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Abstract We present a stochastic gradient descent optimi-
sation method for image registration with adaptive step size
prediction. The method is based on the theoretical work by
Plakhov and Cruz (J. Math. Sci. 120(1):964–973, 2004).
Our main methodological contribution is the derivation of
an image-driven mechanism to select proper values for the
most important free parameters of the method. The se-
lection mechanism employs general characteristics of the
cost functions that commonly occur in intensity-based im-
age registration. Also, the theoretical convergence condi-
tions of the optimisation method are taken into account.
The proposed adaptive stochastic gradient descent (ASGD)
method is compared to a standard, non-adaptive Robbins-
Monro (RM) algorithm. Both ASGD and RM employ a sto-
chastic subsampling technique to accelerate the optimisa-
tion process. Registration experiments were performed on
3D CT and MR data of the head, lungs, and prostate, using
various similarity measures and transformation models. The
results indicate that ASGD is robust to these variations in
the registration framework and is less sensitive to the set-
tings of the user-defined parameters than RM. The main dis-
advantage of RM is the need for a predetermined step size
function. The ASGD method provides a solution for that is-
sue.
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1 Introduction

Image registration is a frequently used technique in the fields
of remote sensing and medical imaging. Given a pair of im-
ages, image registration is the task of finding a coordinate
transformation that spatially aligns the two images. Exten-
sive surveys of registration methods can be found in the lit-
erature (Maintz and Viergever 1998; Pluim et al. 2003; Zi-
tová and Flusser 2003). In this article, we focus on intensity-
based registration methods, using a parameterised coordi-
nate transformation.

Intensity-based image registration is usually treated as
a nonlinear optimisation problem. Define the fixed image
F(x) : �F ⊂ R

D �→ R, the moving image M(x) : �M ⊂
R

D �→ R, and a parameterised coordinate transformation
T (x,μ) : �F × R

P �→ �M , where μ ∈ R
P represents the

vector of transformation parameters. The following minimi-
sation problem is considered:

μ̂ = arg min
μ

C(F,M ◦ T ), (1)

where C is the cost function (or “similarity measure”) that
measures the similarity of the fixed image and the deformed
moving image. The solution μ̂ is the parameter vector that
minimises that cost function. Henceforth, we use the short
notation C(μ) ≡ C(F,M ◦ T ).

In Klein et al. (2007) it has been shown that a Robbins-
Monro (RM) stochastic gradient descent method (Robbins
and Monro 1951; Kushner and Yin 2003) is in many appli-
cations the best choice for solving the minimisation prob-
lem (1). The method uses the following iterative scheme:

μk+1 = μk − γkg̃k, k = 0,1, . . . ,K, (2)

g̃k = g(μk) + εk, (3)

mailto:s.klein@erasmusmc.nl
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where g̃k denotes an approximation of the true derivative
g ≡ ∂C/∂μ at μk , and εk is the approximation error. If
εk = 0, (2) boils down to a common, deterministic gradi-
ent descent method. The approximation of g is realised by
computing g using not all voxels, but only a small subset of
voxels, randomly selected in every iteration. In this way, the
computational costs per iteration are greatly reduced, while
convergence properties are still similar to those obtained by
deterministic gradient descent. The scalar gain factor γk , the
“step size”, is determined by a predefined decaying function
of the iteration number k. An often used choice is:

γk ≡ γ (k) = a/(k + A)α, (4)

with user-specified constants a > 0, A ≥ 1, and 0 < α ≤ 1.
A choice of α = 1 gives a theoretically optimum rate of con-
vergence when k → ∞ (Kushner and Yin 2003). In practice,
the algorithm is stopped after a specified maximum num-
ber of iterations, and, therefore, it sometimes makes sense
to choose α < 1, which causes the step size to decay less
fast. The need for setting a, A, and α complicates the usage
of RM for image registration. The factor a is especially dif-
ficult, since it has no unit, and heavily depends on the choice
of the cost function. For example, when we multiply C by an
arbitrary constant c, the value of a would need to be divided
by c in order to get the same sequence {μk}. When a is set
too small, the RM method suffers from slow convergence.
When a is set too large, the process may become unstable.

The present study concerns a stochastic optimisation
method with adaptive step size prediction: adaptive stochas-
tic gradient descent (ASGD). The mechanism to adapt the
step size γk is based on the inner product of the gradient
g̃k and the previous gradient g̃k−1. Intuitively, if the gra-
dients in two consecutive iterations point in (almost) the
same direction, it is expected that larger steps can be taken.
If the gradients point in opposite directions, the step size
is reduced. The theoretical convergence properties of the
method in one-dimensional (P = 1) optimisation problems
were studied by Plakhov and Cruz (2004). Cruz (2005a) ex-
tended the analysis to multidimensional (P > 1) problems.
Some numerical experiments are described in (Cruz 2005b),
using artificial test functions with εk generated according to
a normal distribution. Only two cases (P = 1 and P = 2)
were investigated. No other applications of the method were
found in the literature.

Using the theoretical convergence conditions given in
(Cruz 2005a), we derive an image-driven selection mech-
anism for the method’s free parameters. The derivation is
based on general characteristics of the cost functions that
commonly occur in intensity-based image registration prob-
lems. A key result is the replacement of a by a new user-
defined parameter, δ, which has a more intuitive meaning
and is constructed to be independent of the choice of C . The
method is validated on several registration problems, with

different image modalities, similarity measures, and trans-
formation models, with P ranging from 6 to 4000.

2 Method

First, in Sect. 2.1, the basic ASGD method is explained and
a summary is given of the theoretical convergence results.
After that, in Sect. 2.2, we describe the first steps towards
application of ASGD in image registration. A procedure to
set the free parameters of ASGD is derived in Sects. 2.3–2.5.
Section 2.6 gives an overview of the entire algorithm.

2.1 Summary of ASGD

In Cruz (2005a) the ASGD method is presented in the con-
text of a general multidimensional root-finding problem1:
find μ̂ such that ϕ(μ̂) = 0, for some function ϕ(μ) : R

P �→
R

P . Our minimisation problem is a specific case of this,
where ϕ equals g ≡ ∂C/∂μ. The ASGD algorithm is then
defined as:

μk+1 = μk − γ (tk)g̃k, k = 0,1, . . . ,K, (5)

tk+1 = [tk + f (−g̃T
k g̃k−1)]+, (6)

where [x]+ means max(x,0), f denotes a sigmoid function,
and μ0, t0 and t1 are user-defined initial conditions. For the
γ function, the same definition as in (4) can be used. How-
ever, in ASGD, the γ function is not evaluated at the iter-
ation number k, as in (2), but at the ‘time’ tk . The time is
adapted depending on the inner product of the gradient g̃k

and the previous gradient g̃k−1. If the gradients in two con-
secutive steps point in the same direction, the inner product
is positive, and therefore the time is reduced, which leads to
a larger step size γ (tk+1), since γ is a monotone decreas-
ing function. In this way, the ASGD method implements an
adaptive step size mechanism. Note that if we would use
f (x) = 1, the original RM method is obtained.

The article by Cruz (2005a) provides a proof of “almost-
sure” convergence and a proof of asymptotical normality.
The proof of almost-sure convergence implies that

lim
k→∞μk = μ̂, (7)

“with probability 1”. The proof of asymptotical normality
tells us something about the rate of convergence:

√
k(μk − μ̂)

d−→ N (0,V ), (8)

where
d−→ indicates convergence in distribution and N (0,V )

denotes a multivariate normal distribution with mean 0 and

1Note that our notation is somewhat different from Cruz (2005a).
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Fig. 1 Examples of the sigmoid function f , with fMAX = 1 and
fMIN = −0.5

covariance matrix V . To prove the convergence and asymp-
totical normality, five sets of assumptions are required. The
assumptions impose conditions on γ and f , depending on
characteristics of the cost function C and the distribution of
gradient approximation errors εk .

2.2 Application of ASGD

To apply the ASGD method in practice, we have to specify
the γ and f functions. They should be chosen such that the
theoretical convergence conditions given in Cruz (2005a)
are satisfied.

For the step size function γ we choose the following ex-
pression:

γ (t) = a/(t + A), (9)

with a > 0 and A ≥ 1. Compared to (4) the α term is omit-
ted, i.e. α = 1, which is the theoretically optimal setting
(Kushner and Yin 2003). For f we define a general sigmoid
shape with f (0) = 0:

f (x) = fMIN + fMAX − fMIN

1 − (fMAX/fMIN)e−x/ω
, (10)

with fMAX > 0, fMIN < 0, and ω > 0. Examples of f are
shown in Fig. 1. If ω ↓ 0, the sigmoid approaches a step
function.

The ASGD algorithm still requires setting a and A.
Moreover, the expression for the sigmoid function f intro-
duces three new parameters: fMAX, fMIN, and ω. Yet, we ex-
pect that the adaptive step size mechanism makes the algo-
rithm robust for wider ranges of a and A, compared with
RM.

As mentioned in Sect. 2.1, five sets of assumptions are
used in Cruz (2005a) to prove convergence and asymptoti-
cal normality of the ASGD algorithm. The assumptions im-
pose conditions on γ and f , and are thus important for de-
termining proper values for a, A, fMIN, fMAX, and ω. We

now study the assumptions after substitution of the above
choices for γ and f . Like in Cruz (2005a) the sets of as-
sumptions needed to prove convergence are numbered B1–
B4. The set of assumptions used to prove asymptotical nor-
mality is called B5. In comparison with Cruz (2005a), some
conditions have been simplified using ϕ = ∂C/∂μ ≡ g (see
Sect. 2.1). Also, technical details that are not relevant for
this article are omitted. Our comments on the assumptions
are written in italic.

Assumption B1 (Properties of εk) The approximation er-
rors εk are independent identically distributed random vec-
tors with zero mean Eεk = 0 and finite covariance matrix
� ≡ Varεk .

Based on characteristics of the cost function C , we pos-
tulate in Sect. 2.3 that εk has a normal distribution: εk ∼
N (0,�).

Assumptions B2 (Properties of γ (t))

1. The gain function γ (t) is a positive monotone decreas-
ing function defined on [0,∞). Consequently, γ (0) is the
maximum gain factor.

2.
∫ ∞

0 γ (t)dt = ∞.

3.
∫ ∞

0 [γ (t)]2dt < ∞.

With γ (t) defined by (9) it is easily verified that these
assumptions are satisfied and that γ (0) = a/A.

Assumptions B3 (Conditions depending on C )

1. Provided that
a) the function C(μ) has no other extrema than μ̂,
b) C(μ) is continuous and twice differentiable every-

where,
c) there exists a constant λ > 0 such that the maxi-

mum eigenvalue of the Hessian H ≡ ∂2 C/∂μ∂μT is
smaller than or equal to λ for all μ,

the minimisation problem (1) can be solved with the fol-
lowing deterministic gradient descent method:

μk+1 = μk − γ̂g(μk), (11)

for each γ̂ < γ (0), and for each μ0.
Provided that Assumptions B3.1(a)–(c) indeed hold,

the choice γ (0) = 2/λ satisfies the last condition (Shi
and Shen 2005). This assumption thus relates the maxi-
mum step size γ (0) to the Hessian of the cost function.

2. There exist R > 0 and β0 > 0 such that2

‖g(μ)‖2 ≥ 1

2
γ (0)λ(‖g(μ)‖2 + tr(�)) + β0, (12)

for all μ that satisfy ‖μ − μ̂‖ ≥ R.

2tr(·) stands for the matrix trace.



230 Int J Comput Vis (2009) 81: 227–239

This condition relates the maximum step size γ (0) to
the covariance matrix � of the approximation errors. In
Sect. 2.4, we use Assumptions B3.1 and B3.2 to choose a
value for a.

Assumptions B4 (Properties of f (x))

1. f (x) : R �→ R is a monotone increasing, continuous and
bounded function, for which:

fMAX = lim
x→+∞f (x) > 0 and fMIN = lim

x→−∞f (x)

(13)

The expression for f (x) defined in (10) has been con-
structed such that Assumption B4.1 is satisfied.

2. Define E0 ≡ Ef (εT
k εk−1). The constant E0 must be pos-

itive.
The condition E0 > 0 is satisfied when f (x) >

−f (−x) for all x �= 0, provided that � �= 0. Combined
with (10), this imposes that fMAX > −fMIN. Furthermore,
if εk ∼ N (0,�) and ω ↓ 0, then E0 ↑ 1

2 (fMAX + fMIN).
In Sect. 2.5 this is used to choose values for fMAX and
fMIN. Also, a value for ω is determined, such that indeed
E0 ≈ 1

2 (fMAX + fMIN).

Assumptions B5 (Asymptotic normality) The following
conditions are used to prove asymptotic normality:

1. γ (t) = 1/t .
2. Define the matrix W :

W = 1

2
I − 1

E0
H (μ̂), (14)

with I the identity matrix. All eigenvalues of W must be
negative.

3. f (x) is a continuous and differentiable function.

Assumption B5.3 is obviously satisfied when ω �= 0.
Our choice for γ (t) breaks with Assumption B5.1. However,
the proof of asymptotic normality can be easily extended to
take our choice of γ (t) into account (for this, note that A is a
finite constant, which plays no role anymore when t → ∞).
The first two assumptions are then modified to:

1. γ (t) = a/(t + A).
2. Define the matrix W :

W = 1

2
I − a

E0
H (μ̂), (15)

with I the identity matrix. All eigenvalues of W must be
negative.

Assumptions B4.2 and B5.2 are used in Sect. 2.5 to
choose a value for fMAX and fMIN.

In the following subsections, estimates are derived for the
distributions of g, g̃k , εk , and the voxel displacements be-
tween two iterations. Based on these results and some of the
Assumptions B1–B5 mentioned above, settings for a, fMIN,
fMAX, and ω are proposed. The value of A is left unspecified.
The parameter a is replaced by a new user-defined parameter
δ, which, unlike a, has a unit (mm), and an intuitive mean-
ing. Also, it is constructed to be independent of the choice
of C .

2.3 Distribution Estimates

In this section we devise expressions for the distributions of
g, g̃k and εk , based on the characteristics of the cost func-
tion in image registration problems. Using the distribution
of g, the distribution of voxel displacements per iteration of
a deterministic gradient descent process is calculated. The
results of this subsection are needed in Sects. 2.4 and 2.5.

In image registration, the cost function usually takes the
following form:

C(μ) = 


(
1

|�′
F |

∑

xi∈�′
F

ξ(F (xi ),M(T (xi ,μ)))

)

, (16)

with 
(u) : � �→ R and ξ(u, v) : R × R �→ � continuous,
differentiable functions, �′

F ⊂ �F the discrete set of voxel
coordinates xi of the fixed image, and |�′

F | the cardinality
of this set. The domain � may be simply equal to R, but
may also be of a multidimensional nature: R

P or R
P×Q, for

example. An example that is covered by (16) is the sum of
squared differences: � = R, 
(u) = u, ξ(u, v) = (u − v)2.
Another example is mutual information (Collignon et al.
1995; Viola and Wells III 1995; Thévenaz and Unser 2000;
Hermosillo et al. 2002), for which:

� = R
P×Q, (17)


(u) =
P∑

p=1

Q∑

q=1

upq log
upq

(
∑

p upq)(
∑

q upq)
, (18)

ξpq(u, v) = β(p − u)β(q − v), (19)

with P × Q the joint histogram size, and β(u) : R �→ R a
Parzen window function.

We now take the derivative of (16). For clarity of notation
we consider the case � = R:

g ≡ ∂C
∂μ

= 1

|�′
F |

∑

xi∈�′
F

∂T

∂μ

T ∂M

∂x

∂ξ

∂v

∂


∂u
. (20)

We would like to estimate the distribution of g in a neigh-
bourhood ϒ ⊂ R

P around μ̂, containing μ0. The idea is
that this distribution predicts the gradients that will be mea-
sured during optimisation. The following two assumptions
are needed:
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Assumption A1 (∂T /∂μ is independent of μ) For each
xi ∈ �′

F the following holds:

J i ≡ ∂T

∂μ
(xi ,μ0) = ∂T

∂μ
(xi ,μ), ∀μ ∈ ϒ. (21)

This assumption holds when the transformation model
is parameterised such that ∂2T /∂μ∂μT = 0. The B-spline
transformation (Rueckert et al. 1999) is an example of such
a parameterisation. Also an affine transformation, parame-
terised by the affine matrix elements, satisfies the assump-
tion. For a rigid transformation parameterised by Euler an-
gles the assumption is violated, since T then becomes a non-
linear function of μ, but it holds approximately if ϒ is not
too large.

Assumption A2 (Distribution of zi ) Based on (20), define:

zi ≡ ∂M

∂x

∂ξ

∂v

∂


∂u
. (22)

Then, {zi} are mutually independent random vectors, iden-
tically distributed according to:

zi ∼ N (0, σ 2I ), (23)

with σ some constant.
This assumption is a simplification of reality. Any results

based on this assumption must be validated.

Combining (20)–(23) gives us an estimate of the distrib-
ution of g:

g = 1

|�′
F |

∑

xi∈�′
F

J T
i zi ∼ N

(

0,
σ 2

|�′
F |2

∑

xi∈�′
F

J T
i J i

)

= N
(

0,
σ 2

|�′
F |C

)

, (24)

where we introduced:

C ≡ 1

|�′
F |

∑

xi∈�′
F

J T
i J i . (25)

The same approach can be followed for the approximated
derivative g̃k . Approximation is realised by stochastic sub-
sampling:

g̃k = 1

|Sk|
∑

xi∈Sk

∂T

∂μ

T ∂M

∂x

∂ξ

∂v

∂


∂u
, (26)

with Sk ⊂ �′
F a set of samples, randomly selected in every

iteration k. The distribution for g̃k is estimated in the same
way as above:

g̃k ∼ N
(

0,
σ 2

|Sk|2
∑

xi∈Sk

J T
i J i

)

. (27)

The following approximation is proposed:

1

|Sk|
∑

xi∈Sk

J T
i J i ≈ 1

|�′
F |

∑

xi∈�′
F

J T
i J i . (28)

The approximation becomes more accurate for increasing
|Sk|, and when J i varies more gradually over the image do-
main �F . Using this approximation, the expression for the
distribution of g̃k becomes:

g̃k ∼ N
(

0,
σ 2

|Sk|C
)

. (29)

The distribution of the approximation errors εk = g − g̃k is
computed in a similar way, by subtracting (26) from (20),
and using the approximation (28):

εk ∼ N
(

0, σ 2
(

1

|�′
F | − 1

|Sk|
)

C

)

. (30)

Note that when the number of samples |Sk| is independent
of k, the distributions of g̃k and εk are also independent of k.

We turn our attention to Assumption A2. The assump-
tions states that zi are independent random variables. In im-
ages, the assumption of independency between neighbour-
ing voxels xi is usually not satisfied. The image is a discreti-
sation of a continuous signal, and thus observed (sampled)
at a certain scale, possibly inducing dependencies between
the grey values of neighbouring voxels. Consequently, the
corresponding zi may also be related. The impact of this on
the distribution of g, see (24), can be demonstrated by an
imaginary experiment. Suppose we have experimentally es-
timated the distribution of g in some region ϒ . Then, we
resample the fixed image F(x) on a twice as dense grid, us-
ing for example linear interpolation to interpolate between
voxels, and repeat the experiment. Intuitively, we would not
expect a different distribution of g. However, the number of
voxels in the fixed image, |�′

F |, has increased with a fac-
tor 2D , with D the dimension of the fixed image. According
to (24), the variance of the distribution should therefore be
divided by a factor 2D , which is clearly wrong. We must
conclude that the dependency of the variance on the num-
ber of voxels only holds when the zi are truly independent.
Since this is hard to verify, we propose to use the following
distribution estimates, instead of (24), (29), and (30):

g ∼ N (0, σ 2
1 C), (31)

g̃k ∼ N (0, σ 2
2 C), (32)

εk ∼ N (0, σ 2
3 C) = N (0,�), (33)

with σ1, σ2, and σ3 unknown scalar constants, unrelated to
each other, which will be experimentally determined. The
last equality refers to the comment on Assumption B1. To
estimate the constants σi , we perform N evaluations of g,
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g̃k , and εk = g − g̃k , and fit σi such that the empirical aver-
age vector magnitudes equal the theoretical expectations of
the vector magnitudes. For example, σ1 is determined such
that:

1

N

N∑

n=1

‖g(μn)‖2 = σ 2
1 tr(C), (34)

where the right-hand side equals E‖g‖2, in accordance with
(31). The μn vectors are randomly sampled around μ0, us-
ing a normal distribution with diagonal covariance matrix:

μn ∼ N (μ0, σ
2
4 I ), (35)

where σ4 is a scalar constant, chosen such that the voxel
displacements ‖T (xj ,μn) − T (xj ,μ0)‖ caused by the pa-
rameter change from μ0 to μn remain with high probability
(≈ 0.95) below a user-defined value δ. The exact procedure
is explained at the end of Sect. 2.4. The user-defined con-
stant N , introduced in (34), should be chosen high enough
such that 1

N

∑
n ‖g(μn)‖2 is a good estimate of the true ex-

pectation E‖g‖2. When C equals the identity matrix, the
average squared gradient magnitude 1

N

∑
n ‖g(μn)‖2 has a

χ2
NP distribution. The ratio between the standard deviation

and the expectation of a χ2
NP distribution equals

√
2/

√
NP .

We can thus expect that, with increasing P , N can be low-
ered. For arbitrary C, the ratio between standard deviation
and expectation can be shown to have an upper bound of√

2/N . From this, it is clear that a value N ≈ 10 is a reason-
able choice.

Having estimated the distribution of g, we can calcu-
late the distribution of voxel displacements per iteration of
a deterministic gradient descent process. The deterministic
gradient descent procedure mentioned in Assumption B3.1,
(11), is considered: μk+1 = μk − γ̂g(μk). The displacement
dk of voxel xj between iteration k and k + 1 is defined by:

dk(xj ) ≡ T (xj ,μk+1) − T (xj ,μk). (36)

Our goal is to estimate the distribution of dk(xj ) for some
μk ∈ ϒ . This result is used in Sect. 2.4 to estimate λ (see As-
sumption B3.1), which is used to select a such that Assump-
tions B3 are satisfied. According to the Taylor expansion of
T around μk :

dk(xj ) ≈ ∂T

∂μ
(xj ,μk) · (μk+1 − μk) = J j (μk+1 − μk),

(37)

where the last equality follows from Assumption A1. Sub-
stitution of (11) gives:

dk(xj ) ≈ −γ̂J jg(μk). (38)

Using (31) we obtain:

dk(xj ) ∼ N
(

0, γ̂ 2σ 2
1 J jCJ T

j

)
. (39)

Note that the estimated distribution of dk(xj ) is independent
of k.

The distribution estimates that have been derived in
this subsection are used in the following subsections. In
Sect. 2.4, (31), (33), and (39) are used to select a. Equation
(33) is used also in Sect. 2.5 to select ω.

2.4 Selection of a

In this subsection an appropriate value of a is estimated, us-
ing Assumptions B3 and (31), (33), and (39). The value of A

is considered a user-defined constant. The method consists
of two steps. First, a deterministic gradient descent method
is considered. The maximum value of a that still ensures
convergence is estimated, based on Assumption B3.1, (39),
and an additional user input: the maximum allowed voxel
displacement δ. After that, Assumption B3.2 is combined
with (31) and (33), to derive an expression for a that takes
the stochastic approximation errors into account.

As mentioned in Sect. 2.2, Assumption B3.1, the maxi-
mum value for γ (0) = a/A that ensures convergence of the
deterministic gradient process (11) equals 2/λ, provided that
conditions B3.1(a)–(c) hold. Condition B3.1(a) is often not
satisfied in image registration problems. This is a general
problem of image registration, which will not be further ad-
dressed in this article. Henceforth, we simply assume that
μ0 is chosen within the capture range of the desired local
minimum μ̂. The value of λ, which is defined by condition
B3.1(c), is generally unknown. We propose to estimate λ

based on an additional user input parameter δ: the maximum
allowed magnitude of the voxel displacements dk(xj ). The
problem becomes thus to compute a λ such that

‖dk(xj )‖ < δ, ∀k, j, (40)

when γ̂ < 2/λ. According to (39) the voxel displacement
dk(xj ) has a normal distribution, independent of k, with
variance depending on γ̂ . The criterion given in (40) must
therefore be weakened to, for example:

Pr
(‖dk(xj )‖ > δ

)
< ρ, ∀j, (41)

with ρ some small value, say 0.05. We approximate (41) by:

E‖dk(xj )‖2 + 2
√

Var‖dk(xj )‖2 < δ2, ∀j. (42)

This approximation is justified by the Vysochanskij-Petunin
inequality (Vysochanskij and Petunin 1980). For the expec-
tation and variance the following expressions can be derived
using (39):

E‖dk(xj )‖2 = γ̂ 2σ 2
1 tr

(
J jCJ T

j

)
, (43)



Int J Comput Vis (2009) 81: 227–239 233

Var‖dk(xj )‖2 = 2γ̂ 4σ 4
1 ‖J jCJ T

j ‖2
F , (44)

with ‖·‖F denoting the Frobenius norm. Substitution in (42)
gives:

γ̂ 2 < min
xj ∈�′

F

δ2/σ 2
1

tr(J jCJ T
j ) + 2

√
2‖J jCJ T

j ‖F

. (45)

Setting the right-hand side equal to (2/λ)2 results in the de-
sired estimate of λ. The maximum value of a for a determin-
istic gradient descent method can then be computed using:
γ (0) = a/A = 2/λ. We denote this maximum by aMAX:

aMAX ≡ 2A

λ
(46)

= Aδ

σ1
min

xj ∈�′
F

[
tr

(
J jCJ T

j

)
+ 2

√
2‖J jCJ T

j ‖F

]− 1
2 .

(47)

The second assumption that imposes a constraint on a is
Assumption B3.2. Using γ (0) = a/A, tr(�) = tr(σ 2

3 C) =
E‖εk‖2, and the definition of aMAX in (46), we rewrite (12)
as:

a ≤ 2A

λ

‖g(μ)‖2 − β0

‖g(μ)‖2 + E‖εk‖2

= aMAX

‖g(μ)‖2 − β0

‖g(μ)‖2 + E‖εk‖2
. (48)

When the expected approximation error E‖εk‖2 goes to
zero, and β0 ↓ 0, this condition equals a < aMAX. The con-
dition corresponds to the intuition that a lower gain should
be used when the approximation error increases. Exact ver-
ification of (48) for all ‖μ − μ̂‖ ≥ R, as Assumption B3.2
demands, seems not feasible. We therefore propose to use
the following estimate of a:

a = aMAX

E‖g‖2

E‖g‖2 + E‖εk‖2
≡ aMAXη, (49)

with 0 < η ≤ 1. For E‖g‖2 and E‖εk‖2 their empirical esti-
mates can be used directly, see the left-hand side of (34).

Summarising, we have replaced the original parameter
a by a new user-defined parameter, δ. Unlike a, the new
parameter δ has a unit (mm), and an intuitive meaning. In
Sect. 3, the sensitivity of ASGD to the values of δ and A is
experimentally investigated.

As announced in Sect. 2.3, we also use δ to select the
value of σ4, which occurs in (35). The voxel displacement
caused by the parameter change from μ0 to μn is consid-
ered:

d0,n(xj ) ≡ T (xj ,μn) − T (xj ,μ0). (50)

Following a similar approach as in Sect. 2.3, the distribution
of d0,n(xj ) can be estimated, given the distribution of μn,
which was defined in (35). The result is:

d0,n(xj ) ∼ N
(

0, σ 2
4 J jJ

T
j

)
. (51)

With similar reasoning as earlier in this section, we select σ4

such that:

Pr
(‖d0,n(xj )‖ > δ

)
< ρ, ∀j, (52)

with ρ some small value, say 0.05. This condition is approx-
imated by:

E‖d0,n(xj )‖2 + 2
√

Var‖d0,n(xj )‖2 < δ2, ∀j, (53)

which, using (51), gives the following solution for σ 2
4 :

σ 2
4 = min

xj ∈�′
F

δ2

‖J j‖2
F + 2

√
2‖J jJ

T
j ‖F

. (54)

2.5 Selection of Sigmoid Parameters

The selection of the sigmoid function parameters fMAX and
fMIN is based on the condition for asymptotic normality: As-
sumption B5.2. This assumption constrains the value of E0,
which is directly related to fMAX and fMIN, according to As-
sumption B4.2. The third parameter ω, which defines the
scale of the sigmoid, is chosen as a small fraction of the stan-
dard deviation of εT

k εk−1, such that E0 ≈ 1
2 (fMAX + fMIN).

Assumption B5.2 states that matrix W = 1
2I − a

E0
H (μ̂)

is assumed to have negative eigenvalues only. Let λ∗ > 0
denote the minimum positive eigenvalue of H (μ̂) (Assump-
tion B5.2 can never be satisfied with negative eigenvalues of
H (μ̂)). The condition then becomes:

E0 < 2aλ∗. (55)

Combining (55), (49), and (46) gives:

E0 < 4A
λ∗

λ
η. (56)

So, given fixed A and cost function properties λ and λ∗, the
maximum allowed value of E0 is directly proportional to the
ratio η. Following Assumption B4.2 and assuming that ω is
small, we have E0 ≈ 1

2 (fMAX + fMIN). Substitution in (56)
gives:

fMIN < 8A
λ∗

λ
η − fMAX. (57)

A reasonable choice for the maximum of the sigmoid func-
tion is fMAX = 1. This implies that the forward time step
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Table 1 Overview of data sets
and experiments Anatomy Brain Prostate Right lung

Modality CT and 1.5T MR T1 3T MR SSFP CT

Dimensions CT: 512 × 512 × 50 200 × 200 × 70 120 × 160 × 200

MR: 256 × 256 × 50

Voxel size [mm] CT: 0.45 × 0.45 × 3 0.5 × 0.5 × 1 2 × 2 × 2

MR: 0.85 × 0.85 × 3

Nr. of patients 9 6 (2 scans/person) 5 (2 scans/person)

Registration CT with MR Day 1 with day 2 Day 1 with day 2

Similarity measure MI MI MSD, NC, MI, NMI

Transformation Rigid B-spline Affine, B-spline

Nr. of parameters P 6 2000 12, 4000

B-spline control point

Grid spacing [mm] – 16 × 16 × 16 40 × 40 × 40

Evaluation measure MSE DSC DSC

Section 3.2 3.2 3.3 and 3.4

tk+1 − tk equals at most the time step made by the RM
method. Demanding −fMAX < fMIN < 0, we propose:

fMIN = η − fMAX = η − 1, (58)

where we assumed that A can be chosen such that 8Aλ∗/λ >

1, in order to satisfy (57). If A is chosen too low, the conse-
quence is that asymptotic normality can not be guaranteed
anymore. By choosing A very high this risk is avoided, but
one has to keep in mind that the property of asymptotic nor-
mality is not always relevant in practice. In practical appli-
cations, the number of iterations K , see (5), is finite due
to limited available computation time. Choosing A → ∞
would result in a nearly constant gain sequence γ (tk) for
all iterations 0 ≤ k ≤ K . The adaptive behaviour of ASGD
would, consequently, be eliminated completely. In Sect. 3,
the sensitivity of ASGD to the value of A is experimentally
investigated.

For the selection of fMIN and fMAX we assumed that
E0 ≡ Ef (εT

k εk−1) ≈ 1
2 (fMAX + fMIN). The approximation

only holds if ω is much smaller than |εT
k εk−1|, with high

probability. According to (33), εk and εk−1 are indepen-
dent normally distributed variables with mean 0 and vari-
ance σ 2

3 C. The expected value of the inner product εT
k εk−1

is zero. We propose to choose ω as a small fraction ζ of the
standard deviation of εT

k εk−1:

ω = ζ

√
Var

(
εT

k εk−1
)
, (59)

with ζ ≈ 1
10 for example. For the variance it can be shown

that:

Var
(
εT

k εk−1

)
= σ 4

3 ‖C‖2
F . (60)

An alternative strategy might be to actually set ω ↓ 0 (as
small as machine precision allows), but this would start to
interfere with Assumption B5.3.

2.6 Overview of the Algorithm

The following steps describe the entire algorithm:

1. Compute C using (25).
2. Compute σ4 using (54).
3. Generate N instances of μn according to (35). Compute

for each μn the exact cost function derivative g, the ap-
proximated derivative g̃k , and the approximation error
εk = g − g̃k . Note that, to compute g̃k , a new set of vox-
els Sk must be selected for each μn.

4. Compute σ1 using (34). Compute σ3 similarly.
5. Compute aMAX using (47).
6. Compute η and a using (49).
7. Set fMAX = 1 and compute fMIN using (58).
8. Compute ω using (59) and (60).
9. Start the optimisation defined by (5), (6), (9), and (10).

Convergence is assumed after K iterations: μ̂ = μK .

Steps 1–8 serve to estimate a, fMAX, fMIN, and ω. Note that
this has to be done only once, before starting the actual opti-
misation routine in step 9. The required user settings are t0,
t1, K , δ, A, N , and ζ . The initial conditions t0 and t1 will
probably have a minor influence on the performance as long
as they are chosen much smaller than the number of itera-
tions: t0, t1 � K . The meaning of δ is explained in Sect. 2.4
and the influence of A is discussed in Sect. 2.5. For N , a
value ≈ 10 is suggested in Sect. 2.3. For ζ , a value ≈ 1

10 is
recommended in Sect. 2.5.
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3 Experiments and Results

3.1 Experiment Setup

The ASGD method has been evaluated on three medical im-
age registration problems. Table 1 gives an overview of the
data sets that were used, the type of registration experiments,
and the evaluation measures for quantifying registration ac-
curacy. The bottom row indicates in which subsection the
experiments are described.

The ASGD method was implemented as a part of the
elastix package (elastix.isi.uu.nl). Rigid, affine, and non-
rigid B-spline transformation models were tested. A three-
level multiresolution framework was used in all experi-
ments. The images were smoothed with a Gaussian filter
with a standard deviation of 2, 1, and 0.5 (voxel units),
in each level respectively. For the B-spline transform, the
B-spline control point grid spacing was halved in each res-
olution level, such that in the final resolution the grid spac-
ing reported in Table 1 was reached. Four similarity mea-
sures were used: mean squared intensity difference (MSD),
normalised correlation (NC), mutual information (MI), and
normalised mutual information (NMI). Both MI and NMI
were implemented using cubic B-spline Parzen windows, as
in Thévenaz and Unser (2000), with a 32 × 32 joint his-
togram. For the rigid registrations, the transformation was
parameterised using the translation vector t = (t1, t2, t3)

T

and the Euler angles θ = (θ1, θ2, θ3)
T . Since the Euler an-

gles can have an entirely different range than the transla-
tions, we used the following reparameterisation:

μ =
[
I 0
0 S

][
t

θ

]

, (61)

with S a diagonal scaling matrix, with on the diagonal:

sii =
(∫

�F

∣
∣
∣
∣

∣
∣
∣
∣
∂T

∂θi

(
x,μ0

)
∣
∣
∣
∣

∣
∣
∣
∣

2

dx /
∫

�F

dx

)− 1
2

. (62)

The rotation parameters are thus scaled by the average voxel
displacement caused by a small perturbation of the rota-
tion angle. In case of an affine transformation we used the
same strategy for the matrix elements. In case of a B-spline
transformation the control point coefficients directly formed
the parameters μ. Note that the rigid transformation with
Euler angles does not satisfy Assumption A1. However, it
is included in the experiments in order to demonstrate that
ASGD still works when the rotations are reasonably small.

For the brain images, the ground truth CT-MR registra-
tions were available. The scans were acquired using a stereo-
tactic frame, which was later erased from the images by
post-processing, in the context of the “Retrospective Image
Registration Evaluation” project (West et al. 1997). In our

experiments we quantified the registration accuracy by com-
puting the mean square error of the transformation at the
eight corner points of the image:

MSE ≡ 1

8

8∑

c=1

‖T (xc, μ̂) − T (xc, μ̂
G
)‖, (63)

with μ̂G the ground truth.
For the MR prostate scans, expert manual segmentations

of the prostate were available. The Dice similarity coeffi-
cient (DSC) (Dice 1945) of the segmentation SF of the fixed
image and the segmentation SM of the deformed moving im-
age was used for evaluation:

DSC ≡ 2|SF ∩ SM |
|SF | + |SM | . (64)

The DSC measures overlap of the two segmentations and
thus gives an indication of the registration quality. A value
of 1 means perfect registration. A value of 0 means that the
segmentations have no overlap at all.

For the CT lung images, we used the DSC of the lung air-
ways as an evaluation measure. The lung airways were seg-
mented using an automatic region-growing algorithm, de-
scribed in (Hu et al. 2001; Sluimer et al. 2005).

In all experiments we used the initial conditions t0 =
t1 = 0. As suggested in Sect. 2, we used N = 10 and ζ = 1

10 .
The number of voxels used to compute g̃k , denoted by |Sk|
in (26), was set to 2000, as recommended in Klein et al.
(2007). For the remaining free parameters, δ, A, and K , the
settings are reported in the following subsections. In all ex-
periments, the extra computation time required by ASGD to
perform steps 1–8, see Sect. 2.6, was comparable to the time
spent in step 9.

In Sect. 3.2, the ASGD method is compared with the
standard RM method. The brain and prostate data are used
for this purpose. In Sect. 3.3, the lung images are used to
test ASGD with different similarity metrics. In Sect. 3.4, the
relation between δ and the maximum voxel displacement is
verified.

3.2 Adaptive vs. Non-Adaptive

In this subsection, we test the effect of the step size adap-
tation. The ASGD method is compared to the standard RM
method in a series of experiments on the brain and prostate
data, for a range of values of δ, A, and K .

The RM method, see (2), requires definition of the step
size sequence {γk}. For fair comparison with ASGD, we use
the following function:

γk = a/(E0k + A), (65)

with a, A, and E0 as computed for the ASGD method. With
this choice γ0 equals γ (t0), so RM and ASGD start with the

http://elastix.isi.uu.nl
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Fig. 2 RM vs. ASGD for rigid registration of brain scans. A low MSE
indicates better registration

Fig. 3 RM vs. ASGD for nonrigid registration of prostate scans.
A high DSC indicates better registration

same step size. Also, it can be shown (Cruz 2005a) that γk

and γ (tk) converge to the same value as k → ∞. For this it
is necessary to see that, with ASGD, E0 equals the expected
value of the time increment tk+1 − tk when g(μk) ≈ 0.

The registration experiments were performed for all pos-
sible combinations of δ ∈ {0.03125,0.0625, . . . ,64} (in
mm), A ∈ {1.25,2.5, . . . ,320}, and K ∈ {250,2000}. The
brain data were registered using a rigid transformation
model. For each (δ,A,K) combination the mean MSE over
the 9 CT-MR registrations was calculated. The prostate
scans were registered using a nonrigid B-spline transfor-
mation. After registration, the mean DSC over the 6 image
pairs was computed. The measured computation time per
registration on an AMD Opteron 2600 MHz was approxi-
mately 5 min.

Fig. 4 Example of step size adaptation by ASGD. The solid black line
is for ASGD; the dashed grey line for RM. The upper graph shows the
result for δ = 0.25 mm. The lower graph was created using δ = 2 mm.
Note that the vertical axes have different scales

In Figs. 2 and 3 the results are visualised on a colour
scale. Each pixel represents the mean MSE or DSC for a
combination of δ and A. The adaptive step size mechanism
clearly improved the robustness with respect to the user-
defined parameters A and δ. Increasing the number of it-
erations from K = 250 to K = 2000 improved the robust-
ness of both RM and ASGD. However, Fig. 3 shows that the
ASGD method with K = 250 gave better results still than
RM with K = 2000.

As an illustration of the step size adaptation by ASGD
we plotted the values of γ (tk) during registration of one
of the prostate image pairs. Figure 4 shows the result for
δ = 0.25 mm (upper graph) and δ = 2 mm (lower graph),
both with A = 20 and K = 250. The labels R1–3 repre-
sent the three resolution levels. The solid black line is for
ASGD. The dashed grey line shows the predefined step size
function that was used for RM, as given by (65). The adap-
tive step size mechanism of ASGD is clearly observed in
each resolution: when the algorithm starts with a small step
size (δ = 0.25 mm), the step size decays less fast than with
a large initial step size (δ = 2 mm). For example, in resolu-
tion R2, with δ = 0.25, the ASGD step size remains nearly
constant in the first 50 iterations, whereas with δ = 2.0 the
step size immediately starts decaying at k = 0.

3.3 ASGD with different similarity measures

In this subsection, we investigate the influence of the simi-
larity measure on the choice of δ. Registration experiments
were performed on the CT lung data using different similar-
ity measures, for a range of δ values.
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Fig. 5 ASGD with different similarity measures for registration of CT lung scans. The upper plot shows the results for an affine transformation.
The lower plot shows the results for a B-spline transformation

Four similarity measures were tested: MSD, NC, MI, and
NMI. For δ the range {0.03125,0.0625, . . . ,64} (in mm)
was used. The entire experiment was done using both an
affine and a B-spline transformation. All registrations were
done with A = 20, which gave good performance in the
previous section. A relatively low number of iterations was
used, K = 250, such that the effect of varying δ becomes
more apparent.

The results are summarised in Fig. 5. Each boxplot sum-
marises the distribution of DSC values after registration
of the five image pairs. The upper graph shows the re-
sults using the affine transformation. The lower graph shows
the results obtained with the B-spline transformation. Both
for the affine and the B-spline registrations, the optimal
value of δ was independent of the choice of the similar-
ity measure. For affine registration, the range 0.5 ≤ δ ≤
32 mm gave the best results. With the B-spline transforma-
tion, the range 1 ≤ δ ≤ 16 mm gave the best results. For
δ = 1 mm, the calculated values of a in the finest resolu-

Table 2 Average values of a in the finest resolution level of the lung
image registrations, using δ = 1 mm

MSD NC MI NMI

Affine 0.0017 620 240 780

B-spline 0.73 270000 43000 140000

tion level are reported in Table 2, averaged over the five im-
age pairs. The large differences between the values show
that choosing a manually would not have been a trivial
task.

3.4 Maximum voxel displacement

In Sect. 2.4, δ was introduced as a user setting with an
intuitive meaning, being the maximum voxel displacement
per iteration of the deterministic gradient descent process
μk+1 = μk − γ̂g(μk), with constant step size γ̂ = aMAX/A.
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Table 3 The 95% quantiles of the ratio ‖dk(xj )‖/δ. A value close to 1 is desirable. Each entry in the table is based on 5 image pairs, K = 100
iterations, and all voxels xj ∈ �′

F

Transform Resolution δ [mm]

0.03125 0.0625 0.125 0.25 0.5 1.0 2.0 4.0 8.0 16.0 32.0 64.0

Affine 1 0.8 0.8 0.8 0.7 0.7 0.6 0.6 1.7 1.8 1.4 1.3 1.0

Affine 2 0.7 0.7 0.7 0.6 0.7 0.9 1.0 0.6 0.8 0.9 1.3 1.1

Affine 3 0.7 0.7 0.7 0.7 0.6 1.2 0.4 0.8 0.8 0.8 1.1 1.2

B-spline 1 0.5 0.4 0.4 0.4 0.3 1.8 2.3 1.9 1.6 1.4 1.4 1.2

B-spline 2 0.7 0.6 0.5 0.4 1.7 4.2 2.3 1.6 1.6 1.6 1.4 –

B-spline 3 0.9 0.8 0.6 0.4 4.3 2.6 2.2 1.7 1.6 1.4 1.4 –

The estimate of aMAX relies on some simplifying assump-
tions and approximations, most notably Assumption A2.
The following experiment serves to verify whether the voxel
displacements indeed remain below δ.

The CT lung registrations were repeated with the deter-
ministic gradient descent scheme mentioned above, using
K = 100, and MI as a similarity measure. The voxel dis-
placements ‖dk(xj )‖ were computed for all xj ∈ �′

F , in
each iteration k. Table 3 reports the 95% quantiles of the
ratio ‖dk(xj )‖/δ for each resolution level separately. Each
entry in the table is based on 5 image pairs. Entries with ‘–’
indicate that for at least one of the image pairs the regis-
tration failed completely, i.e. the overlap between the fixed
and moving image became too small to continue registration
(due to very large step sizes). The table shows that with the
affine transformation the ratio was close to 1, meaning that
most voxel displacements indeed remained below δ. With
the B-spline transformation, for δ ≥ 0.5 the actual displace-
ments exceeded δ with a factor 2 on average. For δ < 0.5,
the actual displacements remained below δ.

4 Discussion

The experiments show that ASGD works for a rather broad
range of δ and A. The results in Sect. 3.2 indicate that
A = 20 works well in general, both for rigid and nonrigid
registration. With that setting, for the applications we con-
sidered, the optimum value of δ was approximately equal to
the size of a voxel. Of course, that relation is not always ex-
actly satisfied, since simply upsampling the images will not
lower the optimum value of δ. However, the experiments in
Sects. 3.2 and 3.3 show that the registration results are rela-
tively insensitive to the value of δ, as long as 1

4V ≤ δ ≤ 4V ,
with V the (average) voxel size. For rigid and affine regis-
tration somewhat higher δ values tend to work better than
for nonrigid, which corresponds to intuition.

The results in Sect. 3.4, Table 3, show that the actually
realised voxel displacements were not in all cases lower
than δ. This is due to the simplifying assumptions used
to estimate aMAX given δ. Especially Assumption A2 may
not be satisfied. While the estimate of aMAX still appears
to work quite well in practice, further improvements may
be obtained by improving the estimate of the distribution
of g. In our approach, the estimated distribution of g is for
a large part based on the model for the covariance matrix,
given by (25). This allows us to use a low number N of gra-
dient evaluations, since only one parameter (σ1) has to be
determined, see (31) and below. Another approach would
be to use the common maximum likelihood estimate of the
covariance matrix: C = 1

N

∑
n g(μn)g(μn)

T . However, this
would require a larger N . An interesting technique that com-
bines the two approaches is the shrinkage method described
in Schäfer and Strimmer (2005). In that article, a linear com-
bination of the model based estimate of C and the maximum
likelihood estimate is employed, with the weighting deter-
mined by explicitly minimising the expectation of a squared
error loss function.

In all experiments described in this article, the initial con-
ditions t0 and t1 were simply set to 0. It might be beneficial
to try larger values, such as t0 = t1 = A. In this way, the
method could become more robust to large values of δ.

In our study, we have only considered parametric trans-
formation models. It would be interesting to integrate the
ASGD method also in a nonparametric registration frame-
work (Modersitzki 2004). Note that this would require in-
corporation of a regularisation term in (16).

5 Conclusion

An optimisation method with adaptive step size predic-
tion for image registration has been presented: adaptive
stochastic gradient descent (ASGD). The method is de-
signed to work with stochastic approximations of the cost



Int J Comput Vis (2009) 81: 227–239 239

function derivatives, and, thus, requires little computation
time per iteration. In comparison with a standard Robbins-
Monro (RM) stochastic gradient descent scheme, the ASGD
method is more robust, because of its adaptive step size pre-
diction. The main contribution of this article is the selection
mechanism for the method’s free parameters. The selection
mechanism takes into account the choice of similarity mea-
sure, the transformation model, and the image content, in or-
der to estimate proper values for the most important settings.
The influences of the remaining free parameters δ, A, and K

were experimentally investigated. The experiments showed
that ASGD works for a broad range of δ and A. The opti-
mum value of δ appeared to be unaffected by the choice of
the similarity measure. In general, a reasonable setting is to
use A = 20 and δ equal to the average voxel size of the im-
ages. Increasing the number of iterations from K = 250 to
K = 2000 improved the robustness of both RM and ASGD,
with respect to the choice of δ and A. However, the ASGD
method with K = 250 gave already better results than RM
with K = 2000.

In Klein et al. (2007), it was shown for a number of
medical image registration applications that RM outper-
forms several well-known deterministic optimisation meth-
ods, such as quasi-Newton and nonlinear conjugate gradi-
ent. It was pointed out that the main disadvantage of RM is
the need for a predetermined step size function. The ASGD
method presented in this article provides a solution for that
issue.

Acknowledgements Funding for this research has been provided
by the Netherlands Organisation for Scientific Research (NWO). We
thank the authors of the “Matrix Cookbook” (Petersen and Pedersen
2007), which has been a valuable resource. The work also benefited
from the use of the Insight Segmentation and Registration Toolkit
(ITK), an open source software developed as an initiative of the U.S.
National Library of Medicine and available at www.itk.org.

The brain images and their ground truth transformations origi-
nated from the “Retrospective Image Registration Evaluation” project,
National Institutes of Health, Project Number 8R01EB002124-03,
Principal Investigator, J. Michael Fitzpatrick, Vanderbilt University,
Nashville, TN. The prostate and lung images were acquired at the ra-
diotherapy and radiology departments, respectively, of the University
Medical Center Utrecht, The Netherlands. The authors kindly acknowl-
edge Ellen Kerkhof for providing the manual prostate segmentations.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Collignon, A., Maes, F., Delaere, D., Vandermeulen, D., Suetens, P., &
Marchal, G. (1995). Automated multi-modality image registration
based on information theory. In Bizais, Y., Barillot, C., Di Paola,
R. (Eds.), Information Processing in Medical Imaging (pp. 263–
274). Dordrecht: Kluwer Academic.

Cruz, P. (2005a). Almost sure convergence and asymptotical nor-
mality of a generalization of Kesten’s stochastic approxi-
mation algorithm for multidimensional case (Technical Re-
port). Cadernos de Matemática, Série de Investigação, Collec-
tion of University of Aveiro, Department of Mathematics. http://
193.136.81.248/dspace/handle/2052/74.

Cruz, P. (2005b). Aproximação estocástica com valor do passo adapta-
tivo. PhD thesis, University of Aveiro, Department of Mathemat-
ics. http://193.136.81.248/dspace/handle/2052/103.

Dice, L. R. (1945). Measures of the amount of ecologic association
between species. Ecology, 26(3), 297–302.

Hermosillo, G., Chefd’hotel, C., & Faugeras, O. (2002). Variational
methods for multimodal image matching. International Journal
of Computer Vision, 50(3), 329–343.

Hu, S., Hoffman, E. A., & Reinhardt, J. M. (2001). Automatic lung
segmentation for accurate quantitation of volumetric X-Ray CT
images. IEEE Transactions on Medical Imaging, 20(6), 490–498.

Klein, S., Staring, M., & Pluim, J. P. W. (2007). Evaluation of opti-
mization methods for nonrigid medical image registration using
mutual information and B-splines. IEEE Transactions on Image
Processing, 16(12), 2879–2890.

Kushner, H. J., & Yin, G. G. (2003). Stochastic Approximation and
Recursive Algorithms and Applications (2nd edn.) New York:
Springer.

Maintz, J. B. A., & Viergever, M. A. (1998). A survey of medical image
registration. Medical Image Analysis, 2(1), 1–36.

Modersitzki, J. (2004). Numerical Methods for Image Registration.
London: Oxford University Press.

Petersen, K. B., & Pedersen, M. S. (2007). The Matrix Cookbook.
http://matrixcookbook.com.

Plakhov, A., & Cruz, P. (2004). A stochastic approximation algorithm
with step size adaptation. Journal of Mathematics and Sciences,
120(1), 964–973.

Pluim, J. P. W., Maintz, J. B. A., & Viergever, M. A. (2003). Mutual-
information-based registration of medical images: a survey. IEEE
Transactions on Medical Imaging, 22(8), 986–1004.

Robbins, H., & Monro, S. (1951). A stochastic approximation method.
Annals of Mathematical Statistics, 22(3), 400–407.

Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L. G., Leach, M. O., &
Hawkes, D. J. (1999). Nonrigid registration using free-form de-
formations: Application to breast MR images. IEEE Transactions
on Medical Imaging, 18(8), 712–721.

Schäfer, J., & Strimmer, K. (2005). A shrinkage approach to large-
scale covariance matrix estimation and implications for functional
genomics. Statistical Applications in Genetics and Molecular Bi-
ology, 4(1), article 32.

Shi, Z. J., & Shen, J. (2005). Step-size estimation for unconstrained
optimization methods. Computational & Applied Mathematics,
24(3), 399–416.

Sluimer, I., Prokop, M., & van Ginneken, B. (2005). Toward automated
segmentation of the pathological lung in CT. IEEE Transactions
on Medical Imaging, 24(8), 1025–1038.

Thévenaz, P., & Unser, M. (2000). Optimization of mutual informa-
tion for multiresolution image registration. IEEE Transactions on
Image Processing, 9(12), 2083–2099.

Viola, P., & Wells III, W. M. (1995). Alignment by maximization of
mutual information. In Grimson, E., Shafer, S., Blake, A., & Sugi-
hara, K. (Eds.), International Conference on Computer Vision (pp.
16–23). Los Alamitos: IEEE Computer Society Press.

Vysochanskij, D. F., & Petunin, Y. I. (1980). Justification of the 3σ

rule for unimodal distributions. Theory of Probability and Mathe-
matical Statistics, 21, 25–36.

West, J., et al. (1997). Comparison and evaluation of retrospective in-
termodality brain image registration techniques. Journal of Com-
puter Assisted Tomography, 21(4), 554–566.

Zitová, B., & Flusser, J. (2003). Image registration methods: a survey.
Image and Vision Computing, 21(11), 977–1000.

http://www.itk.org
http://193.136.81.248/dspace/handle/2052/74
http://193.136.81.248/dspace/handle/2052/74
http://193.136.81.248/dspace/handle/2052/103
http://matrixcookbook.com

	Adaptive Stochastic Gradient Descent Optimisation for Image Registration
	Abstract
	Introduction
	Method
	Summary of ASGD
	Application of ASGD
	Distribution Estimates
	Selection of a
	Selection of Sigmoid Parameters
	Overview of the Algorithm

	Experiments and Results
	Experiment Setup
	Adaptive vs. Non-Adaptive
	ASGD with different similarity measures
	Maximum voxel displacement

	Discussion
	Conclusion
	Acknowledgements
	Open Access
	References


