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Abstract
Stochastic Galerkin methods for non-affine coefficient representations are known to
cause major difficulties from theoretical and numerical points of view. In this work, an
adaptive Galerkin FE method for linear parametric PDEs with lognormal coefficients
discretized in Hermite chaos polynomials is derived. It employs problem-adapted
function spaces to ensure solvability of the variational formulation. The inherently
high computational complexity of the parametric operator is made tractable by using
hierarchical tensor representations. For this, a new tensor train format of the lognormal
coefficient is derived and verified numerically. The central novelty is the derivation of
a reliable residual-based a posteriori error estimator. This can be regarded as a unique
feature of stochastic Galerkin methods. It allows for an adaptive algorithm to steer
the refinements of the physical mesh and the anisotropic Wiener chaos polynomial
degrees. For the evaluation of the error estimator to become feasible, a numerically effi-
cient tensor format discretization is developed. Benchmark examples with unbounded
lognormal coefficient fields illustrate the performance of the proposed Galerkin dis-
cretization and the fully adaptive algorithm.
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1 Introduction

In the thriving field of uncertainty quantification (UQ), efficient numerical methods
for the approximate solution of random PDEs have been a topic of vivid research. As
common benchmark problem, one often considers the Darcy equation (as a model for
flow through a porous medium) with different types of random coefficients in order to
assess the efficiency of a numerical approach. Two important properties are the length
of the expansion of random fields, which often directly translates to the number of
independent random variables describing the variability in the model, and the type of
dependence on these random variables. The affine case with uniform random variables
has been studied extensively, since it represents a rather simplemodel which can easily
be treated with standard methods. Opposite to that, the lognormal case with Gaussian
random variables is quite challenging, from the analytical as well as numerical point
of view. A theory for the solvability of linear elliptic PDEs with respective unbounded
coefficients (and hence a lack of uniform ellipticity) in a variational formulation was
only developed recently in [25,41,49]. Computationally, the problems quickly become
difficult or even intractable with many stochastic dimensions, whichmight be required
to accurately represent the stochasticity in the random field expansion. This paper is
concerned with the development of an efficient numerical method for this type of
problems.

While popular sample-based Monte Carlo methods obtain dimension-independent
convergence rates, these are rather low despite often encountered higher regularity
of the parameter dependence. Moreover, such methods can only be used to evaluate
functionals of the solution (QoIs = quantities of interest) and an a posteriori error
control usually is not feasible reliably. Some recent developments in this field can e.g.
be found in [32,33,36,38] for the model problem with a lognormal coefficient. Some
ideas on a posteriori adaptivity for Monte Carlo methods can e.g. be found in [11,20].

An alternative are functional (often called spectral) approximations, which for
instance are obtained by Stochastic Collocation (SC) [2,43,44], the related Multi-
level Quadraure (MLQ) [30,31] and Stochastic Galerkin (SG1.) methods. The latter
in particular is popular in the engeneering sciences since it can be perceived as an
extension of classical finite element methods (FEM). These approaches provide a
complete parameter to solution map based on which e.g. statistical moments of the
stochastic solution can be evaluated. Notably, the regularity of the solution can be
exploited in order to obtain quasi-optimal convergence rates. However, the number of
random variables and nonlinear parameter representations have a significant impact on
the computational feasibility and techniques for a model order reduction are required.
Collocation methods with pointwise evaluations in the parameter space are usually
constructed either based on some a priori knowledge or by means of an iterative
refinement algorithm which takes into account the hierarchical surplus on possible
new discretization levels. While these approaches work reasonably well, methods for
a reliable error control do not seem immediate since the approximation relies only on
interpolation properties. Nevertheless, for the affine case and under certain assump-
tions, first ideas were recently presented in [28].

1 We usually use SGFEM for Stochastic Galerkin FEM
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The computationally more elaborate Stochastic Galerkin methods carry out an
orthogonal projection with respect to the energy norm onto a discrete space which is
usually spanned by a tensor basis consisting of FE basis functions in physical space
and polynomial chaos polynomials orthogonal with respect to the joint parameter
measure in (stochastic) parameter space. The use of global polynomials is justified
by the high (analytic) regularity of the solution map with respect to the parameters
[8,9,34]. However, in particular the large computational cost of Galerkin methods
make adaptivity and model reduction techniques a necessity.

In order to achieve this, different paths have been pursued successfully. As a first
approach, sparse approximations as in [15,16,19] or [4,5,10] with either a residual
based or a hierarchical a posteriori error estimators can be computed. Here, the aim is
to restrict an exponentially large discrete basis to the most relevant functions explictly
by iteratively constructing a quasi-optimal subset. In [16], convergence of the adaptive
algorithm could be shown. Moreover, adjoint based error estimators are considered in
[6,48].

As a second approach, an adaptive discretization in hierarchical tensor represen-
tations can be derived as described in [21]. These modern compression formats have
lately been investigated intensively in the numerical analysis community [3,29,45,46].
It has been examined that with appropriate assumptions the curse of dimensionality
can be alleviated, particularly so when employed with typical random PDE problems
in UQ, see [12,13] for examples with sample-based reconstruction strategies. Such
representations can be understood as an implicit model order reduction technique,
closely related to (but more general than e.g.) reduced basis methods.

In the mentioned adaptive approaches, the FE mesh for the physical space and
the parametric polynomial chaos space are adapted automatically with respect to the
considered problem. In the case of tensor approximations, also the ranks of the repre-
sentation are adjusted.

However, in all adaptive SGFEM research, so far only the affine case with uni-
form elliptic coefficient has been considered. In this paper, we extend the ASGFEM
approach developed in [21] to the significantly more involved case of lognormal
(non-affine) coefficients. This poses several severe complications analytically and
numerically. Analytical aspects have recently been tackled in [25,26,34,41]. Numer-
ically, in particular computationally efficient Galerkin methods are quite diffucult to
construct for this case and have not been devised. Compression techniques and adaptiv-
ity most certainly are required in order to make these problems tractable with SGFEM,
as described in this paper. Of particular interest is the construction of a computable
a posteriori error estimator, which also greatly benefits from using tensor formats. In
order to obtain a well-posed discretization, problem adapted spaces according to the
presentation in [49] are used.

Main contributions of this work are a representation of the coefficient in the tensor
train (TT) format, the operator discretization in tensor format and the derivation of an
reliable residual based error estimatator. This then serves as the basis for an adaptive
algorithm which steers all discretization parameters of the SGFEM. The performance
of the proposed method is demonstrated with some benchmark problems. Here, the
used field models are not artificially bounded or shifted away from zero.
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We point out that, to our knowledge, an SGFEM for the lognormal case so far
has only been practically computed in the weighted function space setting in [42]
for a small 1d model as proof of concept. Moreover, there has not been any adaptive
numerical method with reliable a posteriori error estimation as derived in this work.
However, we note that our approach relies on the assumption that the coefficient is
discretized sufficiently accurately and hence the related discretization error can be
neglected. In practice, this can be ensured with high probability by sampling the error
of the discrete coefficient. Additionally, since constants in the error bound can become
quite large, we interpret the error estimate as a refinement indicator.

It should be noted that a functional adaptive evluation of the forward map allows
for the derivation of an explicit adaptive Bayesian inversion with functional tensor
representations as in [17]. The results of the present work lay the ground for a similar
approach with a Gaussian prior assumption. This will be the topic of future research.
Moreover, the described approach enables to construct SGFEM with arbitrary densi-
ties (approximated in hierarchical tensor formats). This generalization should also be
examined in more detail in further research. Lastly, while sparse discretizations seem
infeasible for the lognormal coefficient, a transformation [51] yields a convection-
diffusion formulation of the problem with affine parameter dependence, which then
again is amenable to an adaptive sparse SGFEM. This direction is examined in [14].

The structure of this paper is as follows: We first introduce the setting of parametric
PDEs with our model problem in Sect. 2. The variational formulation in problem
dependentweighted function spaces and the finite element (FE) setting are described in
Sect. 3. The employed tensor formats and the tensor representations of the coefficient
and the differential operator are examined in Sect. 4. As a central part, in Sect. 5
we derive the a posteriori error estimators and define a fully adaptive algorithm in
Sect. 6, including efficient ways to compute error indicators for physical and stochastic
refinement. Numerical examples in Sect. 7 illustrate the performance of the presented
method and conclude the paper.

2 Setting and discretization

In the following,we introduce the consideredmodel problem formally, present itsweak
formulation and describe the employed discretizations in finite dimensional function
spaces. We closely follow the presentations in [26,34,49] regarding the lognormal
problem in problem-dependent function spaces. In [21], a related formulation for the
solution and evaluation of a posteriori error estimators for parametric PDEswith affine
coefficient fields in hierarchical tensor formats is derived.

2.1 Model problem

We assume some bounded domain D ⊂ R
d , d = 1, 2, 3, with Lipschitz boundary ∂D

and a probability space (Ω,F ,P). For P-almost all ω ∈ Ω , we consider the random
elliptic problem
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{
− div(a(x, ω)∇u(x, ω)) = f (x) in D,

u(x, ω) = 0 on ∂D.
(2.1)

The coefficienta : D×Ω �→ R denotes a lognormal, isotropic diffusion coefficient,
i.e., log(a) is an isotropic Gaussian random field.

Remark 2.1 The source term f ∈ L2(D) is assumed deterministic. However, it would
not introduce fundamental additional difficulties to also model f and the boundary
conditions as stochastic fields not correlated to the coefficient a(x, ω) as long as
appropriate integrability of the data is given.

For the coefficient a(x, ω) of (2.1), we assume a Karhunen-Loève type expansion
of b := log(a) of the form

b(x, ω) =
∞∑

�=1

b�(x)Y�(ω), x ∈ D, P- almost all ω ∈ Ω.

Here, the parameter vector Y = (Y�)�∈N consists of independent standard normal
Gaussian random variables inR. Then, by passing to the image space (RN,B(RN), γ )

with the Borel σ -algebra B(RN) of all open sets of RN and the Gaussian product
measure

γ :=
⊗
�∈N

γ� with γ� := γ1 := N1 := N (0, 1)

and dγ1(y�) = 1√
2π

exp(−y2� /2) dy�,

we can consider the parameter vector y = (y�)�∈N = (Y�(ω))�∈N, ω ∈ Ω .
For any sequence β ∈ �1(N) with

β� := ‖b�‖L∞(D) and β = (β�)�∈N,

we define the set

Γβ :=
{
y ∈ R

N :
∞∑

�=1

β�|y�| < ∞
}
.

The set Γβ of admissible parameter vectors is γ -measurable and of full measure.

Lemma 2.2 ([34, Lemma 2.1]) For any sequence β ∈ �1(N), there holds

Γβ ∈ B(RN) and γ (Γβ) = 1.
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For any y ∈ Γβ , we define the deterministic parametric coefficient

a(x, y) = exp(b(x, y)) = exp

( ∞∑
�=1

b�(x)y�

)
, x ∈ D. (2.2)

This series converges in L∞(D) for all y ∈ Γβ .

Lemma 2.3 ([34, Lemma 2.2]) For all y ∈ Γβ , the diffusion coefficient (2.2) is well-
defined and satisfies

0 < ǎ(y) := ess inf
x∈D a(x, y) ≤ a(x, y) ≤ ess sup

x∈D
a(x, y) =: â(y) < ∞,

with

â(y) ≤ exp

( ∞∑
�=1

β�|y�|
)

and ǎ(y) ≥ exp

(
−

∞∑
�=1

β�|y�|
)

.

Due to Lemmas 2.2 and 2.3 , we consider Γ = Γβ as the parameter space instead
ofRN. By Lemma 2.3, the stochastic coefficient a(x, y) is well defined, bounded from
above and admits a positive lower bound for almost all y ∈ Γ . Thus, the equations (2.1)
and (2.2) have a unique solution u(y) ∈ X for almost all y ∈ Γ .

Let X := H1
0 (D) denote the closed subspace of functions in the Sobolev space

H1(D) with vanishing boundary values in the sense of trace and define the norm

‖v‖X :=
(∫

D
|∇v(x)|2 dx

)1/2
.

We denote by 〈·, ·〉 = 〈·, ·〉X ∗,X the duality pairing of X ∗ and X and consider f ∈
L2(D) as an element of the dual X ∗ = H−1(D).

For any y ∈ Γ , the variational formulation of (2.1) reads: find u(y) ∈ X such that

B(u(y), v; y) = 〈 f , v〉, for all v ∈ X , (2.3)

where B : X × X × Γ → R is defined by

B(u(y), v; y) :=
∫
D
a(x, y)∇u(y) · ∇v dx .

Hence, pathwise existence and uniqueness of the solution u(y) is obtained by the
Lax-Milgram lemma due to uniform ellipticity for any fixed y ∈ Γ . In particular, for
all y ∈ Γ , (2.3), it holds

‖u(y)‖ ≤ 1

ǎ(y)
‖ f ‖X ∗ ,
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with some 0 < ǎ(y) ≤ a(x, y) on D. The integration of (2.3) over Γ with respect
to the standard normal Gaussian measure γ does not lead to a well-defined problem
since the coefficient a(x, y) is not uniformly bounded in y ∈ Γ and not bounded away
from zero. Hence, a more involved approach has to be pursued, which is elaborated
in Sect. 3.2. Alternative results for this equation were presented in [25,26,49].

The formulation of (2.1) as a parametric deterministic elliptic problemwith solution
u(y) ∈ X for each parameter y ∈ Γ reads

− div(a(x, y)∇u(x, y)) = f (x) for x ∈ D, u(x, y) = 0 for x ∈ ∂D.

3 Variational formulation and discretization

This section is concernedwith the introduction of appropriate function spaces required
for the discretization of the model problem. In particular, a problem-adapted proba-
bility measure is introduced which allows for a well-defined formulation of the weak
problem rescaled polynomial chaos basis.

3.1 Problem-adapted function spaces

Let F be the set of finitely supported multi-indices

F := {μ ∈ N
∞
0 ; |suppμ| < ∞} where suppμ := {m ∈ N ; μm �= 0}.

A full tensor index set of order M ∈ N is defined by

Λ := {(μ1, . . . , μM , 0, . . .) ∈ F : μm = 0, . . . , dm − 1, m = 1, . . . , M}
� Λ1 × . . . × ΛM × {0} . . . ⊂ F ,

with complete index sets of size dm given by

Λm := {0, . . . , dm − 1}, m = 1, . . . , M .

For any such subset Λ ⊂ F , we define suppΛ :=⋃μ∈Λ suppμ ⊂ N.

We denote by (Hn)
∞
n=0 the orthonormal basis of L2(R, γm) = L2(R, γ1) with

respect to the standard Gaussian measure consisting of Hermite polynomials Hn of
degree n ∈ N0 on R. An orthogonal basis of L2(Γ , γ ) is obtained by tensorization
of the univariate polynomials, see [49,50]. To reduce notation, we drop the explicit
dependency on the sigma-algebra which is always assumed to be rich enough. For any
multi-index μ ∈ F , the tensor product polynomial Hμ := ⊗∞

m=1 Hμm in y ∈ Γ is
expressed as the finite product

Hμ(y) =
∞∏

m=1

Hμm (ym) =
∏

m∈suppμ

Hμm (ym).
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For practical computations, an analytic expression for the triple product of Hermite
polynomials can be used.

Lemma 3.1 ([40,50]) For μ, ν, ξ ∈ F , m ∈ N, it holds

Hνm Hμm =
min(νm ,μm )∑

ξm=0

κνm ,μm ,νm+μm−2ξm Hνm+μm−2ξm ,

where for ηm = νm + μm − 2ξm

κνm ,μm ,ηm :=
∫
R

Hνm (ym)Hμm (ym)Hηm (ym) dγm(ym)

=
⎧⎨
⎩

√
νm !μm !ηm !

ξm !(νm−ξm )!(μm−ξm )! ,
νm + μm − ηm is even and
|νm − μm | ≤ ηm ≤ νm + μm,

0, otherwise.

Lemma 3.2 ([22,41]) Let Y ∼ N1, t ∈ R and X = exp(tY ) ∈ L2(R, γ ). The expan-
sion of X = exp(tY ) in Hermite polynomials is given by

X = exp(tY ) =
∑
n∈N0

cnHn with cn = tn√
n! exp(t

2/2).

We recall some results from [49] required in our setting. Let σ = (σm)m∈N ∈
exp(�1(N)) and define

γσ :=
∞⊗

m=1

γσm :=
∞⊗

m=1

Nσ 2
m

:=
∞⊗

m=1

N (0, σ 2
m).

Then, dNσ 2
m

= ζσ ,m dN1 where

ζσ ,m(ym) := 1

σm
exp

(
−1

2
(σ−2

m − 1)y2m

)

is the one-dimensional Radon–Nikodym derivative of γσm with respect to γm , i.e., the
respective probability density. We assume that the sequence σ depends exponentially
on β = (βm)m∈N and some � ∈ R, namely

σm(�) := exp(�βm), m ∈ N,

and define

γ� := γσ (�) and ζ�,m := ζσ (�),m .
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By multiplication, this yields the multivariate identity

dγ�(y) = ζ�(y) dγ (y) with ζ�(y) =
∞∏

m=1

ζ�,m(ym).

A basis of orthonormal polynomials with respect to the weighted measure γ� can be
defined by the transformation

τ� : R∞ → R
∞, (ym)m∈N �→ (

e−�βm ym
)
m∈N .

Then, for all v ∈ L2(Γ , γ ),

∫
Γ

v(y)dγ (y) =
∫

Γ

v(τ�(y)) dγ�(y).

We define the scaled Hermite polynomials H
τ�
μ := Hμ ◦ τ�.

Remark 3.3 Lemmas 3.1 and 3.2 are also valid with the transformed multivariate Her-
mite polynomials H τ� . In particular, κξm ,νm ,μm does not change under transformation
and the expansion in Lemma 3.2 holds by substituting t ∈ R with σmt in the corre-
sponding dimension m ∈ N.

3.2 Weak formulation in problem-dependent spaces

In order to obtain a well-posed variational formulation of (2.1) on L2(Γ , γ ;X ), we
follow the approach in [49] and introduce a measure γ� which is stronger than γ and
assume integrability of f with respect to this measure. For � > 0 and 0 ≤ θ < 1, let
the bilinear form Bθ� : Vθ� × Vθ� → R be given by

Bθ�(w, v) :=
∫

Γ

∫
D
a(x, y)∇w(x, y) · ∇v(x, y) dxdγθ�(y). (3.1)

The solution space is then defined as the Hilbert space

Vθ� := {v : Γ → X B(Γ )-measurable ; Bθ�(v, v) < ∞},

endowed with the inner product Bθ�(·, ·), the induced energy norm ‖v‖θ� :=
Bθ�(v, v)1/2 for v ∈ Vθ� and the respective dual pairing 〈·, ·〉θ� between V∗

θ� and
Vθ�. The different employed spaces are related as follows.

Lemma 3.4 ([49, Proposition 2.43]) For 0 < θ < 1,

L2(Γ , γ�;X ) ⊂ Vθ� ⊂ L2(Γ , γ ;X )

are continuous embeddings.
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It can be shown that the bilinear form Bθ�(·, ·) is Vθ�-elliptic in the sense of the
following Lemma.

Lemma 3.5 ([49, Lemma 2.41, 2.42]) For w, v ∈ L2(Γ , γ�;X ),

|Bθ�(w, v)| ≤ ĉϑ�‖w‖L2(Γ ,γ�;X )‖v‖L2(Γ ,γ�;X ) (3.2)

and for v ∈ L2(Γ , γ ;X ),

Bθ�(v, v) ≥ čϑ�‖v‖2L2(Γ ,γ ;X )
. (3.3)

Moreover, for f ∈ X ∗ we define the continuous linear form

Fθ�(v) :=
∫

Γ

∫
D

f (x)v(x, y)dxdγθ�(y).

For Fθ� ∈ V∗
θ�, (3.2) and (3.3) in particular lead to the unique solvability of the

variational problem in Vθ�,

Bθ�(u, v) = Fθ�(v) for all v ∈ Vθ�,

and u ∈ Vθ� is the unique solution of (2.1).

3.3 Deterministic discretization

We discretise the deterministic space X by a conforming finite element space
Xp(T ) := span{ϕi }Ni=1 ⊂ X of degree p on some simplicial regular mesh T of
domain D with the set of faces S (i.e., edges for d = 2) and basis functions ϕi .

In order to circumvent complications due to an inexact approximation of boundary
values, we assume that D is a polygon. We denote by Pp(T ) the space of piecewise
polynomials of degree p on the triangulation T . The assumed FE discretization with
Lagrange elements of order p then satisfiesXp(T ) ⊂ Pp(T )∩C(T ). For any element
T ∈ T and face F ∈ S, we set the entity sizes hT := diam T and hF := diam F . Let
nF denote the exterior unit normal on any face F . The jump of some χ ∈ H1(D;Rd)

on F = T1 ∩ T2 in normal direction [[χ ]]F is then defined by

[[χ ]]F := χ |T1 · nF − χ |T2 · nF .

By ωT and ωF we denote the element and facet patches defined by the union of all
elements which share at least a vertex with T or F , respectively. Consequently, the
Clément interpolation operator I : X → Xp(T ) satisfies

‖v − Iv‖L2(T ) ≤ cT hT |v|X ,ωT for T ∈ T ,

‖v − Iv‖L2(F) ≤ cSh
1/2
F |v|X ,ωF for F ∈ S,
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where the seminorms | · |X ,ωT and | · |X ,ωF are the restrictions of ‖ · ‖X to ωT and
ωF , respectively.

The fully discrete approximation space with |Λ| < ∞ is given by

VN := VN (Λ; T , p) :=
{
vN (x, y) =

∑
μ∈Λ

vN ,μ(x)H
τθ�
μ (y) ; vN ,μ ∈ Xp(T )

}
,

and it holds VN (Λ; T , p) ⊂ Vθ�. The Galerkin projection of u is the unique uN ∈
VN (Λ; T , p) which satisfies

Bθ�(uN , vN ) = Fθ�(vN ) for all vN ∈ VN (Λ; T , p).

We define a tensor product interpolation operator I : L2(Γ , γ ;X ) → VN (Λ; T , p)
for v =∑μ∈F vμHμ ∈ L2(Γ , γ ;X ) by setting

Iv :=
∑
μ∈Λ

(Ivμ)Hμ.

For v ∈ Vϑ�(Λ) := {v =∑μ∈Λ vμHμ ; vμ ∈ X
}
and all T ∈ T , this yields the

interpolation estimate

‖(id−I)v‖L2(Γ ,γ ;L2(T )) =
⎛
⎝∫

Γ

∥∥∥∑
μ∈Λ

(id−I )vμHμ(y)
∥∥∥2
L2(T )

dγ (y)

⎞
⎠

1/2

=
⎛
⎝∑

μ∈Λ

‖(id−I )vμ‖2L2(T )

⎞
⎠

1/2

≤ cT hT

⎛
⎝∫

Γ

∣∣∣∑
μ∈Λ

vμHμ(y)
∣∣∣2
X ,ωT

dγ (y)

⎞
⎠

1/2

= cT hT |v|Vϑ�,ωT . (3.4)

Likewise, on the edges F ∈ S we derive

‖v − Iv‖L2(Γ ,γ ;L2(F)) ≤ cSh
1/2
F |v|Vϑ�,ωF .

Here,

|v|2Vϑ�,ωT
:=
∫

Γ

|v(y)|2X ,ωT
dγ (y),

|v|2Vϑ�,ωF
:=
∫

Γ

|v(y)|2X ,ωF
dγ (y).
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Theorem 3.6 ([49, Theorem 2.45]). If f ∈ L p(Γ , γ�;X ∗) for p > 2, the Galerkin
projection uN ∈ VN satisfies

‖u − uN‖L2(Γ ,γ ;X ) ≤ ĉϑ�

čϑ�

inf
vN∈VN (Λ;T ,p)

‖u − vN‖L2(Γ ,γ�;X ).

Remark 3.7 It should be noted that the constant
ĉϑ�

čϑ�
tends to ∞ as � → {0,∞} and

for θ → {0, 1}, see Remark 2.46 in [49]. This is expected, as the problem is ill-posed
in these limits. In order to obtain reasonable upper error bounds, the parameters have
hence to be chosen judiciously. A more detailed investigation of an optimal parameter
choice is postponed to future research.

4 Decomposition of the operator

In this section, we introduce the discretization of the operator in an appropriate tensor
format. For this, an efficient representation of the non-linear coefficient is derived. We
first introduce basic aspects of the employed Tensor Train (TT) format.

4.1 The tensor train format

We only provide a brief overview of the notation used regarding the tensor train
representation. For further details, we refer the reader to [3,21] and the references
therein.

Any function wN ∈ VN (Λ; T , p) can be written as

wN =
N−1∑
i=0

∑
μ∈Λ

W (i, μ)ϕi H
τθ�
μ .

Thus, the discretization space is isomorphic to the tensor space, namely

VN (Λ; T , p) � R
N×d1×···×dM .

The tensor W grows exponentially with the order M , which constitutes the so called
curse of dimensionality. We employ a low-rank decomposition of the tensor for a
dimension reduction. In this paper, we adhere to the Tensor Train (TT) format for
tensor decomposition [46]. This seems reasonable, as the components (of the operator
and hence the solution) are of decreasing importance due to the decay of the coefficient
functions bm and therefore we can expect decreasing ranks in the tensor train format.
Nevertheless, other tensor formats are also feasible in principle.

The TT representation of a tensor W ∈ R
N×d1×···×dM is given as

W (i, μ1, . . . , μM ) =
r1∑

k1=1

· · ·
rM∑

kM=1

W0(i, k1)
M∏

m=1

Wm(km, μm, km+1).
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For simplicity of notation, we set r0 = rM+1 = 1. If all dimensions rm are min-
imal, then this is called the TT decomposition of W and rankTT(W ) := r =
(1, r1, . . . , rM , 1) is called the TT rank of W . The TT decomposition always exists
and it can be computed in polynomial time using the hierarchical SVD (HSVD)
[35]. A truncated HSVD yields a quasi-optimal approximation in the Frobenius norm
[27,29,39,46].Most algebraic operations can be performed efficiently in the TT format
[3].

Once the function wN has a low-rank TT decomposition, it is advisable to obtain a
similar representation for the Galerkin operator on VN (Λ; T , p) in order to allow for
efficient tensor solvers. For the lognormal coefficient a(x, y), this can only be done
approximately.

Later, it will be useful to express the storage complexity of a tensor train. We
distinguish the degrees of freedom given by the tensor train representation and the
full (uncompressed) degrees of freedom. For a tensor U ∈ R

q0×...×qL of TT-rank
r = (1, r1, . . . , rL , 1), the dimension of the low-rank tensor manifold is given by

tt-dofs(U ) :=
L−1∑
�=1

(r�q�r�+1 − r2�+1) + rLqL , (4.1)

while the dimension of the full tensor space and hence its representation is

full-dofs(U ) :=
L∏

�=0

q�.

One can conclude from (4.1) that the complexity of tensor trains depend only
linearly on the dimension, i.e., we have to store

O(Lq̂r̂2), r̂ = max {r} q̂ = max {q0, . . . , qL }

entries instead of O(q̂ L), which is much smaller for moderate TT-ranks r .

4.2 TT representation of the non-linear coefficient

s
We approximate the coefficient

a(x, y) = exp

( ∞∑
�=1

b�(x)y�

)
=

∞∏
�=1

eb�(x)y� (4.2)

using the coefficient splitting algorithm described in [47]. This results in a discretized
coefficient on a tensor set

Δ = {(ν1, . . . , νL , 0, . . .) ∈ F : ν� = 0, . . . , q� − 1, � = 1, . . . , L}

123



668 M. Eigel et al.

with TT-rank s = (1, s1, . . . , sL , 1). Here, we exploit Lemma 3.2, i.e., the fact that
every factor of (4.2) has a Hermite expansion of the form

exp(b�(x)y�) =
∞∑

ν�=0

c(�)
ν�

(x)H
τθ�
ν�

(y�) (4.3)

with

c(�)
ν�

(x) = (b�(x)σ�(ϑ�))ν�

√
ν�! exp((b�(x)σ�(ϑ�))2/2).

The procedure is as follows: First, we fix an adequate quadrature rule for solving
the involved integrals by choosing quadrature points χq ∈ D and weights wq ∈ R for
q = 1, . . . , Pquad. We begin the discretization at the right most side and define the
correlation matrix

CL(νL , ν′
L) :=

Pquad∑
q=1

c(L)
νL

(χq)c
(L)

ν′
L

(χq)wq

≈
∫
D
c(L)
νL

(x)c(L)

ν′
L

(x) dx

for νL , ν′
L = 0, . . . , qL − 1. This means that we have truncated the expansion (4.3)

according to the tensor set Δ, which yields an approximation of the factors. This
matrix is symmetric and positive semidefinite and it therefore admits an eigenvalue
decomposition

CL(νL , ν′
L) =

qL∑
kL=1

λkL AL(kL , νL)AL(kL , ν′
L).

This yields reduced basis functions

c̃(L)
kL

(χq) :=
qL−1∑
νL=0

AL(kL , νL)c(L)
νL

(χq)

for kL = 1, . . . , sL that we can store explicitly at the quadrature points of the integral.
If we choose sL = qL then this is just a transformation without any reduction.

We proceed successively for � = L − 1, . . . , 1 by defining correlation matrices

C�(ν�, k�+1, ν
′
L , k′

�+1) :=
Pquad∑
q=1

c(�)
ν�

(χq)c̃
(�+1)
k�+1

(χq)c
(�)

ν′
�

(χq)c̃
(�+1)
k′
�+1

(χq)wq
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Algorithm 1 Algorithm for coefficient splitting.

Input: Coefficients c(1)ν1 , . . . , c(L)
νL , ν� = 0, . . . , q� − 1, � = 1, . . . , L;

ranks s1, . . . , sL ;
quadrature rule (χq , wq ), q = 1, . . . , Pquad;

Output: TT Tensor components A1, . . . , AL ;

Init sL+1 = 1; c̃(L+1)
1 ≡ 1

for � = L , …, 1 do
Arrange correlation matrix C�:

C�(ν�, k�+1, ν
′
�, k

′
�+1) :=

Pquad∑
q=1

c(�)ν�
(χq )c̃(�+1)

k�+1
(χq )c(�)

ν′
�

(χq )c̃(�+1)
k′
�+1

(χq )wq ;

Compute eigenvalue decomposition:

C�(ν�, k�+1, ν
′
�, k

′
�+1) =

s�∑
k�=1

λk� A�(k�, ν�, k�+1)A�(k�, ν
′
�, k

′
�+1);

Set reduced basis functions:

c̃�k� (χq ) =
q�−1∑
ν�=0

s�+1∑
k�+1=1

A�(k�, ν�, k�+1)c
�
ν�

(χq )c̃�+1
k�+1

(χq );

end for
return A1, . . . , AL ;

with eigenvalue decompositions

C�(ν�, k�+1, ν
′
L , k′

�+1) =
q�∑

k�=1

λk�
A�(k�, ν�, k�+1)A�(k�, ν

′
�, k

′
�+1)

and the resulting reduced basis functions at the quadrature points

c̃k�
(�)(χp) =

q�−1∑
ν�=0

s�∑
k�+1=1

A�(k�, ν�, k�+1)c
(�)
ν�

(χq)c̃
(�+1)
k�+1

(χq),

see Algorithm 1.
This results in a first component

a0[k1](χq) := c̃(1)
k1

(χq)

for k1 = 1, . . . , s1. Note that on the one hand, it is possible to evaluate this component
at any point x ∈ D by converting the reduced basis functions back into their original
form by means of the tensor components A� and the coefficient functions c(�)

ν�
. More
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Fig. 1 A coefficient splitting for L = 4

specifically,

a0[k1](x) =
q1∑

ν1=0

s2∑
k2=1

A1(k1, ν1, k2)c
(1)
ν1

(x)c̃(2)
k2

(x)

= . . .

=
s2∑

k2=1

· · ·
sL∑

kL=1

L∏
�=1

(q�−1∑
ν�=0

A�(k�, ν�, k�)c
(�)
ν�

(x)

)
.

On the other hand, each original coefficient function is approximated by the reduced
basis representation

c(L)
νL

(x) ≈
sL∑

kL=1

AL(kL , νL)c̃(L)
kL

(x),

c(�)
ν�

(x)c̃(�+1)
k�+1

≈
s�∑

k�=1

A�(k�, ν�, k�+1)c̃
(�)
k�

for all � = L − 1, . . . , 1.

This approximation is exact if the ranks s = (s1, . . . , sL) are full.
By the described procedure we obtain an approximate discretization aΔ,s ≈ a in a

TT-like format that is continuous in the first component and that has the decomposition

aΔ,s(x, y) =
s1∑

k1=1

· · ·
sL∑

kL=1

a0[k1](x)
(∑

ν∈Δ

L∏
�=1

A�(k�, ν�, k�+1)H
τθ�
ν�

(y�)

)
, (4.4)

see Fig. 1.
OnVN (Λ; T , p) the linearGalerkin operatorA is in theTTmatrix ormatrix product

operator (MPO) format:

A(i, μ, j, μ′) =
s1∑

k1=1

· · ·
sM∑

kM=1

A0(i, j, k1)
M∏

m=1

Am(km, μm, μ′
m, km+1), (4.5)
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where

A0(i, j, k1) =
∫
D
a0[k1](x)∇ϕi · ∇ϕ j dx

and for all m = 1, . . . , M − 1

Am(km, μm, μ′
m, km+1) =

qm−1∑
νm=0

Am(km, νm, km+1)

×
∫
R

H
τθ�
νm H

τθ�
μm H

τθ�

μ′
m
dγθ�,m(ym)

=
qm−1∑
νm=0

Am(km, νm, km+1)κμm ,μ′
m ,νm

and

AM (km, μM , μ′
M ) =

qM−1∑
νM=0

sm+1∑
km+1=1

· · ·
sL∑

kL=1

AM (km, νM , km+1)κμM ,μ′
M ,νM

×
L∏

�=m+1

A�(k�, 0, k�+1).

Since the integral over the triple product κμm ,μ′
m ,νm = 0 for all νm > 2max(μm, μ′

m),
it is sufficient to setq� = 2d�−1 for all � = 1, . . . , L . If the rank s of the decomposition
of the coefficient is full, then the discretised coefficient aΔ,s is exact on the discrete
space VN (up to quadrature errors).

However, this is generally infeasible as the rank would grow exponentially with M .
Therefore, a truncation of the rank becomes necessary and the coefficient is only an
approximation. We assume in the following that the error that is due to this approx-
imation of the coefficient is small. A thorough estimation of this error is subject to
future research.

Remark 4.1 A similar approach to decomposing the coefficient has been chosen in [23]
where the knowledge of the eigenfunctions of the covariance operator was assumed a
priori. This means that one has an orthogonal basis also for the deterministic part in x
and all that remains to do is to decompose the coefficient tensor for this basis represen-
tation. This is also done using some quadrature and the L2-error of this approximation
can be estimated.

According to the discretization of the coefficient, we introduce the splitting of the
operator,

A(v) = A+(v) + A−(v),
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with the active and inactive operators A+ : VN (Λ; T , p) → VN (Λ; T , p)∗ and
A− : VN (Λ; T , p) → VN (Λ; T , p)∗ defined by

A+(v) := − div(aΔ,s∇v),

A−(v) := − div
(
(a − aΔ,s)∇v

)
, (4.6)

for v ∈ VN (Λ; T , p).
The above considerations yield that the approximate operatorA+ canbe represented

by the following tensor product structure

A+ =
s1∑

k1=1

· · ·
sL∑

k�=1

A0[k1] ⊗ A1[k1, k2] ⊗ · · · ⊗ AL [kL ],

with the operator components

A0[k1] : X → X ∗, A0[k1](vx ) = − div(a0[k1]∇vx ),

and for all � = 1, . . . , L ,

A�[k�, k�+1] : L2(R, γϑ�,m) → L2(R, γϑ�,m)

A�[k�, k�+1](vy) =
q�−1∑
ν�=0

A�(k�, ν�, k�+1)H
τθ�
ν�

vy .

5 Error estimates

This section is concerned with the derivation of a reliable a posteriori error estimator
based on the stochastic residual. In comparison to the derivation in [15,16,21], the log-
normal coefficient requires a more involved approach directly related to the employed
weighted function spaces introduced in Sect. 3. In theory, an additional error occurs
because of the discretization of the coefficient which we assume to be negligible. The
developed adaptive algorithmmakes possible a computable a posteriori steering of the
error components by a refinement of the FE mesh and the anisotropic Hermite poly-
nomial chaos of the solution. The efficient implementation is due to the formulation
in the TT format the ranks of which are also set adaptively.

The definition of the operators as in (4.6) leads to a decomposition of the residual

R(v) = R+(v) + R−(v),

with

R+(v) := f − A+(v), R−(v) := −A−(v).
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The discrete solution wN ∈ VN reads

wN =
N−1∑
i=0

∑
μ∈Λ

W (i, μ)ϕi H
τθ�
μ .

We assume that the operator is given in its approximate semi-discrete form A+ and
aim to estimate the energy error

‖u − wN‖2A+ =
∫

Γ

∫
D
aΔ,s |∇(u − wN )|2 dxdγϑ�(y).

Remark 5.1 As stated before, we assume that the error that results from approximating
the coefficient is small. Estimation of this error is subject to future research. Work in
this direction has e.g. been carried out in [7,23]. Additionally, we require that the
bounds (3.2) and (3.3) still hold, possibly with different constants ĉ+

ϑ� and č+
ϑ�. This

is for example guaranteed if aΔ,s is positive, i.e., if

aΔ,s(x, y) > 0 ∀x ∈ D, y ∈ Γ .

Then, since the approximated coefficient is polynomial in y, the arguments in
Lemma 3.5 yield the same constants

ĉ+
ϑ� = ĉϑ�, č+

ϑ� = čϑ�.

We recall Theorem 5.1 from [15] and also provide the proof for the sake of a
complete presentation. Note that the result allows for non-orthogonal approximations
wN ∈ VN .

Theorem 5.2 Let VN ⊂ Vϑ� a closed subspace and wN ∈ VN , and let uN denote the
A+ Galerkin projection of u onto VN . Then it holds

‖u − wN‖2A+ ≤
(

sup
v∈Vθ�\{0}

|〈R+(wN ), (id−I)v〉θ�|
č+
θ�‖v‖L2(Γ ,γ ;X )

+ cI‖uN − wN‖A+

)2

+ ‖uN − wN‖2A+ .

Here, I denotes the Clément interpolation operator in (3.4) and cI is the operator
norm of id−I with respect to the energy norm ‖·‖A+ . The constant č

+
θ� is derived from

the assumed coercivity of the bilinear form induced by A+ similar to (3.2) and (3.3).

Proof Due to Galerkin orthogonality of uN , it holds

‖u − wN‖2A+ = ‖u − uN‖2A+ + ‖uN − wN‖2A+ .

123



674 M. Eigel et al.

By the Riesz representation theorem, the first part is

‖u − uN‖A+ = sup
v∈Vθ�\{0}

|〈R+(uN ), v〉θ�|
‖v‖A+

.

We now utilise the Galerkin orthogonality and introduce the bounded linear map
I : Vθ� → VN to obtain

‖u − uN‖A+ = sup
v∈Vθ�\{0}

|〈R+(uN ), (id−I)v〉θ�|
‖v‖A+

.

Since we do not have access to the Galerkin solution uN , we reintroduce wN

‖u − uN‖A+ ≤ sup
v∈Vθ�\{0}

|〈R+(wN ), (id−I)v〉θ�|
‖v‖A+

+ |〈R+(uN ) − R+(wN ), (id−I)v〉θ�|
‖v‖A+

≤ sup
v∈Vθ�\{0}

|〈R+(wN ), (id−I)v〉θ�|
‖v‖A+

+ ‖uN − wN‖A+‖(id−I)v‖A+
‖v‖A+

≤ sup
v∈Vθ�\{0}

|〈R+(wN ), (id−I)v〉θ�|
‖v‖A+

+ cI‖wN − uN‖A+ .

We apply the coercivity of the operator A+ to the denominator, which yields the
desired result. For the last inequality, we used the boundedness of I in the energy
norm by defining the constant as the operator norm

cI := sup
v∈Vθ�\{0}

‖(id−I)v‖A+
‖v‖A+

.

Since the product of the Hermite polynomials for each m = 1, . . . , M has degree
at most qm + dm − 2, it is useful to define the index set

Ξ := Δ + Λ := {η = (η1, . . . , ηL , 0, . . .) :
ηm = 0, . . . , qm + dm − 2, m = 1, . . . , M;
η� = 0, . . . , q� − 1, � = M + 1, . . . , L

}
.

Then, the residual can be split into an active and an inactive part by using the tensor
sets Ξ and Λ,

R+(wN ) = f − A+(wN )
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= f +
∑
η∈Ξ

div res(·, η)H
τθ�
η

= R+,Λ(wN ) + R+,Ξ\Λ(wN ),

with

R+,Λ(wN ) = f +
∑
η∈Λ

div res(·, η)H
τθ�
η ,

R+,Ξ\Λ(wN ) =
∑

η∈Ξ\Λ
div res(·, η)H

τθ�
η ,

where div res(·, η) ∈ X ∗ for all η ∈ Ξ .
For all η ∈ Ξ , the function res is given as

res(x, η) =
r1∑

k1=1

· · ·
rM∑

kM=1

s1∑
k′
1=1

· · ·
sL∑

k′
L=1

res0[k1, k′
1](x)

×
(

M∏
m=1

Rm(km, k′
m, ηm, km+1, k

′
m+1)

L∏
�=M+1

A�(k
′
�, η�, k

′
�+1)

)

with continuous first component

res0[k1, k′
1](x) =

N−1∑
i=0

a0[k′
1](x)W0(i, k1)∇ϕi (x)

and stochastic components for m = 1, . . . , M ,

Rm(km, k′
m, ηm, km+1, k

′
m+1)

=
qm−1∑
νm=0

dm−1∑
μm=0

A(k′
m, νm, k′

m+1)Wm(km, μm, km+1)κμm ,νm ,ηm .

The function res is again a TT tensor with continuous first component with TT ranks
rmsm for m = 1, . . . , M and s� for � = M + 1, . . . , L . The physical dimensions are
dm + qm − 2 for all m = 1, . . . , M and d� − 1 for � = M + 1, . . . , L .

The above considerations suggest that the error can be decomposed into errors that
derive from the respective approximations in the deterministic domain, the parametric
domain and in the ranks. This is indeed the case, as we will see in the following. In a
nutshell, ifuN is theGalerkin solution inVN anduΛ is theGalerkin solution in the semi-
discrete space V(Λ), then the deterministic error errdet = ‖uΛ −uN‖A+ corresponds
to the error of the active residualR+,Λ, the parametric error errparam = ‖u−uΛ‖A+
corresponds to the inactive residual R+,Ξ\Λ and the error made by restricting the
ranks is the error in the discrete space errdisc(wN ) = ‖uN −wN‖2A+ , see Fig. 2 for an
illustration.
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Fig. 2 An illustration of the different errors

5.1 Deterministic error estimation

We define the deterministic error estimator

estdet(wN ) :=
(∑
T∈T

est2det,T (wN ) +
∑
F∈S

est2det,F (wN )

)1/2

,

estdet,T (wN ) := hT ‖ f + div σ
θ�
Λ (wN )ζϑ�‖L2(Γ ,γ ;L2(T )),

estdet,F (wN ) := h1/2F ‖[[σθ�
Λ (wN )]]Fζϑ�‖L2(Γ ,γ ;L2(F)),

where the flow is given by the residual contributions

σ
θ�
Λ :=

∑
η∈Λ

res(·, η)H
τθ�
η .

This estimates the active residual as follows.

Proposition 5.3 For any v ∈ Vϑ� and any wN ∈ VN , it holds

|〈R+,Λ(wN ), (id−I)v〉θ�|
‖v‖L2(Γ ,γ ;X )

≤ cdet estdet(wN ).

Proof By localization to the elements of the triangulation T and integration by parts,

〈R+,Λ(wN ), (id−I)v〉θ�

=
∫

Γ

∑
T∈T

∫
T
f
(
(id−I)v

)− aΔ,s∇wN · ∇((id−I)v
)
dxdγϑ�(y)
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=
∑
T∈T

∫
Γ

∫
T

(
f + div σ

θ�
Λ (wN )

)(
(id−I)v

)
ζϑ�(y) dxdγ (y)

+
∑
F∈S

∫
Γ

∫
F
[[σθ�

Λ (wN )]]F
(
(id−I)v

)
ζϑ�(y)d(x)dγ (y).

The Cauchy-Schwarz inequality yields

|〈R+,Λ(wN ), (id−I)v〉θ�|
≤
∑
T∈T

‖( f + div σ
θ�
Λ (wN )

)
ζϑ�‖L2(Γ ,γ ;L2(T ))‖(id−I)v‖L2(Γ ,γ ;L2(T ))

+
∑
F∈S

‖[[σθ�
Λ (wN )]]Fζϑ�‖L2(Γ ,γ ;L2(F))‖(id−I)v‖L2(Γ ,γ ;L2(F)).

With the interpolation properties (3.4) we obtain

|〈R+,Λ(wN ), (id−I)v〉θ�|
≤
∑
T∈T

hT cT ‖( f + div σ
θ�
Λ (wN )

)
ζϑ�‖L2(Γ ,γ ;L2(T ))|v|Vϑ�,ωT

+
∑
F∈S

h1/2F cS‖[[σθ�
Λ (wN )]]Fζϑ�‖L2(Γ ,γ ;L2(F))|v|Vϑ�,ωF .

Since the overlaps of the patches ωT and ωF are bounded uniformly, a Cauchy-
Schwarz estimate leads to

|〈R+,Λ(wN ), (id−I)v〉θ�| ≤ cdet estdet(wN )‖v‖L2(Γ ,γ ;X ).

Here, the constant cdet depends on the properties of the interpolation operator (3.4).

Remark 5.4 Note that an L2-integration of the residual, which is an element of the dual
space V∗

ϑ�, is possible since the solution consists of finite element functions. These
are piecewise polynomial and thus smooth on each element T ∈ T .

5.2 Tail error estimation

The parametric or tail estimator is given by

estparam(wN ) :=
⎛
⎝∫

Γ

∫
D

( ∑
η∈Ξ\Λ

res(x, η)H
τθ�
η (y) ζϑ�(y)

)2
dxdγ (y)

⎞
⎠

1/2

and bounds the parametric error as follows.

123



678 M. Eigel et al.

Proposition 5.5 For any v ∈ Vϑ� and any wN ∈ VN , it holds

|〈R+,Ξ\Λ(wN ), (id−I)v〉θ�|
‖v‖L2(Γ ,γ ;X )

≤ estparam(wN ).

Proof. Recall that 〈R+,Ξ\Λ(wN ), Iv〉θ� = 0 since Iv ∈ VN .
Instead of factorizing out the L∞-norm of the diffusion coefficient as in [15,16,21],

we use the Cauchy-Schwarz inequality to obtain

〈R+,Ξ\Λ(wN ), v〉θ�

=
∫

Γ

∫
D

( ∑
η∈Ξ\Λ

res(x, η)H
τθ�
η (y)

)
· ∇v(x, y) ζϑ�(y) dxdγ (y)

≤
∫

Γ

∫
D

( ∑
η∈Ξ\Λ

res(x, η)H
τθ�
η (y) ζϑ�(y)

)2
dxdγ (y)‖v‖L2(Γ ,γ ;X )

= estparam(wN )‖v‖L2(Γ ,γ ;X ).

5.3 Algebraic error estimation

In order to define the algebraic error estimator, we need to state the linear basis change
operator that translates integrals over two Hermite polynomials in the measure γϑ� to
the measure γ :

Hϑ�→0 : RN×d1×···×dM → R
N×d1×···×dM ,

Hϑ�→0 := Z0 ⊗ Z1 ⊗ · · · ⊗ ZM ,

Z0(i, j) :=
∫
D

∇ϕi · ∇ϕ j dx,

Zm(μm, μ′
m) :=

∫
R

H
τθ�
μm (ym)H

τθ�

μ′
m

(ym) dγm(ym) for all m = 1, . . . , M .

This yields the estimator

estdisc(wN ) := ‖(A(W ) − F)H−1/2
ϑ�→0‖�2(RN×d1×···×dM ). (5.1)

Proposition 5.6 For any wN ∈ VN and the Galerkin solution uN ∈ VN , it holds

‖uN − wN‖A+ ≤ (č+
ϑ�)−1 estdisc(wN ).

Proof For vN =∑N−1
i=0

∑
μ∈Λ V (i, μ)ϕi H

τθ�
μ ∈ VN , it holds

∫
Γ

∫
D

∇vN · ∇vN dxdγ (y) = 〈VHϑ�→0, V 〉 = ‖VH1/2
ϑ�→0‖2�2(RN×d1×···×dM )

.
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With this and using the coercivity of A+, we can see that

‖wN − uN‖2A+ = 〈A+(wN − uN ), (wN − uN )〉θ�

= 〈AW − F,W −U 〉
= 〈(AW − F)H−1/2

ϑ�→0, (W −U )H1/2
ϑ�→0〉

≤ ‖(AW − F)H−1/2
ϑ�→0‖�2(RN×d1×···×dM )‖wN − uN‖L2(Γ ,γ ;X )

≤ (č+
ϑ�)−1‖(AW − F)H−1/2

ϑ�→0‖�2(RN×d1×···×dM )‖wN − uN‖A+

and thus

‖wN − uN‖A+ ≤ (č+
ϑ�)−1 estdisc(wN ).

5.4 Overall error estimation

A combination of the above estimates yields an overall error estimator.

Corollary 5.7 For any wN ∈ VN , the energy error can be bounded by

‖u − wN‖2A+ ≤ (č+
ϑ�)−2 estall(wN )2

with the error estimator given by

estall(wN )2 :=
(
cdet estdet(wN ) + estparam(wN ) + cI estdisc(wN )

)2
+ estdisc(wN )2.

Remark 5.8 In order to get suitable measures for the estimators, the squared density
ζ 2
ϑ� appears, which upon scaling with

cσ :=
L∏

�=1

1

σ�

√
2 − σ 2

�

again is a Gaussian measure with standard deviation σ ′ = (σ ′
�)1≤�≤L for

σ ′
� := σ�√

2 − σ 2
�

.

First, this adds a restriction onϑ such that the argument in the square root is positive.
This is fulfilled if exp(2ϑ�α1) < 2, since (αm)1≤m≤M is a decreasing series, which
can be ensured for some ϑ small enough. Second, it is important to check whether the
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new measure is weaker or stronger than γϑ� [49], i.e., which space contains the other.
Since

σ ′
� = σ�√

2 − σ 2
�

= exp(ϑ�α�)√
2 − exp(2ϑ�α�)

≥ exp(ϑ�α�) = σ�,

functions that are integrable with respect to the measure γϑ� are not necessarily inte-
grable with respect to the squared measure. However, since f is independent of the
parameters and A+(wN ) ∈ X ∗ ⊗ Y(Ξ) has a polynomial chaos expansion of finite
degree, the residualR+(wN ) is integrable over the parameters for any Gaussian mea-
sure and therefore it is also integrable with respect to the squared measure.

5.5 Efficient computation of the different estimators

The error estimators can be calculated efficiently in the TT format. For each element
T ∈ T of the triangulation, the residual estimator is given by

estdet,T (wN )2 = h2T ‖( f + div σ
θ�
Λ (wN )

)
ζϑ�‖2L2(Γ ,γ ;L2(T ))

= h2T

∫
Γ

∫
T

(
f +

∑
η∈Λ

div res(x, η)H
τθ�
η

)2
ζ 2
ϑ� dxdγ (y)

= h2T ( f , f )L2(T )

∫
Γ

ζ 2
ϑ� dγ (y)

+ 2h2T
∑
η∈Λ

( f , div res(x, η))L2(T )

∫
Γ

H
τθ�
η ζ 2

ϑ�dγ (y)

+
∑
η∈Λ

∑
η′∈Λ

(div res(x, η), div res(x, η′))L2(T )

×
∫

Γ

H
τθ�
η H

τθ�

η′ ζ 2
ϑ�dγ (y).

A complication of the change of the measure to γ and the involved weight ζ 2
ϑ� is the

fact that the shifted Hermite polynomials H τθ� are not orthogonal with respect to this
measure. However, this property can be restored easily by calculating the basis change
integrals beforehand. This results in another tensor product operator that is defined
element-wise for η, η′ ∈ Ξ by

H̃(η, η′) := Z̃1(η1, η
′
1) · · · Z̃ L(ηL , η′

L),

Z̃�(η�, η
′
�) :=

∫
Γ

H
τθ�
η�

H
τθ�

η′
�

ζ 2
ϑ�,�dγ (y�).
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This operator encodes the basis change to the squared measure and can be inserted in
order to calculate the scalar product. With this, the estimator takes the form

estdet,T (wN )2 = h2T ( f , f )L2(T )

∫
Γ

ζ 2
ϑ� dγ (y)

+ 2h2T
∑
η∈Λ

H̃(η, 0)( f , div res(x, η))L2(T )

+
∑
η∈Λ

∑
η′∈Λ

H̃(η, η′)(div res(x, η), div res(x, η′))L2(T ).

Since H̃ is a tensor product operator, this summation can be done component-wise,
i.e., performing a matrix-vector multiplication of every component of the operator H̃
with the corresponding component of the tensor function r .

Similarly, for the jump over the edge F we obtain the estimator

estdet,F (wN )2 = hF

∑
η∈Λ

∑
η′∈Λ

H̃(η, η′)([[res(x, η)]]F , [[res(x, η′)]]F )L2(F).

Analogously to the affine case dealt with in [21], both of these estimators can then be
computed efficiently in the TT format. The parametric error estimator estparam(wN )

can be estimated in a similar way.
To gain additional information about the residual influence of certain stochastic

dimensions, we sum over specific index sets. Let

Ξm := {(η1, . . . , dm, . . . , ηM , 0, . . .) ∈ F : xη� = 0, . . . , d� − 1,

� = 1, . . . ,�m, . . . , M},

where the strike through means that � takes all values but m. For every m = 1, 2, . . .,
and wN ∈ VN we define

estparam,m(wN )2 :=
∫

Γ

∫
D

ζ 2
ϑ�

∣∣∣ ∑
η∈Ξm

res(x, η)H
τθ�
η

∣∣∣2 dxdγ (y).

Using the same arguments and notation as above, we can simplify

estparam,m(wN )2 =
∫
D

∑
η∈Ξn

(
res(x, η) ·

∑
η′∈Ξm

H̃(η, η′) res(x, η′)
)
dx .

These operations, including the calculation of the discrete error estimator (5.1), can
be executed efficiently in the TT format.
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6 Fully adaptive algorithm

With the derived error estimators of the preceding sections, it is possible to refine all
discretization parameters accordingly. As discussed before, the deterministic estima-
tor assesses the error that arises from the finite element method. The discrete error
estimator evaluates the error made by a low rank approximation. The rest of the error
is estimated by the parametric error estimator.

The adaptive algorithm described in this section is similar to the algorithms pre-
sented in [15,16,21]. Given some mesh T , a fixed polynomial degree p, a finite tensor
set Λ ⊂ F , and a start tensor W with TT rank r , we assume that a numerical approx-
imation wN ∈ VN is obtained by a function

w+
N ← Solve[Λ, T , r ,W ]

where the superscript + always denotes the updated object. In our implementation,
we used the preconditioned ALS algorithm but other solution algorithms are feasible
as well. The lognormal error indicators from Sect. 5 and thus the overall upper bound
estall(wN ) in Corollary 5.7 are computed by the methods

(estdet,T (wN ))T∈T , estdet(wN ) ← Estimatex [wN ,Λ, T , p],
(estparam,m(wN ))m∈N, estparam(wN ) ← Estimatey[wN ,Λ],
estdisc(wN ) ← EstimateALS[wN ],
estall(wN ) ← Estimateall[estdet, estparam, estdisc].

Depending on which error is largest, either the mesh is refined, or the index set Λ
is enlarged, or the rank r of the solution is increased. This is done as follows:

• If the deterministic error estdet(wN ) outweighs the others, we mark the elements
T ∈ T that have the largest error estdet,T (wN ) until the sum of errors on the
elements in this marked subset Tmark ⊂ T exceeds a certain ratio 0 < ϑ < 1. This
is called the Dörfler marking strategy

∑
T∈Tmark

estdet,T (wN ) ≥ ϑ estdet(wN ).

We denote this procedure by

Tmark ← Markx [ϑ, (estdet,T (wN ,Λ))T∈T , estdet(wN ,Λ, T )].

The elements in this subset are subsequently refined by

T + ← Refinex [T , Tmark].

• In case the parametric error estparam(wN ) dominates, we use estimators
estparam,m(wN ) in order to determine which components need to be refined. Here,
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Algorithm 2 The TTASGFEM algorithm.
Input: solution wN with solution tensor W and rank r ;

mesh T with degrees p;
index set Λ;
Dörfler marking ratio ϑ ;
accuracy εTTASGFEM;

Output: New solution w+
N with new solution tensor W+;

updated mesh T +;
updated index set Λ+;

Init w+
N = wN ; W+ = W ; T + = T ; Λ+ = Λ; r+ = r; estall = ∞;

repeat
w+
N ← Solve[Λ+,T +, r+,W+]

(estdet,T )T∈T + , estdet ← Estimatex [w+
N , Λ+,T +, p]

(estparam,m )m∈N, estparam ← Estimatey [w+
N , Λ+]

estdisc ← EstimateALS[w+
N ]

estall ← Estimateall[estdet, estparam, estdisc]
if estdet = max{estdet, estparam, estdisc} then

Tmark ← Markx [ϑ, (estdet,T)T∈T + , estdet]
T + ← Refinex [T ,Tmark]

else if estparam = max{estdet, estparam, estdisc} then
Imark ← Marky [(estparam,m )m∈N, estparam]

Λ+ ← Refiney [Λ,Imark]
else

W+ ← RefineTT[W+]
end if

until estall < εTTASGFEM

we also mark until the Dörfler property is satisfied, that is, we obtain a subset
Imark ⊂ N such that∑

m∈Imark

estparam,m(wN ) ≥ ϑ estparam(wN ).

This is the marking

Imark ← Marky[ϑ, (estparam,m(wN ))m∈N, estparam(wN )],

and we refine by increasing d+
m ← dm + 1 for m ∈ Imark

Λ+ ← Refiney[Λ, Imark].

• Finally, if estdisc(wN ) exceeds the other errors, we simply add a random tensor
of rank 1 to the solution tensor W . This increases all TT ranks of W by 1 almost
surely. It would also be possible to add an approximation of the discrete residual
as this is also in TT format. However, since the ALS algorithm will be performed
after the refinement, the advantage of this rather costly improvement has shown
to be negligible [52]. Thus we get

W+ ← RefineTT[W ].
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A single iteration step of the adaptive algorithm returns either a refined T + or Λ+
or the tensor format solution with increased rankW+ and then solves the problemwith
these properties. This is done repeatedly until the overall error estimator errall(wN )

is sufficiently small, i.e., defined error bound εTTASGFEM or a maximum problem size
is reached. This procedure is given by the function TTASGFEM, displayed in Algo-
rithm 2. Note that we omit the dependence of wN for the estimators in the algorithm.
The upper error bounds directly follow from Corollary 5.7.

7 Numerical experiments

In this section we examine the performance of the proposed adaptive algorithm with
some benchmark problems. The computations are carried out with the open source
framework ALEA [18]. The FE discretization is based on the open source package
FEniCS [24]. The shown experiments are similar to the ones of the predecessor
paper [21] in Section 7. As before, the model equation (2.1) is computed for different
lognormal coefficients on the square domain. The derived error estimator is used as
a refinement indicator. Of particular interest is the observed convergence of the true
(sampled) expected energy error and the behaviour of the error indicator. Moreover,
we comment on the complexity of the coefficient discretization.

7.1 Evaluation of the error

The accuracy of the computed approximation is determined by a Monte Carlo estima-

tion. For this, a set of NMC independent samples
(
y(i)
)NMC

i=1 of the stochastic parameter
vector is considered. By the tensor structure of the probabilitymeasure γ =⊗m∈N γ1,
each entry of the vector valued sample y(i) is drawnwith respect toN1. The parametric
solution wN ∈ VN (Λ; T , p) obtained by the adaptive algorithm at a sample y(i), is
compared to the corresponding (deterministic) sampled solution u(y(i)) ∈ Xp′(T̃ ) on
a much finer finite element space subject to a reference triangulation T̃ , obtained from
uniform refinements of the finest adaptively created mesh, up to the point where we
obtain at least 105 degrees of freedom with Lagrange elements of order p′ = 3. For
computations, the truncation parameter applied to the infinite sum in (2.2), controlling
the length of the affine field representation, is set to M = 100. The mean squared error
is determined by a Monte Carlo quadrature,

∫
Γ

‖u(y) − wN (y)‖2X dγ (y) ≈ 1

NMC

NMC∑
i=1

‖u(y(i)) − wN (y(i))‖2Xp(T̃ )
.

Note that the sample reference quantity u(y) exhibits approximation solely by a finite
element method and does not involve the computation of a unified reference solution.
A choice of NMC = 250 proved to be sufficient to obtain a reliable estimate in our
experiments.
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7.2 The stochastic model problem

In the numerical experiments, we consider the stationary diffusion problem (2.1) on
the square domain D = (0, 1)2. As in [15,16,19,21], the expansion coefficients of the
stochastic field (2.2) are given by

bm(x) := γm−σ cos(2π�1(m)x1) cos(2π�2(m)x2), for m ≥ 1. (7.1)

We chose the scaling γ = 0.9.
Moreover,

�1(m) = m − k(m)(k(m) + 1)/2 and �2(m) = k(m) − �1(m),

with k(m) = �−1/2 + √
1/4 + 2m�, i.e., the coefficient functions bm enumerate all

planar Fourier sine modes in increasing total order. To illustrate the influence which
the stochastic coefficient plays in the adaptive algorithm, we examine the expansion
with varying decay, setting σ in (7.1) to different values. The computations are carried
out with conforming FE spaces of polynomial degree 1 and 3.

The fully discretized problem is solved in the TT format using theAlternating Least
Squares (ALS) algorithm as introduced in [21]. Other algorithms like Riemannian
optimization are also feasible [1,37]. The ALS has a termination threshold of 10−12

that needs to be reached in the Frobenius norm of the difference of two successive
iteration results.

For our choice of the coefficient field, the introduced weights in (3.1) are set to
� = 1 and θ = 0.1.

7.3 Tensor train representation of the coefficient

Since the tensor approximation of the coefficient is the starting point for the dis-
cretization of the operator, we begin with an examination of the rank dependence of
the coefficient approximation scheme given in Algorithm 1. For this, we fix the multi-
index set such that the incorporated Hermite polynomials are of degree 15 in each
stochastic dimension, i.e.,

Δ = {ν ∈ F : ν� = 0, . . . , 16, � = 1, . . . , L}.

As a benchmark, we chose a slow decay with σ = 2 and set the quadrature rule2

to exactly integrate polynomials of degree 7 with a grid such that the number of
quadrature nodes is at least Pquad = 104. In the following, the relative root mean
squared (RRMS) error

E(a, aΔ,s) :=
(
E[‖a − aΔ,s‖2L2(D)

/‖a‖2L2(D)
]
)1/2

2 The statements are with regard to the respective FE discretization in FEniCS.
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Table 1 Comparison of different coefficient field approximations with fixed stochastic parameter set of
order L = {10, 50, 100}, fixed stochastic polynomial degree 15 and different rank configurations having
maximal rank smax = {10, 20, 50, 100}
smax E(a, aΔ,s ) tt-dofs(A) full-dofs(A) CPU-time (s)

L = 10

10 1.21 × 10−3 2.04 × 106 3.02 × 1017 1.7

20 6.25 × 10−4 4.12 × 106 4.56

50 6.18 × 10−4 1.05 × 107 16.52

100 6.18 × 10−4 2.15 × 107 70.29

L = 50

10 1.17 × 10−3 2.11 × 106 3.26 × 1065 9.14

20 3.26 × 10−4 4.36 × 106 13.56

50 5.98 × 10−5 1.20 × 107 50.60

100 5.16 × 10−5 2.75 × 107 247.63

L = 100

10 1.16 × 10−3 2.18 × 106 5.25 × 10125 19.09

20 3.20 × 10−4 4.66 × 106 27.16

50 6.33 × 10−5 1.38 × 107 100.53

100 7.47 × 10−6 3.50 × 107 498.47

is compared to the growth in degrees of freedom with respect to various tensor ranks.
Numerically, this expression is computedby aMonteCarlo approximation as described
in Sect. 7.1 with the reference mesh T̃ .

By denoting A = (A0, A1, . . . , AL) the component tensors of aΔ,s in (4.4), where
A0[xk, k1] = a0[k1](xk) corresponds to the evaluation of a0[k1] at every node xk of
T̃ , we can apply the notion of tt-dofs (4.1) to the discrete tensor train coefficient. To
highlight the crucial choice of the rank parameter s = (1, s1, . . . , sL , 1) in aΔ,s , we
let the maximal attainable rank smax vary.

It can be seen in Table 1 that a higher rank yields a more accurate approximation
of the coefficient, as long as the stochastic expansion L is long enough. For small
numbers of L , the RRMS does not decrease any further than 6 × 10−4, even when
increasing the maximal attainable rank. Otherwise, for up to L = 100 terms in the
affine coefficient field parametrisation, a small rank parameter of smax = 10 gives a
reasonable RRMS error of 1 × 10−3 which can be improved by increasing smax.

It should be pointed out that the used approximation only becomes feasible com-
putationally by the employed tensor format since without low-rank representation the
amount of degrees of freedom grows exponentially in der number of expansion dimen-
sions. Furthermore, since the tensor complexity and arithmetic operations depend only
linearly on the number of expansion dimensions, the computational time scales lin-
early as illustrated in the last column of Table 1 showing the average run time of 10
runs.3

3 Run on an 8GB Intel Core i7-6500 laptop.

123



Adaptive stochastic Galerkin FEM for lognormal… 687

Fig. 3 Relative sampled mean
squared H1(D) error for fixed
stochastic dimension L = 5 and
adaptive refinement of the
physical mesh. Each setting is
shown along its respective
overall error estimator as defined
in Corollary 5.7 and plotted
against the total number of
degrees of freedom in the TT
representation. Considered are
FE approximations of order
p = 1 and p = 3

7.4 Adaptivity in physical space

As a first example for an adaptive discretization, we examine the automatic refinement
of the physical FE space only. For this, the stochastic expansion of the coefficient is
fixed to some small value L = 5 in (4.4), which also is assumed for the corresponding
reference solution. The considered polynomial (Hermite chaos) degree of the approx-
imation in each dimension is fixed to d1 = . . . = d5 = 10, which can be considered
sufficiently large for the respective problem, given an algebraic decay rate of σ = 2
in the coefficient.

Although this experiment does not illustrate the performance of the complete algo-
rithm, it nevertheless depicts the varying convergence rates for different polynomial
orders in the FE approximation. The rank of the tensor train approximation is fixed to
rmax = 10, which is sufficient due to the low stochastic dimensions.

It can be observed in Fig. 3 that the error estimator follows the rate of convergence
of the sampled error. Moreover, the higher-order FE method exhibits a higher conver-
gence rate as expected. This could also be observed in the (much simpler) affine case
scrutinized in the preceding works [15,16,19,21].

7.5 Fully adaptive algorithm

The fully adaptive algorithm described in Algorithm 2 is instantiated with a small
initial tensor with full tensor rank r1 = 2 consisting of a single M = 1 stochastic
component discretized with a linear polynomial d1 = 2 and a physical mesh with
|T | = 32 elements for linear ansatz functions p = 1 and |T | = 8 for p = 3. The
marking parameter is set to ϑ = 0.5.

Figure 4 depicts the real (sampled)mean squared energy error and the corresponding
overall error estimator for FE discretizations of degrees p = 1, 3. On the left-hand
side of the figure, a lower decay rate (σ = 2) in the coefficient representation is used,
resulting in more stochastic modes to be relevant for an accurate approximation. The
right-hand side shows results for a faster decay rate with σ = 4. As expected, the
convergence rate for the p = 3 FE discretizations is faster than with p = 1 FE.
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Fig. 4 Relative, sampled, mean squared H1(D) error for the fully adaptive refinement. Each setting is
shown along its respective overall error estimator as defined in Corollary 5.7 and plotted against the total
number of degrees of freedom in the representation. Considered are finite elements approximation of order
p = 1 and p = 3 and slow decay (σ = 2, left) and fast decay (σ = 4, right)

Table 2 Stochastic expansion length, maximal polynomial chaos degrees, tensor ranks and degrees of
freedom for the physical and (compressed) stochastic discretizations as well as for the operator in TT
format for selected iteration steps in the fully adaptive algorithm

Iteration M dmax rmax m-dofs(WN ) tt-dofs(WN ) op-dofs(WN )

Finite element order p = 1 and slow coefficient decay σ = 2

5/37 1 1 2 292 584 873

15/37 2 2 5 1577 7900 73,965

20/37 3 4 8 2330 18,656 170,247

30/37 5 4 13 6586 85,,847 678,382

37/37 6 5 19 6586 126,330 734,880

Finite element order p = 1 and fast coefficient decay σ = 4

5/22 1 1 2 302 604 1200

10/22 1 3 3 941 2826 11,196

15/22 1 4 5 2951 14,755 44,115

22/22 2 5 9 9608 86,499 962,022

Finite elements of order p = 1 are used to solve the problem with coefficient decay rates of σ ∈ {2, 4}

Moreover, for the simpler problem with fast decay, we achieve a smaller error with a
comparable number of degrees of freedom than in the harder slow decay setting.

Remark 7.1 Note that we neglect the (large) factor č+
θ� in Corollary 5.7, which depends

on the choice of weights θ and � of the discrete space. A detailed analysis of how to
optimally select these weights is outside the scope of this article.

We conclude the numerical observations with Table 2 and 3 to display the behaviour
of the fully adaptive algorithm. To allow for more insights, we redefine the physical
mesh resolution as m-dofs(WN ), which is the number of FE degrees of freedom for
the respective parametric solution WN . Moreover, we define the number of degrees

123



Adaptive stochastic Galerkin FEM for lognormal… 689

Table 3 Stochastic expansion length, maximal polynomial chaos degrees, tensor ranks and degrees of
freedom for the physical and (compressed) stochastic discretizations as well as for the operator in TT
format for selected iteration steps in the fully adaptive algorithm

Iteration M dmax rmax m-dofs(WN ) tt-dofs(WN ) op-dofs(WN )

Finite element order p = 3 and slow coefficient decay σ = 2

5/65 1 2 2 139 417 816

20/65 5 3 12 241 3040 37,537

35/65 7 6 21 403 9856 130,799

50/65 9 11 33 568 27,662 239,273

65/65 16 11 46 1078 76,173 353,153

Finite element order p = 3 and fast coefficient decay σ = 4

5/67 1 2 2 322 966 2226

20/67 2 7 7 991 9974 101,110

35/67 4 13 15 1207 20,423 250,913

50/67 6 21 19 1909 39,998 434,669

67/67 6 34 22 2404 61,920 607,076

Finite elements of order p = 3 are used to solve the problem with coefficient decay rates of σ ∈ {2, 4}

of freedom incorporated in the operator (4.5) generated to obtain the current solution.
For a tensor train operator of dimension A ∈ R

(N×N )×(q1×q1)×...×(qL×qL ) and rank
s = (s1, . . . , sL), we define

op-dofs(A) := N 2s1 − s21 +
L−1∑
�=1

(s�q
2
� s�+1 − s2�+1) + sLq

2
L .

Note that, using a sparse representation of the operator in the first (physical) compo-
nent, it is possible to reduce number of op-dofs.

Tables 2 and 3 highlight some iteration steps and the employed stochastic expansion
length M , the maximal polynomial degree dmax (which was usually naturally attained
in the first stochastic component), the maximal tensor train rank rmax (again most of
the time this rank is the separation rank of the physical space and the first stochastic
dimension) and the corresponding degrees of freedom. Notably, for the fast coefficient
decayσ = 4, the stochastic expansion is very short sincemost of the randomness is due
to the first few stochastic parameters. It is reasonable that the respective parameter
dimensions require higher polynomial degrees in the approximation. For the more
involved slow decay σ = 2 setting we observe a larger stochastic expansion of the
solution and larger tensor ranks.
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