, we obtain a detectability map
𝜌 ∈ ℝ consisting of positive and negative values. To get a
positive detectability map 𝜌 = {𝜌𝑖 ∈ [0,∞[}𝑛𝑖=1, we trans-
late the set of the detectability costs by 𝜌𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝜌),
where 𝜌𝑚𝑖𝑛 is the smallest cost of the detectability map 𝜌.
The final detectability map can then be used for the embed-
ding process, which will be either simulated as explained in
section 2.1 (Eq. 3 and Eq. 4) or, done by using the STC10 ap-
proach [6].

3.2. The proposed adaptive embedding scheme

Through our adaptive steganographic scheme by oracle
(ASO), we propose a new concept of steganography, which is
the steganography by database. During the embedding pro-
cess, the proposed algorithm takes into account not only the
model distribution of the cover image, but also the distribution
of the sender’s database. Moreover, it allows us to obtain a set
of stego images, at the output of system, instead of just one
image. During the transmission, the sender can then choose
the most secure image(s) to communicate his secret message.

10STC: Sydrome Trellis Codes.
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Fig. 1. General scheme of the Adaptive Steganography by Oracle
(ASO).

As illustrated in Figure 1, the adaptive steganographic
scheme by oracle is made of two steps:

The first step (labeled I in Figure 1), uses during the cal-
culation of the detectability map (section 3.1) a set of FLD
classifiers that have previously learn to distinguish between
the cover images and the HUGO’s stego images. Once cal-
culated, the detectability map is then used to insert the secret
message. This operation is performed by simulating the op-
timal embedding algorithm (section 2.1 Eq. 3 and Eq. 4). At
the output of this first step we obtain a stego image ASO.

The second step (labeled II in Figure 1), is an iterative step
that aims to increase the undetectability of the message. At
each iteration, the computation of the detectability map is per-
formed using a set of FLD classifiers that are trained to distin-
guish between the cover images and the ASO’s stego images
obtained during the previous iteration. The iterative process
is repeated until the desired probability of error of classifica-
tion is obtained. At the output of this second step, we obtain
a database of ASO’s stego images.

During the transmission, the sender can choose the most
reliable image(s) for the transmission of his secret data. The
transmission of his message is performed in a concrete man-
ner by using the STC approach [6].

This paper is focused on the study of the first step of ASO
(step I in Figure 1). The study of the iterative second step
(step II in Figure 1) will be treated on a future work. The de-
sign of the first step of ASO was achieved using our own im-
plementation of the Kodovský’s ensemble classifiers [3] with
𝑑𝑟𝑒𝑑 = 250, and 𝐿 = 30 classifiers. The oracle learning
phase was conducted on the BossBase v1.00 database11 con-
sisting of 10 000 512 × 512 grayscale cover images in the
pgm format. 5000 covers and 5000 HUGO’s stego images are

11BOSSBase v1.00: images database available on
http://agents.cz/boss/BOSSFinal/.



Table 1. Parameters of the used MINMAX [10] features. s :
the span of the difference used to compute the residual, q : the
quantization step, m: the order of the co-occurrence matrices,
T : the truncation threshold, and d : the resulting dimension.

s q m T d
3 2 3 3 686
3 2 4 2 1250
3 2 3 4 1458
4 2 3 3 686
4 2 4 2 1250

used during the learning, with the payload fixed by the user.
To keep a balance between optimality and performance, we
choose to represent each image by a vector of 𝑑 = 5330 MIN-
MAX features [10]. We highlight that although the small size
of this feature vector, it has proven its effectiveness against the
HUGO algorithm [10]. The parameters of the used MINMAX
feature sets and their corresponding dimension are given in
Table 1.

Finally we note that our implementation of the embed-
ding process was parallelized by using the OpenMP12 library.
This was achieved using an architecture made of 8 processors
Quad-Core AMD Opeteron(tm) Processor 8384, at 2.69 GHz;
and all 32 cores are used.

4. EXPERIMENTAL RESULTS

First of all, recall that: a) the ASO’s oracle construction, is
made by using the 5330 MINMAX features, b) during the
embedding process we use our own C++ ensemble classi-
fiers with the fixed parameters 𝐿 = 30 FLD classifiers, and
𝑑𝑟𝑒𝑑 = 250 for the random subspace dimension (seeds are
different for each weak FLD classifier), c) the oracle learning
phase is performed on 5000 (BossBase-v1) covers and 5000
associated HUGOs stego images, and d) our embedding algo-
rithm ASO takes 10000 covers (BossBase-v1) and generates
10000 stego images.

To test the performance of ASO, we compared the se-
curity of ASO13 with that of HUGO, for five different pay-
loads from 0.1 bpp to 0.5 bpp. For this, we steganalyzed ASO
and HUGO using the original Kodovský’s ensemble classifiers
framework14 with fully automatized search for 𝑑𝑟𝑒𝑑 and 𝐿 [3]
(𝐿 ∕= 30, 𝑑𝑟𝑒𝑑 ∕= 250, and seeds are different for the random
subspaces). The experiments were done using the BossBase
v1.00 database consisting of 10000 covers and the associated
stego images. Each image was represented using the Spatial
domain Rich Model SRMQ1 [11] made of 12753 features, the
features are a merge of SPAM, MINMAX, SQUARE, and

12OpenMP: a parallel programming library, available on
http://openmp.org/wp/.

13In this test only one iteration is performed with an oracle that is trained
to distinguish between covers and HUGO’s stego images (Step I in Figure 1).

14The Kodovský’s ensemble classifiers source is available on
http://dde.binghamton.edu/download/ensemble/.
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Fig. 2. Detection error 𝑃𝐸 of ASO and HUGO for five relative
payloads, using the SRMQ1 [11] model of 12753 dimension.

EDGE submodels with the fixed quantization q = 1 [11].
For each payload, the database is divided randomly into two
halves training/testing images. The division is repeated five
times with different seeds. The final performance (𝑃𝐸) is av-
eraged over the five splits.

To summarize, the oracle and the steganalysis detector are
different, the features and subspaces are also different.

Figure 2 reports the obtained results. We can notice that,
for the payloads from 0.2 bpp to 0.5 bpp, the security of ASO
is better than the HUGO’s security. For instance, at 0.5 bpp,
the detection error, 𝑃𝐸 , of ASO is about 26.87% whereas it
is only about 8.94% for HUGO. There is thus a difference
of 17.93%. Similarly, the detection error, 𝑃𝐸 , of ASO at 0.4
bpp is greater than that of HUGO. It is about 39.49%, com-
pared with 12.85% for HUGO. We can say that ASO allows
the sender to hide long messages with a better security than
HUGO.

For small payloads, the ASO algorithm is less efficient
than HUGO. At 0.1 bpp, the detection error, 𝑃𝐸 , is about
34.45%, whereas it is about 38.40% for HUGO. For such pay-
load, the oracle used for computing the detectability map (sec-
tion 3.1), probably does not allow to distinguish between the
cover and stego images. This thus influences the ASO’s clair-
voyance. In other words, ASO can not distinguish between
secure and insecure areas.

Note that, between 0.1 bpp and 0.5 bpp, the ASO’s be-
haviour is non-monotonous. We also observed this behavior
by steganalyzing ASO with the 5330 MINMAX [10] features.
At 0.4 bpp, the detection error 𝑃𝐸 of ASO is greater than that
at 0.3 bpp. It is about 39.49% for 0.4 bpp, compared with
38.22% for 0.3 bpp. This behavior is counter-intuitive and
we would expect a monotonous decreasing of 𝑃𝐸 . The first
possible explication of those fluctuating performances is that
we fixed 𝑑𝑟𝑒𝑑 = 250 and 𝐿 = 30 in our oracle C++ imple-



mentation. These parameters should probably not be the same
for each payload. This implies that our approach may be im-
proved in the future by the automatic search of the best pa-
rameters 𝑑𝑟𝑒𝑑 and 𝐿. The additional explication about those
fluctuating performances is that we have two contradictory
expected effects: the less the payload is, the less the embed-
ding process is detectable (because we modifies fewer pixels
(or coefficients)), and at the same time, the less the payload is,
the less is the oracle reliability, and thus the more ASO is de-
tectable (because the oracle incorrectly fills the detectability
map).

To summarize, the results show that ASO outper-
forms HUGO against the steganalysis with the Rich Model
SRMQ1 [11] of 12753 features. This confirms that the ASO’s
stego images are build in such a way that their distribution is
as close as possible to the cover class. In other words, the
boundary separating the two classes cover/stego is kept to be
very thin, which makes the detection a difficult task. More-
over, unlike HUGO, the ASOs embedding strategy is different
from one image to another, which represents a real problem
for machine learning algorithms.

Finally, one should remark that the completeness of ASO
can not be guaranteed against other attacks (other feature
sets). However, we stress that through this paper, we present a
general concept that can be adapted for any other embedding
algorithm, and that can be improved by using a more well
chosen complete cover model [8, 11]. Moreover, we believe
that additional iterations during the embedding process (step
II in Figure 1) could significantly improve the security.

5. CONCLUSION

In this paper, we present an Adaptive Steganographic scheme
by Oracle (ASO) that uses an oracle to calculate a detectabil-
ity map. The Kodovský’s ensemble classifiers [3] allows to
split the features space in two regions (cover and stego re-
gions). We use this separation as an oracle in order to define
the detectability costs. Our detectability map is then defined
such that changing pixels must bring closer the stego image to
the cover images. Thus our proposed embedding scheme does
not only strive to preserve the model distribution of the cur-
rent cover image, but also preserves the model of the sender’s
database. It thus improves the security of the embedding pro-
cess. An additional security feature of ASO, that can be point
out, is that during the transmission phase, ASO allows the
sender to choose the most undetectable stego image(s). Ex-
perimental results show that our embedding scheme presents
good security performances. With only one iteration, ASO
allows the embedder to hide long messages with a better se-
curity than HUGO. Future work will be focused on: (1) the
problem of finding the exact number of iterations needed to
improve the security of ASO, (2) extending the ASO scheme
by working with more diverse feature spaces, and (3) the
problem of the feature set completeness [2].
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[1] T. Pevný, T. Filler, and P. Bas, “Using High-Dimensional Im-
age Models to Perform. Highly Undetectable Steganography,”
in Information Hiding - 12th International Conference, Berlin,
Heidelberg, October 01 2010, vol. 6387 of Lecture Notes in
Computer Science, IH’10, pp. 161–177, Springer-Verlag.
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