
Adaptive Step-Size for Online Temporal Difference Learning

William Dabney and Andrew G. Barto
140 Governors Dr.

University of Massachusetts Amherst
Amherst, MA 01003

Abstract

The step-size, often denoted as α, is a key parameter for
most incremental learning algorithms. Its importance is es-
pecially pronounced when performing online temporal dif-
ference (TD) learning with function approximation. Several
methods have been developed to adapt the step-size online.
These range from straightforward back-off strategies to adap-
tive algorithms based on gradient descent. We derive an adap-
tive upper bound on the step-size parameter to guarantee
that online TD learning with linear function approximation
will not diverge. We then empirically evaluate algorithms us-
ing this upper bound as a heuristic for adapting the step-
size parameter online. We compare performance with related
work including HL(λ) and Autostep. Our results show that
this adaptive upper bound heuristic out-performs all existing
methods without requiring any meta-parameters. This effec-
tively eliminates the need to tune the learning rate of temporal
difference learning with linear function approximation.

Introduction
One of the most pervasive parameters used throughout ma-
chine learning is the step-size parameter. The question of
how far to step in the direction of the current update must be
answered either explicitly in the form of a step-size param-
eter or implicitly by the learning algorithm itself. Because
of the difficulty of the latter, the use of a fixed step-size pa-
rameter is common practice in many machine learning algo-
rithms. Step-size is also highly influential on performance,
so much so that it is a common practice to compare algo-
rithms using performance with respect to a variety of step-
sizes.

Where they exist, convergence guarantees for reinforce-
ment learning and stochastic gradient descent algorithms
ubiquitously rely on the step-size satisfying: (

∑∞
t=0 αt =

∞) & (
∑∞
t=0 α

2
t < ∞), where αt denotes the step-size at

time step t. Meeting these requirements will result in consis-
tent learning, but can make convergence slower. On the other
hand, choosing a fixed step-size that is too large can lead
to very fast convergence in practice, but also has a greater
chance of causing the process to diverge. The unfortunate
irony is that often the best fixed step-size is the largest value
that does not cause divergence. Thus, on one side of this

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

threshold is greatly improved performance, and on the other
side is a complete failure to learn. More discussion related
to the problems with diverging function approximation can
be found in Boyan and Moore (1995). Even when conver-
gence does occur, performance is critically dependent on the
choice of step-size.

The problems with divergence when using too large a
step-size are especially severe in online temporal difference
(TD) learning. For these algorithms, the step-size regulates
the updating of values based on targets which are themselves
estimates learned from previous updates. This bootstrapping
process can exacerbate the effects of divergence by causing
both target and the estimated current values to be increas-
ingly poorly estimated.

Due to the critical importance of tuning step-size for a
particular combination of learning algorithm and application
domain, there has been extensive research on the topic of
adapting the step-size. By far the most common approach to
choosing a value for the step-size is to evaluate performance
across a reasonable range of possible step-sizes and use the
fixed value that leads to the lowest error or highest return.
This method works well in practice, but is computationally
expensive.

A class of approaches, which we refer to as back-off
strategies, provides a fixed schedule of decreasing step-
sizes. These are more theoretically sound and better at avoid-
ing divergence than choosing a fixed step-size. One such
schedule is given by the equation αt = 1

t . This simple back-
off strategy has been shown to be optimal for stationary data,
where it matches the form for the unbiased estimation of
the mean of the data (George and Powell 2006). For non-
stationary data, a variety of other back-off strategies have
been developed, such as the search then converge (STC) al-
gorithm (Darken and Moody 1992). The underlying trait that
all back-off strategies share is that they are fixed schedules.
As such, they are unable to adapt the step-size if learning
begins to diverge even after being tuned to the application
domain.

Another approach, which we refer to as adaptive strate-
gies, adapts the step-size based upon the prediction errors
for the target (Sutton 1992b; Schraudolph 1999; George and
Powell 2006; Hutter and Legg 2007; Mahmood et al. 2012).
Some of these attempt to find an analytical solution for the
optimal step-size, such as in the case of HL(λ) (Hutter and

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

872

Legg 2007). However, most approaches are themselves a
form of dynamic programming or stochastic gradient de-
scent, and as such must rely on a meta-stepsize parameter.
The idea is that the algorithm will be much less sensitive to
the meta-stepsize parameter than to the step-size itself. In
practice these methods are still sensitive enough to the value
of the meta-stepsize parameter that tuning must be done be-
fore they are used. The recently developed Autostep algo-
rithm extends the Incremental Delta-Bar-Delta (IDBD) al-
gorithm (Sutton 1992a), a gradient descent based adaptive
step-size algorithm, to make it less sensitive to the value of
its meta-parameters (Mahmood et al. 2012).

There are two drawbacks to existing adaptive strategies.
First, they still require one or more meta-parameters that
must be tuned ahead of time, although Autostep shows sub-
stantial progress on this point. Second, regardless of the
meta-parameters, if the initial step-size is not chosen care-
fully they can still diverge. In this paper we derive upper and
lower bounds for the optimal adaptive step-size for online
temporal difference learning with linear function approxi-
mation. Then, because these bounds are dependent only on
the experiences received by the learning algorithm, we are
able to construct an adaptive step-size strategy based on the
computation of approximate upper bounds on the optimal
step-size.

The resulting algorithm is easily applicable to a wide va-
riety of value function based learning algorithms, has per
step computational complexity which is linear in the num-
ber of features , and is simple to understand and implement.
We compare performance with a variety of existing back-
off and adaptive strategies across four classic reinforcement
learning problems. Despite its simplicity, our algorithm per-
forms competitively or better than related approaches with
tuned parameters, with the additional property that it pre-
vents function approximation divergence without relying on
any meta-parameters.

Derivation of Bounds
We now derive upper and lower bounds for the optimal adap-
tive step-size for an online temporal difference learning al-
gorithm using linear function approximation. Note that we
are assuming a scalar valued step-size, which does not offer
as much potential for optimization as a vector containing a
step-size for each input dimension, but is more commonly
used in practice. With the exception of Autostep, all the al-
gorithms compared in this paper use scalar valued step-sizes.

Let θt be the parameters for a linear function approx-
imator over feature vector φt at time step t. Then, Equa-
tions 3 – 1 are the standard update equations for an online
TD learning algorithm with eligibility traces, such as TD(λ)
or Sarsa(λ). In our experiments we use Sarsa(λ) by assum-
ing that the vectors φ, e, and θ are all of size |A||X|, where
|A| is the number of actions and |X| is the number of input
features. This is a fairly common practice, but we take note
of it because upon going from a purely mathematical algo-
rithm to an actual implementation, the details of what these
vectors represent becomes important.

At each step, the learning algorithm receives a new feature
vector φt and a reward rt. The prediction error is computed

using Equation 1,

δt = γθTt φt+1 + rt − θTt φt, (1)

eligibility traces are updated with Equation 2,

et = γλet−1 + φt, (2)

and finally the parameters of the function approximator
are updated by Equation 3,

θt+1 = θt + αδtet. (3)

This last step of updating the parameters is where the step-
size, α, is used to control how large of a change the update
can make to the parameters.

The goal is for the step-size to be large enough so the
process quickly converges, but small enough to avoid over-
shooting the learning target. If α is too large, we would intu-
itively expect that if we recomputed δt it might actually have
increased, instead of getting closer to zero. In this situation,
the sign before and after the update would have changed.

We can capture this intuition by considering the predic-
tion error after the update from Equation 3. This is done by
substituting the new parameter values θt+1, into Equation 1.
This results in Equation 4,

δ′t = γθTt+1φt+1 + rt − θTt+1φt,

= γ(θt + αδtet)
Tφt+1 + rt − (θt + αδtet)

Tφt,

= δt + αδte
T
t (γφt+1 − φt). (4)

Using δ′t, we can now analyze the effect of the one step
of learning. If the magnitude of the error decreased with-
out changing signs, |δ′t| < |δt| and sign(δ′t) = sign(δt),
then we have, by this limited measurement, made some im-
provement. However, if δ′t is actually further away from zero
or has changed sign, then our estimation has gotten worse,
suggesting our value of α is too large. Finally, if δt = δ′t
then we have neither improved nor gotten worse.

Based upon these simple observations, Inequality 5 de-
fines the boundaries of a successful update (one where the
approximation has not gotten worse). With some manipula-
tion this inequality comes down to three possible outcomes.

0 ≤ δ′t
δt

≤ 1 (5)

0 ≤ 1 + αeTt (γφt+1 − φt) ≤ 1

−1 ≤ αeTt (γφt+1 − φt) ≤ 0

Thus, when eTt (γφt+1−φt) = 0, the result of this update
will have no effect on δt,

eTt (γφt+1 − φt) = 0⇔ δ′t = δt. (6)

When eTt (γφt+1 − φt) > 0, the inequality forces α = 0
in order to both satisfy the inequality and the requirement
that α ∈ [0, 1]. This is equivalent to ignoring the update
completely,

873

eTt (γφt+1 − φt) > 0⇔ −1
eTt (γφt+1 − φt)

≤ α ≤ 0

⇔ α = 0.

Finally, when eTt (γφt+1 − φt) < 0,

eTt (γφt+1 − φt) < 0⇔ −1
eTt (γφt+1 − φt)

≥ α ≥ 0,

⇔ 0 ≤ α ≤ −1
eTt (γφt+1 − φt)

, (7)

we get a bound on the value of α that will ensure that the
approximation does not get worse , at least locally.

However, this upper bound only takes into account the ef-
fect the update has locally (i.e., the effect on δt). It does not
take into account the effects this update will have on other
areas of the feature space. To get a tighter upper bound we
can consider the effects that the update would have on all the
previously computed deltas, δi ∀i ≤ t. This can be done as
a straightforward extension to the derivation by considering
the effect of the update on other prediction errors. This al-
lows us to define a theoretically tighter upper bound on the
optimal step-size at time step t, given in Equation 8,

α∗t ≤ min
0≤i≤t

−δi
δteTt (γφi+1 − φi)

. (8)

Next, we look at deriving a lower bound on the opti-
mal step-size. Notice that to compute the minimum over the
whole set would require storing a vector for each step the
agent has taken. Instead, in Equation 11 we use the Cauchy-
Schwarz inequality to transform these inequalities to pro-
duce a new lower bound on α∗t , the optimal step-size at time
t. We start with the least upper bound and manipulate it into
a maximum over inner products, Equation 10. Then, we are
able to apply Cauchy-Schwarz, giving Inequality 11. This
results in a lower bound given by Inequality 12, where Lt is
given by Equations 13 & 14.

α∗t = min
0≤i≤t

−δi
δteTt (γφi+1 − φi)

, (9)

= min
0≤i≤t

(
δte

T
t (γφi+1 − φi)
−δi

)−1,

= (max
0≤i≤t

δte
T
t (γφi+1 − φi)
−δi

)−1,

= (max
0≤i≤t

| < δtet,
1

δi
(γφi+1 − φi) > |)−1,

1

α∗t
= max

0≤i≤t
| < δtet,

1

δi
(γφi+1 − φi) > |, (10)

≤ max
0≤i≤t

‖δtet‖ · ‖
1

δi
(γφi+1 − φi)‖, (11)

= ‖δtet‖ max
0≤i≤t

‖ 1
δi
(γφi+1 − φi)‖,

= ‖δtet‖Lt ⇔,

α∗t ≥
1

‖δtet‖Lt
. (12)

Lt = max[Lt−1, ‖
1

δt
(γφt+1 − φt)‖] (13)

L−1 = 0 (14)

These bounds are based on the assumption that we are
concerned with divergence with respect to experiences re-
ceived so far, as opposed to unknown future experiences.
Based on this assumption, we can prove1 that Inequality 8
gives a tight upper bound for the optimal adaptive step-size.

Application of Bounds
Based upon the above derivation, computing the true op-
timal step-size for step t would require storing the vector
(γφi+1−φi)

δi
for all i ≤ t, and would then require comput-

ing the constraints imposed by each previous time step and
finding the resulting minimum value for the step-size. In-
stead, we used the heuristic of taking the minimum upper
bound observed thus far as an approximation to the mini-
mum over the whole set of constraints. This results in Equa-
tion 15, which requires O(|φ|) computational cost per time
step and only the additional storage needed to do the com-
putation:

αt = min[αt−1, |eTt (γφt+1 − φt)|−1] (15)
α0 = 1.0

This update to the step-size should be done before the pa-
rameters are updated at each step where eTt (γφt+1 − φt) <
0. Finally, although we experiment with different settings
of α0 to illustrate performance, it is not necessary, either in
theory or in practice, to use anything other than 1.0. Thus,
Equation 15 does not depend on any meta-parameters.

Related Work - Back-off Strategies
George and Powell (2006) provide a thorough review of
many back-off and adaptive strategies, referred to as deter-
ministic and stochastic step-size rules respectively, but we
review only those we use to obtain the experimental results.
A more general form of the simple back-off strategy given in
the introduction can be obtained by introducing a parameter
τ . We call this the simple back-off strategy, which is given
by αt = min[α0,

τ
t], where τ ∈ N and t is the current time

step. This strategy allows for a consistent decay that begins
after a delay modulated by τ .

The Generalized Harmonic Stepsizes (GHC) algorithm,
αt = α0

τ
τ+t−1 , provides the ability to directly set the

rate of convergence using different values of τ (George and
Powell 2006). The last back-off strategy that we will com-
pare against is the Search then Converge (STC) algorithm
(Darken and Moody 1992). This strategy does exactly what
its name implies: early in the learning process it allows
larger step-sizes and then past a certain point the step-sizes
quickly converge. All three strategies have parameters that
must be tuned, and are highly sensitive to their values.

1Proof provided in appendix.

874

Related Work - Adaptive Strategies
Out of the many adaptive strategies in the literature,
we chose two based on their reduced reliance on meta-
parameters. The first, HL(λ), is a completely parameter-free
method (Hutter and Legg 2007). The second, Autostep, is
the state-of-the-art gradient descent approach to adapting
step-size with additional heuristics added that share the same
intuition as our approach for deriving bounds on the optimal
step-size (Mahmood et al. 2012).

HL(λ) Hutter and Legg (2007) derive an equation for
adaptive step-sizes in online TD learning with discrete state
spaces. The temporal difference update equation is compara-
ble to the Sarsa(λ) algorithm already discussed, with Equa-
tion 16 giving the step-size for time step t where δst+1,s is
the Kronecker delta:

αt(s, st+1) =
1

N t
st+1
− γetst+1

N t
st+1

N t
s

,where (16)

N t+1
s = λN t

s + δst+1,s.

For our comparisons, we adapted this algorithm to con-
tinuous state spaces. We used the same approach used for
eligibility traces in continuous spaces. Our continuous state
version of the HL(λ) algorithm is given by Equation 17,

αt =
1

NT
t φt+1 − γeTt φt+1

NT
t φt+1

NT
t φt

,where (17)

Nt+1 = λNt + φt.

HL(λ) uses the discounted state visitation counter,N t
s , for

state s, and the eligibility traces at time step t to compute the
new step-size. Our extension encodes this same information
but with respect to the input feature vector instead of the
discrete state.

Autostep Mahmood et al. (2012) recently presented Au-
tostep, an approach for adapting the learning rate for gra-
dient descent algorithms using linear function approxima-
tion. It is the closest related work, although it is designed
for the general class of gradient descent algorithms with lin-
ear function approximation, and not specifically for use in
temporal difference learning. Importantly, the paper clearly
states that they hope to apply it to temporal difference learn-
ing in the future and suggest that this will require changes.

The basic intuition behind Autostep is very similar to the
intuition driving this work, but the approach is substantially
different. Autostep uses a gradient descent approach to au-
tomatically tune the alpha parameter. This requires three pa-
rameters: α0 is the initial value of α, µ is the meta-learning
rate, and τ is a scaling value which signals approximately
how many samples over which to average. In their paper
they, Mahmood et al. find that values of µ = 0.01 and
τ = 10000 work best. The algorithm depends on α0 be-
ing set sufficiently small so as not to cause divergence of
the function approximation. This seems to defeat one of the
reasons to adapt the learning rate.

Experimental Results
To evaluate the effectiveness of using our derived upper
bounds as a heuristic for adapting the step-size, we used
the Sarsa(λ) TD learning algorithm with different methods
for setting the step-size parameter α. All experiments used
a Fourier basis of order 3 and are averages over 10 runs
with standard deviation shown. We evaluated on the follow-
ing classic reinforcement learning domains: Mountain Car,
Acrobot, Puddle World, and Cart Pole. To simplify the pro-
cess of experimenting on multiple domains with a variety of
algorithms, we used the RL-Glue framework with its imple-
mentations for the domains (Tanner and White 2009), and
the Sarsa(λ) with Fourier basis algorithm of Konidaris, Os-
entoski, and Thomas (2011).

Briefly, we describe the problem domains; for more in-
depth descriptions see Boyan and Moore (1995), Sutton
(1996), and Sutton and Barto (1998). Unless otherwise spec-
ified there is a −1 reward per step with a reward of 0 at the
goal. The Mountain Car domain is the task of controlling
an underpowered car which is stuck in a valley so that it
reaches the top of the hill in front of it. It is fully observable,
has two continuous state variables (the car’s position and ve-
locity) and three discrete actions (reverse, neutral, and for-
ward). The Acrobot domain is the task of swinging up a two
jointed rigid body; there are four continuous state variables
corresponding to joint angles and velocities, and three dis-
crete actions for applying positive, negative or neutral torque
to the second joint. The Puddle World domain is a naviga-
tion task within a square room with large randomly gener-
ated puddles in it. There are two continuous state variables
for the location in the room and four discrete actions (up,
down, left and right). There is a negative reward that gets
larger as the agent gets deeper into the puddle, a time step
reward of −1 and reward of 0 at the goal. Finally, the Cart
Pole domain is the task of keeping a stick, connected to a
cart by a hinge, from falling over. There are four continuous
state variables (cart location, cart velocity, angle of pole, and
angular velocity of pole) and two discrete actions (move left
or right). There is a reward of 1.0 for every step, and the
episode ends when the pole reaches a ±12 degree angle or
the cart’s position goes past ±2.4.

We will refer to a particular combination of step-size strat-
egy, meta-parameter setting (if applicable), and domain as a
trial. We evaluated performance for each trial as follows. In
each trial, the learning algorithm was trained online in the
domain for 375 episodes. Every 25 episodes learning was
frozen and the performance was evaluated for 10 episodes
and the average total reward for those evaluation episodes
was recorded. These evaluations were averaged together to
get the average total reward for that trial. Each trial was run
10 times and the averages and standard deviations were used
for our figures. Parameters used for all experiments were:
γ = 1.0, λ = 0.9, and ε = 0.01. One exception is that
γ = 0.99 was used for experiments with the HL(λ) al-
gorithm because a value of 1.0 causes the denominator in
Equation 16 to vanish. This is a property of the original as
well as our extended version of the algorithm.

For all these experiments we set α0 in Equation 15 to the
same value that the other methods used. However, unlike

875

-6000

-5000

-4000

-3000

-2000

-1000

0
1e-06 1e-05 0.0001 0.001 0.01 0.1 1

A
ve

ra
ge

R
ew

ar
d

α0

Mountain Car - Sarsa(λ) - Fourier Order 3

Alpha Bound
Simple Backoff τ = 500
GHC Backoff τ = 1000

STC Backoff µ = 100 τ = 1000

Figure 1: Comparing various back-off strategies with alpha
bounds and vanilla (fixed step-size). Domain: Mountain Car

-3000

-2500

-2000

-1500

-1000

-500

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

A
ve

ra
ge

R
ew

ar
d

α0

Acrobot - Sarsa(λ) - Fourier Order 3

Alpha Bound
Simple Backoff τ = 500
GHC Backoff τ = 1000

STC Backoff µ = 100 τ = 1000

Figure 2: Comparing various back-off strategies with alpha
bounds and vanilla (fixed step-size). Domain: Acrobot

the related approaches, our method never resulted in func-
tion approximation divergence in any trial. Moreover, setting
α0 = 1.0 resulted in performance that is comparable to that
obtained with the best fixed step-size. Only in Cart Pole does
our approach perform worse for larger initial step-sizes.

First, we consider the performance of the three back-
off strategies we previously discussed. Figures 1–4 show
how these perform compared with using the alpha bound
to set the step-size. For the simple back-off strategy we ex-
perimented with values for τ (1, 100, 500, and 1000). For
the GHC strategy we considered values for τ (1, 100, 500,
1000). Finally, for STC we experimented with values for τ
(100, 1000, 10000) and for µ (1, 100, 1000). The results
shown are for the meta-parameter values that performed
best. In general we did not find that the back-off strategies
were much more effective than a fixed step-size. In some of
the domains, such as Mountain Car in Figure 1, they per-
formed worse than a fixed step-size. However, in some do-

-20000

-15000

-10000

-5000

0

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

A
ve

ra
ge

R
ew

ar
d

α0

Puddle World - Sarsa(λ) - Fourier Order 3

Alpha Bound
Simple Backoff τ = 500
GHC Backoff τ = 1000

STC Backoff µ = 100τ = 1000

Figure 3: Comparing various back-off strategies with alpha
bounds and vanilla (fixed step-size). Domain: Puddle World

-500

0

500

1000

1500

2000

2500

3000

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

A
ve

ra
ge

R
ew

ar
d

α0

Cart Pole - Sarsa(λ) - Fourier Order 3

Alpha Bound
Simple Backoff τ = 500
GHC Backoff τ = 1000

STC Backoff µ = 100τ = 1000

Figure 4: Comparing various back-off strategies with alpha
bounds and vanilla (fixed step-size). Domain: Cart Pole

mains, such as Puddle World, they showed improved perfor-
mance over the fixed step-size approach. However, univer-
sally they were outperformed by the alpha bound.

Next, we examine performance using the alpha bounds
compared with the adaptive strategies, using a fixed step-
size to show a baseline for performance. For the adaptive
strategies we show the performance of Autostep and HL(λ)
in Figures 5–8. Notice that Autostep is not able to prevent
function approximation divergence when the initial step-size
is set too high. Despite this drawback, Autostep performs
very well when the step size is small enough. With small ini-
tial step-sizes, it is able to adapt the step-size and gradually
increase it, resulting in better performance than a fixed step-
size of the same initial value. One of the strong points of the
algorithm is its robustness with respect to the choice of meta-
parameter. We show results with µ = 0.01 and τ = 10000,
which performed best among the values we tested.

Our results show that the HL(λ) algorithm loses some per-

876

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0
1e-06 1e-05 0.0001 0.001 0.01 0.1 1

A
ve

ra
ge

R
ew

ar
d

α0

Mountain Car - Sarsa(λ) - Fourier Order 3

Vanilla
Alpha Bound

HL(λ)
Autostep µ = 0.01 τ = 10000

Figure 5: Comparing adaptive strategies with alpha bounds
and vanilla (fixed step-size). Domain: Mountain Car

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0
1e-06 1e-05 0.0001 0.001 0.01 0.1 1

A
ve

ra
ge

R
ew

ar
d

α0

Acrobot - Sarsa(λ) - Fourier Order 3

Vanilla
Alpha Bound

HL(λ)
Autostep µ = 0.01 τ = 10000

Figure 6: Comparing adaptive strategies with alpha bounds
and vanilla (fixed step-size). Domain: Acrobot

formance in continuous domains, where as Hutter and Legg
found that it outperformed TD(λ) in all situations in their
discrete domain. In our experiments, HL(λ) did as well or
better than vanilla Sarsa(λ) in all but the Acrobot domain,
where it frequently diverged. Divergence was still a problem
in the other domains but it happened less frequently with
HL(λ) than with a fixed step-size as the initial step-size got
closer to 1.0. However, in these comparisons we found that
using the upper bounds previously derived to adapt the step-
size continued to perform best.

Conclusion
We have derived new upper and lower bounds for the op-
timal step-size for online TD learning with linear function
approximation. We showed that a simple algorithm using
these bounds to adapt the step-size online outperforms exist-
ing methods, and unlike all existing approaches, completely

-10000

-8000

-6000

-4000

-2000

0

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

A
ve

ra
ge

R
ew

ar
d

α0

Puddle World - Sarsa(λ) - Fourier Order 3

Vanilla
Alpha Bound

HL(λ)
Autostep µ = 0.01 τ = 10000

Figure 7: Comparing adaptive strategies with alpha bounds
and vanilla (fixed step-size). Domain: Puddle World

-500

0

500

1000

1500

2000

2500
1e-06 1e-05 0.0001 0.001 0.01 0.1 1

A
ve

ra
ge

R
ew

ar
d

α0

Cart Pole - Sarsa(λ) - Fourier Order 3

Vanilla
Alpha Bound

HL(λ)
Autostep (0.01, 10000)

Figure 8: Comparing adaptive strategies with alpha bounds
and vanilla (fixed step-size). Domain: Cart Pole

prevents function approximation divergence. For future re-
search, extending our derivation of upper and lower bounds
on scalar step-sizes to the vector of step-sizes case is the
most promising direction. This would allow step-sizes to be
adapted individually for each input dimension, potentially
leading to better algorithms for adaptive step-sizes. Another
promising direction for future research is to develop algo-
rithms that make use of the lower bound to do something
akin to the search then converge algorithm, where the step-
size is initially computed based upon the upper bounds and
gradually converges to the lower bound.

Appendix: Proof of Upper Bound Tightness
Formally we define the step-size upper bound as some pos-
itive value, greater than or equal to the true optimal step-
size, such that any larger step-size will result in a change of
sign in prediction error or an increase in the error magni-

877

tude for some previously experienced transition and reward.
We explicitly assume that the only information available is
the sequence {φt, at, rt, et}t≥0 tuples received at each time
step, the learning algorithm, and parameters used {αt, γ, λ}.
Thus, we are assuming that no model of the underlying MDP
is provided. If we have access to the MDP, that model could
be exploited to improve the step-size upper bounds, but in
this situation we would be unlikely to be applying model-
free reinforcement learning in the first place.

Theorem 1. α∗t ≤ min
0≤i≤t

−δi
δteTt (γφi+1−φi)

is a tight upper

bound for non-zero step-sizes.

Proof. Assume to the contrary that there exists 0 < α < α∗t
such that α is an upper bound for step-size. Then, using α∗t
for the value function update at time t will cause prediction
error for some observed transition, 0 ≤ i ≤ t, to increase
in absolute magnitude or change signs and α will not cause
such a change. Then: α < α∗t ⇒ ∃i : 0 ≤ i ≤ t such
that δ

′
i

δi
> 1 or δ′i

δi
< 0 when α∗t is used for the update, and

0 ≤ δ′i
δi
≤ 1 when α is used for the update.

First we expand on exactly what we mean by δi and δ′i.
They are the prediction error for the ith experienced step
using the parameters at time t (before the update using α∗t)
and t+1 (after the update using α∗t) respectively. Formally:

δi = γθTt φi+1 + ri − θTt φi,
δ′i = γθTt+1φi+1 + ri − θTt+1φi,

= γ(θt + α∗t δtet)
Tφi+1 + ri − (θt + α∗t δtet)

Tφi,

= δi + α∗t δte
T
t (γφi+1 − φi). (18)

Now consider the condition we would expect if our as-
sumption to the contrary holds, specifically the value of
δ′i/δi. Here, we have used j to denote the argmin of Equa-
tion 8. Notice that the second term in Equation 19 is exactly
the ratio between two elements from the minimization.

δ′i
δi

= 1 +
δt
δi
α∗t e

T
t (γφi+1 − φi)

= 1− δje
T
t (γφi+1 − φi)

δieTt (γφj+1 − φj)
(19)

Now, we have two possible cases that would allow our
contrary assumed α to exist. First, if δ

′
i

δi
< 0 then the second

term in Equation 19 must be greater than 1. This implies that
there exists β = −δi

δteTt (γφi+1−φi)
such that β < α∗t . This is a

contradiction because β is a member of the set of which α∗t
is taken to be the minimum.

Second, if δ′i
δi
> 1 then the second term in Equation 19

must be less than zero. This implies that the same β we were
considering before is now less than zero, because α∗t is taken
to be greater than zero. Now, consider this possibility in the
context of using our contrary assumed α as an update:

0 ≤ δ′i
δi

≤ 1

−1 ≤ α δtδi e
T
t (γφi+1 − φi) ≤ 0

−δi
δteTt (γφi+1 − φi)

≤ α ≤ 0

Therefore, α = 0, which again is a contradiction because
we assumed that α > 0. Thus, both possible cases lead to
contradictions. Therefore, we conclude that no such lower
upper bound, 0 < α < α∗t , exists.

References
Boyan, J. A., and Moore, A. W. 1995. Generalization in re-
inforcement learning: Safely approximating the value func-
tion. Advances in Neural Information Processing Systems
7.
Darken, C., and Moody, J. 1992. Towards faster stochastic
gradient search. Advances in Neural Information Processing
Systems 4.
George, A. P., and Powell, W. B. 2006. Adaptive stepsizes
for recursive estimation with applications in approximate
dynamic programming. Machine Learning 65:167–198.
Hutter, M., and Legg, S. 2007. Temporal difference updat-
ing without a learning rate. Advances in Neural Information
Processing Systems.
Konidaris, G. D.; Osentoski, S.; and Thomas, P. 2011. Value
function approximation in reinforcement learning using the
fourier basis. Proceedings of the Twenty-Fifth Conference
on Artificial Intelligence.
Mahmood, A. R.; Sutton, R. S.; Degris, T.; and Pilarski,
P. M. 2012. Tuning-free step-size adaptation. International
Conference on Acoustics, Speech, and Signal Processing.
Schraudolph, N. N. 1999. Local gain adaptation in stochas-
tic gradient. Proceedings of the International Conference on
Artificial Neural Networks 569–574.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. MIT Press.
Sutton, R. S. 1992a. Adapting bias by gradient descent: An
incremental version of delta-bar-delta. Proceedings of the
National Conference on Artificial Intelligence 171–176.
Sutton, R. S. 1992b. Gain adaptation beats least squares.
Proceedings of the Seventh Yale Workshop on Adaptive
Learning Systems 161–166.
Sutton, R. S. 1996. Generalization in reinforcement learn-
ing: Successful examples using sparse coarse coding. Neural
Information Processing Systems 8 1038–1044.
Tanner, B., and White, A. 2009. RL-Glue : Language-
independent software for reinforcement-learning experi-
ments. Journal of Machine Learning Research 10:2133–
2136.

878

