
Adaptive Stream Processing using Dynamic Batch

Sizing

Tathagata Das
Yuan Zhong
Ion Stoica
Scott Shenker

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-133

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-133.html

June 3, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Many thanks to Yuan Zhong, Ion Stoica and Scott Shenker for making this
thesis possible. Also thanks to David Zats, Shivaram Venkataraman, and
Neeraja Yadwadkar for providing feedback on earlier versions of the text.

Finally, a very special thanks to both my advisers, Scott Shenker and Ion
Stoica, for guiding me through my ups and downs in life and putting up with
my idiosyncrasies.

Adaptive Stream Processing using Dynamic Batch Sizing

by

Tathagata Das

tdas@eecs.berkeley.edu

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of

California at Berkeley, in partial satisfaction of the requirements for the degree of Master of

Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Scott Shenker

Research Advisor

(Date)

* * * * * * *

Professor Ion Stoica

Second Reader

(Date)

Acknowledgements

Many thanks to Yuan Zhong, Ion Stoica and Scott Shenker for making this thesis possible. Also

thanks to David Zats, Shivaram Venkataraman, and Neeraja Yadwadkar for providing feedback on

earlier versions of the text.

Finally, a very special thanks to both my advisers, Scott Shenker and Ion Stoica, for guiding

me through my ups and downs in life and putting up with my idiosyncrasies.

2

Abstract

The need for real-time processing of “big data” has led to the development of frameworks for

distributed stream processing in clusters. It is important for such frameworks to be robust against

variable operating conditions such as server failures, changes in data ingestion rates, and workload

characteristics. To provide fault tolerance and efficient stream processing at scale, recent stream

processing frameworks have proposed to treat streaming workloads as a series of batch jobs on

small batches of streaming data. However, the robustness of such frameworks against variable

operating conditions has not been explored.

In this paper, we explore the effect of the size of batches on the performance of streaming

workloads. The throughput and end-to-end latency of the system can have complicated relation-

ships with batch sizes, data ingestion rates, variations in available resources, workload characteris-

tics, etc. We propose a simple yet robust control algorithm that automatically adapts batch sizes as

the situation necessitates. We show through extensive experiments that this algorithm is powerful

enough to ensure system stability and low end-to-end latency for a wide class of workloads, despite

large variations in data rates and operating conditions.

3

1 Introduction

Complex real-time processing of “big data” has become increasingly important. Many systems

need to process large volumes of live data and take actions based on the results as soon as possible.

For example, a social network may wish to quickly find trending conversation topics, and a content

distribution network may wish to monitor its distribution system in real time. Such workloads

require large clusters to process the data as soon as it is received. This has led to the development

of many distributed stream processing frameworks [4, 15, 16, 17, 24].

Besides scalability, fault-tolerance and low latency, another important requirement in dis-

tributed stream processing systems is robustness against variations in streaming workloads. For

example, a social network wishing to find trending conversation topics using a stream processing

system would like the system to be robust to surges in social activity. Similarly, a content distri-

bution network would like its distribution system to adapt quickly to sudden spikes in the content

demands. Furthermore, server faults may suddenly reduce the available processing resources and

a stream processing system should be able to adapt automatically.

Every stream processing system makes architectural choices based on its desired performance,

fault-resilience and consistency properties. Recently proposed frameworks treat streaming pro-

cessing as a continuous series of MapReduce-style batch processing jobs on batches of received

data [13, 24]. This model leverages the fault-tolerance properties of the MapReduce [12] pro-

cessing model to allow faster fault-recovery (parallel recovery in [24]) and straggler mitigation

(speculative execution [12]). This enables efficient stream processing at scale. However, the ro-

bustness of this processing model against changes in data rates and operating conditions has not be

well explored. In this work, we analyze the effect of batch size on processing rates and the ability

of a system to automatically adapt the batch size to such changes.

The size of the batches can have a significant effect on the throughput and the end-to-end

latency of the system. Depending on the nature of the workload, larger batches of data may allow

the system to process data at higher rates. However, larger batch sizes also increase the end-to-

end latency between receiving a data record and getting the results generated from it. Hence, it

is necessary for the system to operate at a batch size that minimizes latency while ensuring that

the data is processed as fast as it is received. Furthermore, this desired batch size varies with

data rates and other operating conditions. Therefore, a statically set batch size may either incur

unnecessarily high latency under low load, or may not be enough to handle surges in data rates,

causing the system to destabilize.

To address these issues, we propose an online adaptive algorithm that allows the system to

automatically adapt the batch size as operating conditions change. Developing such an algorithm

is challenging. The throughput of a streaming workload can behave non-linearly with respect to

the batch size. Despite this, given any workload, the algorithm must be able to quickly adapt to

changes and provide low latency. Furthermore, the algorithm must be robust with respect to noisy

operating conditions that arise from continuous variations in the data rates, available resources,

etc.

To develop this algorithm, we made an intuitive observation that applies to a wide range of

4

workloads – the processing time of a batch increases smoothly and monotonically with the batch

size. This allowed us to design our online adaptive algorithm based on Fixed-Point Iteration [2],

a well-known numerical optimization technique. By using job statistics of prior batches, our al-

gorithm continuously learns and adapts in order to provide low latency while maintaining system

stability.

We demonstrate our algorithm’s efficacy for a wide range of workloads. Our contributions are

as follows.

• With absolutely no prior knowledge of a workload’s characteristics, our algorithm is able

to achieve latency that is comparable to the minimum latency achievable by any statically

configured batch size.

• It is able to quickly adapt the batch size under changes in data rates, workload behavior and

available resources.

• It is simple and requires no workload-specific tuning.

In the rest of the paper, Section 2 discusses the relationship between the batch size and the

performance of a streaming workload, and argues for the necessity of dynamic sizing of batches.

Section 3 first presents some of our initial unsuccessful approaches and then explains in detail our

algorithm based on the fixed-point iteration technique. Section 4 details our implementation of the

algorithm. We evaluate our algorithm in Section 5 and discuss some of the finer details in Section

6. Section 7 discusses related work and Section 8 concludes by summarizing our contributions.

2 The Case for Dynamic Batch Sizing

In this section, we argue for the need to dynamically adapt the batch size of a streaming computa-

tion as operating conditions vary. To this end, we first give a brief description of the simple system

model that we use to characterize batched stream processing systems. Then we discuss the effects

of batch size on the performance of streaming workloads and discuss the drawbacks of a statically

defined batch sizes. Finally, we highlight our goals and the challenges involved in dynamically

adapting the batch size that works across a wide range of workloads.

2.1 System Model

Figure 1 illustrates a simple system model that we use to understand the behavior of a batched

stream processing system. The batching module is responsible for dividing the data streams into

batches containing data received in discrete time intervals. The length of this interval is the batch

size. For example, if the system is configured to process data in 1-second batches, then all the data

received in a 1-second interval will form a new batch of data to be processed. Batches of data from

the batching module is pushed to a batch queue. The processing module dequeues batches from

the queue and processes them one by one.

5

Batching	

Module	

Processing	

Module	
Batch	 Queue	

Streaming	 	
	

Data	

Output	
	

Results	

Figure 1: Model of a batched stream processing system

It is important to note that we choose to define size of batches in terms of time intervals. Batch

size may also be defined in terms of the data size – for example, every 10 MB of received data

becomes a batch. However, this significantly complicates the system model. First, if a stream-

ing workload has multiple data streams with different data rates, then synchronizing the batch

boundaries becomes more complicated as each stream would generate batches at different inter-

vals. Second, we shall see shortly that important performance metrics such as end-to-end latency

and system throughput are naturally characterized in terms of time intervals. We shall henceforth

use the term batch interval instead of batch size to avoid confusion.

2.2 Effect of Batch Interval on Performance

Here we discuss the effect of batch interval on the latency and the throughput of a streaming

workload.

2.2.1 Effect on Latency

We define the end-to-end latency of a streaming workload as the duration between the time when

a data record enters the system and the time when the results corresponding to that record is gener-

ated. Based on the aforementioned system model, this latency can be calculated as the sum of the

following three terms.

• Batching delay: The duration between the time a data record is received by the system and

the time that it is sent to the batch queue – this quantity is upper bounded by the correspond-

ing batch’s interval;

• Queuing delay: The amount of time that the batch spends waiting in the batch queue;

• Processing time: The processing time of the batch. Note that this is also dependent on the

corresponding batch’s interval.

It is clear that the latency directly depends on the batch interval – lower batch interval leads to

lower latency. Hence, it is desirable to keep the batch interval as low as possible. However, it is

also necessary to ensure that the stability of the streaming workload. This is discussed next.

2.2.2 Effect on Throughput

Intuitively, a streaming workload can be stable only if the system can process data as fast as the

data is being receiving. In case of batched stream processing systems, the sufficient condition for

6

0	

1	

2	

3	

4	

0	 1	 2	 3	 4	

B
a
tc
h
	 P
ro
ce
ss
in
g
	 T
im

e
	 (
se
c)
	

Batch	 Interval	 (sec)	

1	 MB/s	 3	 MB/s	

6	 MB/s	

(a) Reduce

0	

1	

2	

3	

4	

0	 1	 2	 3	 4	

B
a
tc
h
	 P
ro
ce
ss
in
g
	 T
im

e
	 (
se
c)
	

Batch	 Interval	 (sec)	

0.8	 MB/s	

1.6	 MB/s	

2.4	 	 MB/s	

(b) Join

Figure 2: Behavior of the processing time of two streaming workloads with respect to

batch interval and data rate.

stability is that the processing time of batches must not exceed the batch interval, so that each batch

is completely processed by the time next batch arrives. Failure to do so leads to building up of the

batch queue.

Typically, the processing time monotonically increases with the batch interval – larger interval

implies more data to process, which leads to a higher processing time. However the exact rela-

tionship between the batch interval and processing time can be non-linear. In fact, this relationship

heavily depends on (i) the characteristics of the processing system, (ii) the available resources for

processing, (iii) the nature of the workload, and (iv) the data ingestion rates. Any variations in

these can change the behavior of processing time with respect to batch interval.

This complex behavior is illustrated in Figure 2. It shows the processing time of two different

streaming workloads against various batch intervals for different data rates. First one, named

Reduce, is based on a streaming aggregation. The second one, named Join, joins two batches of

data received from two separate data streams. The details of these two workloads will be explained

in Section 5.1.

Note the stability condition line (i.e., batch processing time = batch interval) that identifies the

stable operating zone. Any batch interval whose processing time is below this line will be stable

and vice versa. Reduce has a roughly linear behavior with respect to batch interval and higher in-

tervals leads to more stable operation (i.e., below the stability line). Join, however, has a distinctly

superlinear behavior. This is because joining two datasets can potentially generate O(M × N)
records (where N and M are number of records in each dataset), and as the batch interval of both

data streams are varied simultaneously, the resultant number of records and processing time can in-

crease superlinearly. Therefore, batch interval needs to be kept low to achieve stability. This leads

to a completely non-monotonic behavior between the batch interval and the maximum processing

rate that can be sustained, as shown in Figure 3.

7

0	

4	

8	

12	

16	

20	

0	 1	 2	 3	 4	

P
ro
ce
ss
in
g
	 R
a
te
	 (
	 M

B
/s
)	

Batch	 Interval	 (sec)	

(a) Reduce

0	

1	

2	

3	

4	

5	

0	 1	 2	 3	 4	

P
ro
ce
ss
in
g
	 R
a
te
	 (
M
B
/s
)	

Batch	 Interval	 (sec)	

(b) Join

Figure 3: Behavior of the maximum processing rate of two streaming workloads with

respect to batch interval.

2.3 The Cost of a Static Batch Interval

Having understood the effect of the batch interval on performance, it is clear that the batch interval

needs to be carefully chosen to achieve both goals – stability and low latency. A plausible strategy

to determine such a batch interval is to apply offline learning. Given a streaming workload and its

processing resources, a characteristic profile of the workload may be developed that predicts the

batch processing times and end-to-end latencies with respect to different batch intervals and data

ingestion rates. Accordingly, an interval can be chosen that best balances the end-to-end latency

requirements and the maximum ingestion rate that is expected.

However, this method has significant limitations.

• Any profile developed offline would be very specific to the cluster resources (i.e., memory,

CPU, network, etc.) as well as workload characteristics that were used to generate the profile.

Any changes in the cluster resources (e.g., failed nodes, stragglers, new resources, etc.)

or workload characteristics (e.g., changes in the number of aggregation keys, etc.) would

change the actual behavior of the workload thus rendering the profile useless.

• Often it is hard to account for unpredictable changes in data ingestion rates. Even large

services like Twitter experience outages due to sudden surges in tweet rates during various

global events [5]. If such peak loads are accounted in the static batch interval, then this

interval may be very large. Correspondingly, the latency will be needlessly high for normal

conditions defeating the original goal of achieving low latency.

Figure 4 schematically illustrates a single scenario of how the system destabilizes with a stat-

ically set batch interval when the operating conditions change. As the data rate increases (Fig-

ure 4a), the processing time increases as well (dash-dot line in Figure 4b). When it exceeds the

static batch interval, the batches start getting queued, causing the queuing delay (dashed line) and

the end-to-end latency (solid black line) to build up indefinitely. As a result, the system destabi-

8

dynamically
changing data rate

D
a

ta
 r

a
te

(a) Changing data rate

end-to-end latency

queuing delay

processing time

batch interval

L
a

te
n

c
y

static batch interval

Time

system
destabilized

increasing
queuing delay

(b) Instability with static batch interval

Time

L
a

te
n

c
y

dynamic
batch interval

system
stable

no queuing delay

(c) Stability with dynamic batch sizing

Figure 4: Instability of statically defined batch interval vs stability of dynamic batch

sizing when data ingestion rate changes.

lizes.

In summary, a statically defined batch interval may neither minimize the latency in the current

operating conditions, nor ensure system stability when operating conditions change. Thus, it is

important to dynamically adapt the batch interval as the operating conditions demand.

2.4 The Goal of Dynamic Batch Sizing

Figure 4c illustrates our goal. As the data ingestion rate increase, we want to detect the change

and accordingly adjust (in this case, increase) the batch interval such that the stability condition is

maintained. Note that there will be no buildup of queuing delay and the system can remain stable

at the higher data rate, although with a higher latency.

In order to make this dynamic sizing possible, we propose to introduce a control loop between

the processing module and the batching module. The control module, as shown in Figure 5, is

going to receive statistics (e.g., processing time, queuing delay, etc.) of completed jobs from

the processing module, run a control algorithm based on the statistical data to decide the desired

batch interval. After every batch interval is over, the batching module queries the control module

for the next batch interval and creates batches accordingly. The goal of this paper is to design the

control algorithm that allows this feedback loop to appropriately adapt the batch interval. Next we

describe the desirable properties of the algorithm and discuss why it is hard to achieve them.

2.4.1 Desirable Properties of the Control Algorithm

In order to dynamically adapt the batch size of a streaming workload, the control module of the

processing system has to continuously estimate the operating condition and accordingly increase

9

Control	

Module	

Batching	

Module	

Processing	

Module	
Batch	 Queue	

Job	 Stats	 Batch	 Intervals	

Streaming	 	
	

Data	

Output	
	

Results	

Figure 5: Model of our proposed system with a control loop that dynamically adapts

the batch interval based on statistics of completed jobs.

or decrease the batch size. This calls for an online control algorithm. Such an algorithm should

have the following desirable properties.

• Low Latency: The control algorithm should be able to achieve a low batch interval and hence

low end-to-end latency, while ensuring the stability of the system.

• Agility: The control algorithm should be able to quickly detect any changes in operating

conditions, and quickly converge to the desired batch interval.

• Generality: The algorithm should be applicable to any kind of batched stream processing

system, and be able to deal with any workload having any kind of processing time ver-

sus batch interval relationship. This is important because we do not want the developers

implementing their workloads to be concerned about their workloads’ behavior and the ap-

plicability of the control algorithm on their workloads.

• Easy to configure: A control algorithm may have parameters that may need tuning depend-

ing on intended operating conditions (e.g., target cluster utilization, etc.). The number of

parameters should be small and should be easy for a system administrator to configure.

2.4.2 Why is this Hard?

Achieving the properties outlined above is challenging due to the following reasons.

• Nonlinear Behavior of Workloads: As discussed earlier, the relationship between the pro-

cessing rate and the batch interval can be complex and potentially hard to model by a control

algorithm. For example, one can attempt to apply a simple approach that increases the batch

interval as the system starts to fall behind and reduces the batch interval when the more re-

sources are available. While this will work for a linear workload like Reduce, it will fail

to converge for superlinear workloads such as Join since increasing the batch interval can

actually destabilize the system. This is explained in more detail in Section 3.2.

10

Batch Interval

B
a

tc
h

 P
ro

c
e

s
s
in

g
 T

im
e

Stability

Condition Line

Linear Workload

Ideal Batch
Interval

Stable

Zone

Unstable

Zone

(a) Linear workloads

Batch Interval

B
a

tc
h

 P
ro

c
e

s
s
in

g
 T

im
e

Superlinear
Workload

Stability
Condition Line

Stable

Zone

Unstable

Zone

Ideal Batch
Interval

(b) Superlinear workloads

Figure 6: Stability condition and ideal batch duration in two type of workloads.

• Noise: A practical processing system may have noisy behavior due to continuous variations

in data ingestion rates and cluster conditions. This makes it challenging for a control algo-

rithm to converge to a stable batch interval.

• Trade-off between Accuracy and Agility: We are attempting to simultaneously learn the

workload’s behavior and adapt the batch interval based on it. In such online adaptive al-

gorithms, there is a fundamental trade-off between the rate of learning and the accuracy of

the model learned – if it uses more time and data to learn a more accurate system model, it

may provide better results but it may be slower to adapt to changes in the model.

3 Dynamic Batch Sizing

In this section, we first describe in detail our problem formulation. Then we discuss why some

intuitive solutions fail to achieve the desired properties. Finally we present our algorithm based on

the fixed-point iteration technique.

3.1 Problem Formulation

Our goal is to achieve the minimum batch interval that ensures system stability at all times. This

is illustrated in more detail in Figure 6 for two possible workloads 1. Given the current operating

conditions, let us assume that we know the relationship between the processing time and the batch

interval. For the linear workload (Figure 6a), it is evident that the desired minimum batch interval

that ensures stability is at the intersection (marked with a dashed circle). The superlinear workload

(Figure 6b) has two intersections, and the smaller intersection (marked with a dashed circle) is the

desired batch interval. We wish our algorithm to quickly locate the desired batch interval without

prior knowledge of the workload characteristics. Thus, the algorithm needs to gather information

1We restrict ourselves to these two workloads to keep the problem tractable. More details in Section 6.

11

Batch Interval

B
a

tc
h

 P
ro

c
e

s
s
in

g
 T

im
e

Estimated

Gradient

Data of last 2

batch jobs

(a) Gradient estimation

using two points

Data of last K

batch jobs

Batch Interval

B
a

tc
h

 P
ro

c
e

s
s
in

g
 T

im
e

Estimated

Gradient

Outlier

due to noise

(b) Inaccurate gradient estimation

due to noisy statistics

Figure 7: Gradient estimation and its sensitivity to noise.

from past job statistics to learn the characteristics of the workload, and to adapt batch intervals

based on whatever it has learned. Furthermore, the characteristics are continuously changing as

the data ingestion rates and other operating conditions vary over time. The desired algorithm will

continuously adapt to these changes and converge to the right batch interval.

3.2 Why have Some Initial Solutions Failed

Here we discuss some initial approaches toward devising a robust and stable control algorithm with

good performance and why they failed to achieved our desired goals. Note that we do not claim

any impossibility result – it may be possible to get good results using these initial approaches. We

found them to be hard to configure.

3.2.1 Controls Based on Binary Signals

Control algorithms based on binary signals have been used extensively in many different contexts.

The general idea is that the controller uses a one-bit information about the current system state to

update a parameter that controls the system’s performance. The performance must have a mono-

tonic relationship with the parameter. For example, in the context of congestion control in the

Internet [11], the additive increase / multiplicative decrease (AIMD) controller uses a binary signal

of congestion level (such as packets drops) to control the size of the congestion window. Increasing

the window size increases the data throughput of the system (assuming bandwidth is available) and

vice versa.

Our goal is very similar – we wish to adapt the batch interval based on stability of the stream-

ing workload. Hence, at a first glance, one can devise a simple control algorithm that increases

the batch interval if the operating point is in the unstable zone and vice versa. Even though this

approach works for linear workloads, it fails for superlinear workloads, since increasing the batch

interval in superlinear workloads can increase processing times such that we enter the unstable

12

zone and therefore reduce sustainable processing rate (as shown in Figure 3b for the Join work-

load). This non-monotonic behavior in performance makes control systems based on binary signal

unsuitable, as without any more information, it is impossible to know whether to increase or de-

crease the batch interval to achieve the necessary processing rate.

3.2.2 Controls based on Gradient Information

Consider the ideal case in which we know the workload profile completely, and consider the gra-

dient of the processing time with respect to batch interval. If the gradient is high, we are operating

near the Type-II intersection. Thus, a plausible approach to building a dynamic control algorithm

is to use the statistics of complete jobs to estimate the gradient, and increase/decrease the batch

interval accordingly. For example, we can do the following.

• Estimate gradient based on prior batch processing times as shown in Figure 7a.

• If the gradient is large (i.e., very steep), it is likely to be a superlinear workload and near the

higher intersection. So, reduce the batch interval by a configured step size.

• Otherwise, if the gradient is small, increase or decrease the batch interval by the configured

step size, depending on whether the current operating point is in the stable or unstable zone

(similar to the binary control techniques).

Note that this algorithm attempts to identify when the system is operating close to the higher

intersection (Figure 6b) based on the gradient and reduces the batch interval.

The simplest way to estimate the gradient is to calculate the slope based on the batch intervals

and the processing times of the last two completed jobs (as shown in Figure 7a). In a static envi-

ronment and for a smooth workload profile, this could be a sufficiently good estimate. However,

in practice, in the presence of varying data rates and noise in processing times, the error in the

estimate can be large which can make the system apply incorrect changes to the batch interval,

sometimes leading to complete destabilization. The estimates can be improved by applying linear

regression on more than two data points. However, in our extensive experimentation, the system

is still very vulnerable to noise. Figure 7b is an illustration of this vulnerability - one outlier can

drastically change the result of the linear regression.

Another practical challenge was to tune the step size of this control algorithms. Too large step

sizes It is often not clear what step sizes should be used in these algorithms, and good choices

of step sizes depend very much on the specific problem context. If the step sizes are too small,

the system takes a long time to converge. In our case, the system may be unable to keep up with

changes in data ingestion rates. If the step sizes are too large, while it may converge faster, it may

not converge to the desired batch sizes. This issue makes it harder for application developers to

tune the control algorithms for their own applications.

13

Batch Interval

B
a

tc
h

 P
ro

c
e

s
s
in

g
 T

im
e

 Stability Condition

ω(x)

Relaxed Condition:
Proc. Time / Batch Interval = ρ < 1

Type-I
intersection

(a) Linear workloads

Batch Interval

B
a

tc
h

 P
ro

c
e

s
s
in

g
 T

im
e

ω(x)

Relaxed Condition:
Proc. Time / Batch Interval = ρ < 1

Type-I
intersection

Type-II
intersection

(b) Superlinear workloads

Figure 8: Relaxed stability condition and 2 types of intersections.

3.3 Our Solution - Fixed-point Iteration

Here we present the details of our control algorithm based on Fixed Point iteration technique that

can achieve the desired properties.

3.3.1 Relaxing the Requirements to cope with Noise

From our initial attempts, we learned that it is very hard to achieve the optimal batch interval and

keep the system stable in the presence of continuously changing workload function, noise and

other unpredictable variations in operating conditions. At the optimal batch interval (i.e., batch

processing time = batch interval), even with slight increases in the processing times due to any

change in the operating conditions, the queuing delay will start building up immediately before

the controller can adapt, potentially resulting in instability. To hedge against this, we choose

our desired batch interval based on the intersection between the workload function ω(x) and the

condition line batch processing time = ρ × batch size, where ρ < 1 is a pre-configured

parameter. As illustrated in Figure 8, this allows for a certain slack in the system – increases in

processing times will not immediately put the system in the unstable region, thus giving the control

algorithm time to adapt the batch interval. Note that this relaxation increases the batch interval that

the controller will target. We argue that this is an acceptable trade-off for ensuring stability of the

system.

For clarity, we henceforth refer to our desired intersection with the condition line (i.e., our

desired batch interval) as Type-I intersection and the second intersection in the case of superlinear

workloads as Type-II intersection. This is also shown in Figure 8. The goal of our algorithm is

converge to Type-I intersection in both cases.

3.3.2 Fixed-point Iterations for Type-I intersections

The Fixed-point Iteration method [2] is an iterative algorithm to find the solution x∗ of a fixed-point

equation f(x) = x, for a function f . The algorithm is extremely simple and operates as follows.

14

Batch Interval

P
ro

c
.
T

im
e

Proc. Time / Batch Interval = ρ < 1

ω(x)

Type-I

x1

ω(x1)

x2 = ω(x1)/ρ

ω(x2)

(a) Convergence from below

Batch Interval

P
ro

c
e

s
s
in

g
 T

im
e

Proc. Time / Batch Interval = ρ < 1

ω(x)

Type-I

x1

(x1, ω(x1))

x2 = ω(x1)/ρ

(b) Convergence from above

Figure 9: Fixed-point iterations for finding Type-I intersection.

1. Start with an initial guess x1;

2. iterate using xn+1 := f(xn) for n = 1, 2,

This method of finding fixed points is applicable to a class of functions that satisfy conditions

imposed by the Contraction Mapping Theorem [1].

In our system, we wish to find the point x∗ so that ω(x∗) = ρx∗ (x represents the batch interval).

For the purpose of this explanation, let us assume we know the function ω(x). Finding the Type-I

intersection is essentially solving the fixed point of the function f(x) = ω(x)/ρ, so that f(x∗) =
ω(x∗)/ρ = x∗.

We can then iterate as follows:

1. Start with an initial guess x1;

2. iterate using xn+1 := f(xn) = ω(x∗)/ρ for n = 1, 2,

The iterations are illustrated in Figures 9a and 9b. Pictorially, they work as follows. At

any batch interval xn, the next batch interval will be determined by the intersection between

the horizontal line with y-intercept at ω(xn), and the threshold line batch processing time =
ρ × batch interval. As we can see from the figures, the fixed-point iterations converge quite fast

to the desired Type-I intersection.

From the figures, it is also intuitively clear that if we start at a batch interval close to the Type-I

intersection, then the system should converge to this intersection. This observation is in fact very

general, and can be justified as follows. As it is mentioned above, the slope of ω at a Type-I

intersection is less than ρ. This implies that at this intersection, the derivative (i.e., slope) of the

function f , defined by f(x) = ω(x)/ρ, is less than ρ. We can then invoke the Contraction Mapping

Theorem to prove convergence.

Finally, we point out a very attractive property of the fixed-point iterations – no step size con-

figuration is necessary. The algorithm automatically adjusts the step size based on how near or far

it is away from the intersection, resulting in a fast convergence without any tuning. This makes

the algorithm very robust with respect to changing operating conditions (i.e., changing ω(x)) and

is the primary advantage of this solution over our earlier attempts.

15

Batch Interval

B
a

tc
h

 P
ro

c
e

s
s
in

g
 T

im
e

ρ < 1

x1 x2

Type-II

y*

(a) Divergence above the

Type-II intersection

Batch Interval

B
a

tc
h

 P
ro

c
e

s
s
in

g
 T

im
e

ρ < 1

x1 x2

α
β

Type-II

y*

(b) Reducing batch intervals near

Type-II intersections

Figure 10: Handling Type-II intersections.

3.3.3 Handling Type-II Intersections

For linear workloads, Type-II intersections do not exist, hence the fixed-point iteration explained

above will converge to the desired Type-I intersection. However, for a superlinear workload, we

need a mechanism to detect whether the system is near the Type-II intersection. In this region, the

Contraction Mapping Theorem breaks down and the fixed-point iterations will render the system

unstable (see Figure 10a, where the batch intervals diverge to infinity).

Let y∗ be the batch interval corresponding to a Type-II intersection. Notice that at a Type-

II intersection, if our last two batch intervals are x1 and x2 with y < x1 < x2, then since the

workload grows in a superlinear manner, we must have a)
ω(x1)
x1

< ω(x2)
x2

, and b) ω(x1) > ρx1,

and ω(x2) > ρx2. Condition a) is pictorially illustrated in Figure 10b, where for the two angles

α and β, we have tanα = ω(x1)/x1 and tan β = ω(x2)/x2. Since α < β, tanα < tan β and
ω(x1)
x1

< ω(x2)
x2

.

In this case, we want to decrease the batch interval, to move it closer to the Type-I intersection.

More specifically, for a pre-configured parameter r < 1, we set the next batch interval xn+1 :=
(1− r)×min(x1, x2).

3.3.4 Putting it All Together

In both cases above, we had made the assumption that we know ω(x). However, we actually do

not. We only have data points based on the batch intervals and processing times of completed jobs.

We use this data to approximate the underlying function ω(x). Specifically, we use the processing

times of last two jobs to calculate the batch interval of the next batch to be received.

Algorithm 1 presents the function that calculates the next batch interval. This function is called

after every batch has been received and new batch is about to start. Let batch intervals of the last

two completed jobs be blast and b2nd−last. Also, let xsmall = min{xlast, x2nd−last}, and xlarge =
max{xlast, x2nd−last}. Let the corresponding processing times of each batch interval be defined ac-

cordingly, that is, plast for batch xlast, psmall for batch xsmall, etc. The CalculateNextBatchInterval

16

Algorithm 1 Dynamic Batch Sizing Algorithm (Simplified)

Require: xlast, x2nd−last : batch intervals of last 2 batches

Require: plast, p2nd−last : proc. times of last 2 batches

function CALCULATE NEXT BATCH INTERVAL

xsmall ← min(xlast, x2nd−last)
xlarge ← max(xlast, x2nd−last)
psmall ← processing time of batch xsmall

plarge ← processing time of batch xlarge

if
plarge
xlarge

> psmall

xsmall
and plast > ρxlast then

xnext ← (1− r)xsmall

else

xnext ← plast/ρ
end if

return xnext

end function

function essentially tests the two conditions for Type-II intersection, and accordingly reduces the

batch interval by a factor of r or applies the fixed-point iteration.

We omitted two finer details from the above pseudo-code for brevity. They are as follows.

• In practice, a corner case often arises where the batch intervals of the last two completed

jobs were exactly the same 2. Checking for Type-II intersection is inconclusive in this case

(the definition of psmall and plarge is ambiguous) and we simply choose to apply fixed-point

iteration.

• At the start of the streaming computation, until the first job has completed, the algorithm has

absolutely no knowledge of what the ideal batch interval would be. Manual configuration of

the first batch interval is prone to errors – a large gap between this and the ideal batch interval

can significantly delay convergence. We chose to start from a very small batch interval and

exponentially increase it in every subsequent batch until the first job has completed. This is

similar in principle to Slow Start in TCP [21] and ensures fast convergence.

3.4 Parameter Considerations

An advantage of the current control algorithm is that there are only two parameters to set - the

slack factor ρ and the superlinear reduction factor r. The rationale for setting these parameters are

as follows. A smaller value of ρ ensures greater robustness to fluctuating operating conditions at

the cost of higher batch interval and lower throughput of the system (see Section 3.3.1). A larger

r may bring the system closer to Type-I intersection more quickly, but it can also make the system

2This arises frequently in our implementation as all batch intervals are rounded to multiples of 100 ms.

17

Batch	 Generator	

Controller	

Job	 Generator	

Job	 Processor	

100 ms
mini-batches

larger dynamically-
sized batches

jobs for
processing

jobs
statistics

data
streams

output
results

Figure 11: High-level architecture of our system.

vulnerable to the noise in the system (noise can make the algorithm identify the type of intersection

incorrectly.). Through simulation and real workloads we found the values of ρ = 0.7−0.8 and r =
0.25 to provide good performance across many workloads. This is further discussed in Section 5.6.

3.5 Limitations

Till now, we have assumed the presence of the Type-I intersection which ensures existence of a

batch interval at which the stability and low latency can be achieved. However, if for a particular

set of operating conditions, the Type-I intersection does not exist (i.e., the processing rate cannot

match the data rate under any batch interval), then the algorithm will not converge. It will continue

to increase the batch interval in the hope of finding the Type-I intersection. Since we are operating

under zero prior knowledge, identifying such a scenario is non-trivial. For the purpose of this

work, we assume the presence of rate limiters or load shedder [22] that prevent the system from

being overloaded.

4 Implementation

We choose to implement our solution in an existing open-source cluster computing framework

called Spark [3]. While originally a batch processing framework, it also has extensions for batched

stream processing. In this section, we describe the details of the implementation. Figure 11

presents the high-level architecture of the modified Spark system. The main modules of our system

are as follows.

• Batch Generator: This module generates the batches based on a pre-configured batch in-

terval. We kept this unmodified and configured it to generate batches of 100 ms. These

mini-batches are handed off to the Controller.

• Controller: This is the new module we introduced that runs our control algorithm. It uses

job statistics from the Job Processor to calculate the batch intervals in multiples of 100 ms

18

partial aggregates

aggregate over

current window

dynamically-sized

batches over 100 ms

mini-batches

current window

Figure 12: Adaptive window-based aggregation – Mini-batches (circles) are coalesced

into dynamically-sized batches (rectangles). Partial aggregates from the dynamically-

sized batches (filled diamonds) and the mini-batches (empty diamonds) are used to

generate the final aggregate (triangle) over a window (dotted rectangle).

(i.e., the size of mini-batches). Based on that interval, the mini-batches are coalesced into

larger batches and handed off to the Job Generator.

• Job Generator: This module generates the batch jobs on the batches of data it receives.

Further details about the modifications to this module to support window-based operations

are discussed later in this section.

• Job Processor: This unmodified module maintains a queue of jobs and runs them on a cluster

one at a time. The generated job statistics are sent to the Controller.

We chose 100 ms as the mini-batch size as anything lower significantly increased overheads

in the system. Note that we slightly modified the control algorithm to round batch intervals to

multiples of 100 ms.

A particularly challenging aspect of the implementation was supporting Spark Streaming’s

sliding window-based operations such as ”continuously generate the count of records from the last

30 seconds”. In Spark Streaming, the window operation has to be defined by a window length and

a sliding interval, both being multiples of the constant-batch interval. After every sliding interval,

the job for with window operation would be executed. We extend the model by allowing the system

to automatically adapt how frequently window operation will be executed. In fact, for window-

based aggregations, we allow partial aggregations over variable-sized batches to be reused for the

window-based aggregations for greater performance. This is illustrated in Figure 12.

To summarize, our modification have been fairly simple and did not require any changes to

programming interface. Hence, we believe that our dynamic batch sizing technique can be imple-

mented on any batched stream processing system.

5 Evaluation

In this section, we present the results of our evaluation of our algorithm by subjecting it to various

streaming workloads under different combinations of data rates and operating conditions.

19

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0	 0.2	 0.4	 0.6	

B
a
tc
h
	 P
ro
ce
ss
in
g
	 T
im

e
	 (
se
c)
	

Batch	 Interval	 (sec)	

20	 MB/s	 40	 MB/s	

60	 MB/s	

(a) Filter

0	

0.5	

1	

1.5	

2	

2.5	

0	 1	 2	 3	 4	

B
a
tc
h
	 P
ro
ce
ss
in
g
	 T
im

e
	 (
se
c)
	

Batch	 Interval	 (sec)	

1	 MB/s	 2	 MB/s	

6	 	 MB/s	

(b) Reduce

0	

1	

2	

3	

4	

5	

6	

0	 2	 4	 6	 8	

B
a
tc
h
	 P
ro
ce
ss
in
g
	 T
im

e
	 (
se
c)
	

Batch	 Interval	 (sec)	

1	 MB/s	 2	 MB/s	

3	 MB/s	

(c) Join

0	

2	

4	

6	

8	

10	

12	

0	 2	 4	 6	

B
a
tc
h
	 P
ro
ce
ss
in
g
	 T
im

e
	 (
se
c)
	

Batch	 Interval	 (sec)	

0.1	 MB/s	

1	 MB/s	

2	 MB/s	

(d) Window

Figure 13: Relationship of the processing time of the workloads with batch interval.

The dotted line is the stability line.

5.1 Setup and Workloads

For evaluation, we used a cluster of 20 m1.xlarge EC2 instances. We ran four different workloads,

each having unique workload characteristics as shown in Figure 13. Note that they have been

illustrated in the context of the stability threshold (i.e., batch processing time = batch interval).

The detailed descriptions of the workloads are as follows.

• Filter: This is a simple data filtering workload in which streaming text data is split into

words, matched against a list of filters and counted. Compared to other workloads, the

desired batch interval of this workload is small as shown in Figure 13a. This workload

evaluates our algorithm’s ability to converge to the small batch intervals.

• Reduce: This is an aggregation workload in which data is reduced based on a key and the

reduced data is committed to a database. Committing the data for each key takes about

1 ms. This sets the lower bound on the batch processing time of about about 500 ms, as

shown in Figure 13b. Note that this minimum processing time is a function of the number

of unique keys – higher number of unique keys would require higher batch processing time.

Figure 13b shows this relationship for 20000 unique keys. Furthermore, as the data rate

changes, the desired batch interval changes significantly. So this workload evaluates the

20

0	

0.4	

0.8	

1.2	

1.6	

2	

0	 0.2	 0.4	 0.6	

La
te
n
cy
	 (
se
c)
	

Batch	 Interval	 (sec)	

Sta,c	 Dynamic	

(a) Filter with 40 MB/s of data

0	

3	

6	

9	

12	

15	

0	 2	 4	 6	

La
te
n
cy
	 (
se
c)
	

Batch	 Interval	 (sec)	

Sta-c	 Dynamic	

(b) Reduce with 5 MB/s of data

0	

2	

4	

6	

8	

0	 1	 2	 3	 4	 5	

La
te
n
cy
	 (
se
c)
	

Batch	 Interval	 (sec)	

Sta-c	 Dynamic	

(c) Join with 4 MB/s of data

0	

4	

8	

12	

16	

20	

3	 4	 5	 6	 7	

La
te
n
cy
	 (
se
c)
	

Batch	 Interval	 (sec)	

Sta.c	 Dynamic	

(d) Window with 1 MB/s of data

Figure 14: Comparison of the end-to-end latency observed with constant data rates

and static / dynamic batch intervals. Our algorithm is able to ensure latency that is

comparable to the minimum latency achieved with any statically defined batch interval.

control algorithm’s ability to adapt to large variations in the desired batch interval as the data

input rate changes.

• Join: This workload joins batches of data from two different data streams. As it has been

discussed earlier, this workload has superlinear characteristics. Note that as the data rate

increases, the range of batch intervals in the stable zone reduces. Needless to say, this work-

load tests our algorithm’s ability to adapt to superlinear workloads.

• Window: This extends the Reduce workload by applying the reduction over a moving 20

second window. The movement of the window is decided adaptively by our algorithm. As

discussed in Section 4, this is a multi-stage workload where partial reductions over the batch

intervals are re-used to compute reductions over the window. It has a significantly different

behavior from other workloads as shown in Figure 13d – the processing time increases at

low batch intervals. This is because partial reductions over smaller intervals increases the

computational window-based reduce compared to larger intervals 3. This workload tests the

3This is an artifact of underlying system where smaller intervals lead to larger number of tasks needed to compute

the window-based reduce, thus increasing the system overheads.

21

0	

0.4	

0.8	

1.2	

1.6	

2	

0	 0.2	 0.4	 0.6	

La
te
n
cy
	 (
se
c)
	

Batch	 Interval	 (sec)	

Sta,c	 Dynamic	

(a) Filter with sinusoidal rates, cycling ev-

ery minute between 20 and 60 MB/s

0	

3	

6	

9	

12	

15	

0	 2	 4	 6	

La
te
n
cy
	 (
se
c)
	

Batch	 Interval	 (sec)	

Sta-c	 Dynamic	

(b) Reduce with sinusoidal rates, cycling

every minute between 1 & 6 MB/s

0	

2	

4	

6	

8	

0	 1	 2	 3	 4	 5	

La
te
n
cy
	 (
se
c)
	

Batch	 Interval	 (sec)	

Sta-c	 	 Dynamic	

(c) Join with sinusoidal rates, cycling every

minute between 1 and 4 MB/s

3	

6	

9	

12	

15	

3	 4	 5	 6	 7	

La
te
n
cy
	 (
se
c)
	

Batch	 Interval	 (sec)	

Sta-c	 Dynamic	

(d) Window with sinusoidal rates, cycling

every minute between 0.1 and 0.4 MB/s

Figure 15: Comparison of the average end-to-end latency observed with time-varying

data rates and static / dynamic batch intervals. Our algorithm is able to ensure latency

that is comparable to the minimum latency achieved with any statically defined batch

interval.

robustness of our algorithm against more complex workload characteristics that the algo-

rithm was not explicitly designed for.

These characteristics may be specific to the cluster and processing framework used to run these

workloads. It is important to note that we are not evaluating the performance of these workloads

under the framework. Our goal is to evaluate our algorithm’s ability to optimize and adapt under

a wide range of workload characteristics. We simply assume out-of-the-box performance charac-

teristics of these workloads and try to adapt based on them. Hence, absolute performance numbers

are best ignored.

We configured our algorithm to use ρ = 0.7 and r = 0.25 in all cases. Our goal is to minimize

end-to-end latency which is defined as the sum of batch interval, queuing delay and processing

time for each batch.

22

5.2 Comparison with Static Batch Intervals

Recall that a desirable property of the control algorithm is that it should be converge to a low batch

interval that can sustain the data rate as well as provide a low end-to-end latency. To evaluate this,

for each workload, we first measured the minimum latency that can be achieved with statically

defined batch intervals. Then, under the same operating conditions, we measured the latency

achieved by applying our control algorithm and compared it to the minimum. We did this for

constant data rate as well as time-varying data rates. The results are presented next.

5.2.1 Constant Input Data Rate

First, we compare the performance of our algorithm under constant data rate. Figure 14 presents

the average end-to-end latencies observed for each workload with statically defined batch intervals

as well as with dynamically adapted batch intervals. In all cases, the average latency achieved

with our algorithm is comparable to the minimum latency achieved with statically defined batch

intervals. Specifically, it was able to achieve a low batch interval for the Filter workload and it cor-

rectly identified the higher desired batch interval for the Window workload. In case of the Reduce

workload, the difference between the minimum latency and the one achieve by our algorithm is

relatively larger than the other workloads. This is largely due to the approximation introduced by

the slack parameter ρ, as discussed in Section 3.3.1. This approximation was larger in case of the

Reduce workload than the others.

Note that this was achieved without any workload-specific configuration of the control algo-

rithm. This highlights the power of the algorithm – as long as the data rate is sustainable by the

cluster resources, the algorithm can achieve low latency without any prior knowledge about the

workload characteristics.

5.2.2 Time-varying Input Data Rate

We subjected each workload to input data whose rate varies in a sinusoidal fashion with period of

1 minute. As shown in Figure 15, even with time-varying input data rates, our control algorithm

is able to achieve latency comparable to the minimum that can be achieved with any fixed batch

interval. We explored further and analyzed the detailed behavior of processing times and queuing

delays that a workload experiences under static batch intervals. This is illustrated in Figure 16.

This is the time line observed with the Reduce workload under sinusoidal data rates and a static

batch size of 1.3 seconds (chosen to specifically to highlight the phenomenon sketched out in

Figure 4). While the data rate cycles between 1 and 6.4 MB/s, the processing times repeatedly

becomes more than the static batch interval of 1.3 seconds. The queuing delay starts building up

(around 40 seconds mark), thus increasing the end-to-end latency. In contrast, our algorithm reacts

to the increasing processing times and increases the batch interval to keep up, as illustrated in

Figure 17. This lowered the average end-to-end latency in this case from 4.7 seconds (static batch

interval of 1.3 seconds) to 3.9 seconds.

23

0	

2	

4	

6	

8	

20	 40	 60	 80	 100	 120	 140	

D
e
la
y
	 (
se
c)
	

Time	 since	 start	 (sec)	

	 Processing	 Time	 	 Queueing	 Delay	 	 E2E	 Latency	

0	

3.5	

7	

D
a
ta
	 R
a
te
	

(M
B
/s
)	

Figure 16: Timeline of the batch interval and other times for the Reduce workload

with sinusoidal input data rate and static batch interval. The queuing delay builds up

when the processing time exceeds above the batch interval, thus increasing the latency.

0	

2	

4	

6	

8	

20	 40	 60	 80	 100	 120	 140	

D
e
la
y
	 (
se
c)
	

Time	 since	 start	 (sec)	

	 Processing	 Time	 	 Queueing	 Delay	 	 E2E	 Latency	

0	

2	

4	

B
a
tc
h
	 S
iz
e
	

(s
e
c)
	

Figure 17: Timeline of the batch interval and other times for the Reduce workload

with sinusoidal data rate as shown in Figure 16. Unlike static batch intervals, our

algorithm automatically adapts to increasing processing times, thus preventing any

queue buildup and ensuring a lower latency.

5.3 Comparison with Other Techniques

In Section 5.2.2, we had argued that our initial approaches based on gradient information were

insufficient due to errors in the estimation of the gradient. To understand this, we also ran the

algorithm discussed in Section 3.2.2 with the Reduce workload. Figure 18 shows that under a

sinusoidal data rate the system destabilizes very soon. The sudden spike at 45 second mark caused

a large error in the estimated gradient forcing the system to reduce the batch interval to almost

zero. The resulting buildup of queuing delay completely destabilized the system.

5.4 Robustness under Workload Variations

The characteristics of a workload may change even if the data rate stays the same. For example, in

Reduce, the number of keys determine the number of database commits that one has to make while

24

0	

1	

2	

3	

4	

5	

6	

7	

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	

D
e
la
y
	 (
se
c)
	

Time	 since	 start	 (sec)	

	 	 Processing	 Time	

	 	 	 Queueing	 Delay	

	 	 	 E2E	 Latency	

0	

3	

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	
B
a
tc
h
	 S
iz
e
	

(s
e
c)
	

Figure 18: Timeline of batch interval and other times for the Reduce workload with a

gradient based control algorithm. This highlights the vulnerability of this algorithm to

noise.

processing each batch changes. Therefore, any changes in the number of keys significantly affects

the workload characteristics and a control algorithm should be able to adapt to such variations.

To test this, we ran Reduce with constant data rate of 6 MB/s, but the number of keys was

varied between 500 and 40000. Figure 19 illustrates that our algorithm is quickly able to adapt to

such changes. It can provide latencies as low as 600 ms in the presence of 500 keys as well as adapt

to latencies as high as 4.3 seconds when required. Also note that it adapts quite swiftly preventing

the system from significant queue buildup. This further illustrates the power of our algorithm to

adapt to arbitrary changes in workload characteristics (assuming that it is possible for the system

to sustain the load at some batch interval).

5.5 Robustness under Resource Variations

In Section 2.3, we had argued that setting a static batch interval based on offline learning of a

workload’s characteristics is vulnerable to cluster resource changes. To further emphasize this

argument, we illustrate the our algorithm’s ability to adapt to changes in cluster resources4. We

consider a common scenario where multiple processing frameworks are sharing the same cluster

resources. It is possible that other batch jobs submitted to a shared cluster reduce the amount of

resources available for the streaming workload running on the same cluster.

We emulate this scenario by running other Spark batch jobs that consume 25% of the resource

of the same cluster that is running the Reduce workload. Figure 20 illustrates that our control

algorithm is able to automatically adapt the batch interval when the jobs are running, increasing

the latency from 4.1 seconds to 5.1 seconds.

4We assume that enough resources are available for the streaming workload to continue running.

25

0	

2	

4	

6	

0	 50	 100	 150	 200	 250	 300	 350	 400	

D
e
la
y
	 (
se
c)
	

Time	 since	 start	 (sec)	

	 Processing	 Time	 	 Queueing	 Delay	 	 E2E	 Latency	

0	

1.5	

3	
B
a
tc
h
	

In
te
rv
a
l	

(s
e
c)
	

0	

20000	

40000	

#
	 k
e
y
s	
	 	

Figure 19: Timeline of number of keys, batch interval and other times for the Reduce

workload under variations in the number of keys (data rate is constant at 6 MB/s).

5.6 Parameter Study

Finally, we present justification for our choice of values for ρ and r. We ran our algorithm on

Reduce and Join workloads for various combinations of values of the two parameters. Data rate

was constant. Figure 21 illustrates the average latency achieved in each case. ρ > 0.8 tends to

destabilize the system as the slack becomes too low to accommodate the noisy processing times

and ρ < 0.7 tends to increase the approximate in the batch duration (see section Section 3.3.1).

On the other hand, the reduce in batch interval in the superlinear case (Figure 21b) is either too

aggressive or not aggressive enough with r = 0.4 and r = 0.1, respectively. Hence, we chose

ρ = 0.7 and r = 0.25. This seems to work well across the workloads obviating the need for

tuning.

6 Discussion

Workload Semantics: For map-only streaming workloads like Filter, the impact of variable batch

interval on the quality of the result is expected to be minimal. However, for aggregation-based

workloads like Reduce and Join, the quality of the result may depend on the batch interval. For

example, the count of unique keys in 100 ms batches may be different from that in 10 second

batches on the same data stream. Developers must be aware of this aspect. However, it is important

to note that this change in quality is different from lossy techniques like load shedding [8, 22] where

data is dropped to effectively reduce the data rate.

Control Loop Delay: This is the delay between the time when a control decision is taken (e.g.,

batch interval is increased) and the time when the effect of that decision is observed by con-

troller (the job processing the corresponding larger batch completes). Like many other control

systems [20], our algorithm is vulnerable to large control loop delays. Sudden large changes in the

26

0	

3	

6	

9	

0	 50	 100	 150	 200	 250	 300	 350	 400	

D
e
la
y
	 (
se
c)
	

Time	 since	 start	 (sec)	

	 Processing	 Time	 	 Queueing	 Delay	 E2E	 Latency	

0	

2	

4	

0	 50	 100	 150	 200	 250	 300	 350	 400	
B
a
tc
h
	 S
iz
e
	

(s
e
c)
	

Job	 1	 Job	 2	

Figure 20: Timeline of batch interval and other times for the Reduce workload under

variations in the available resources. Our algorithm is able to adaptively increase the

batch interval when external batch jobs 1 and 2 take away 25% of the cluster resource.

0	

2	

4	

6	

8	

10	

0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

La
te
n
cy
	 (
se
c)
	

Threshold	 (ρ)	

r	 =	 0.10	 r	 =	 0.25	

r	 =	 0.40	

(a) Reduce

0	

5	

10	

15	

20	

0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

La
te
n
cy
	 (
se
c)
	

Threshold	 (ρ)	

r	 =	 0.10	 r	 =	 0.25	

r	 =	 0.40	

(b) Join

Figure 21: Average latency under various combinations of values of ρ & r. ρ= 0.7 -

0.8 and r = 0.25 works well for both workloads.

workload characteristics (e.g. 10x increase in processing time between consecutive batches) can

introduce large delays. Dealing with them is non-trivial and is left for future work.

More Complex Workloads: As evidenced by the Window workload (see Section 5.1), there may

be workloads with more complex relationships than the two (i.e., linear and superlinear) we as-

sumed in this work. Things become particularly complex if there are more than two intersection

points. Such cases are non-trivial to solve and is left for future work.

7 Related Work

Stream Processing and Incremental Data Processing Systems: Our proposed algorithm is pri-

marily focused on batched stream processing systems such as Comet [13] and Spark Stream-

ing [24]. They collect received streaming data into batches and periodically process them using

MapReduce-style batch computations. In both systems, the periodicity of the batch computation is

27

left to the developer to figure out, which is non-trivial as discussed in Section 2.3. Our technique

to dynamically adapt the size based on system progress alleviates this issue.

Other stream processing systems such as Borealis [6], TeleGraphCQ [10], TimeStream [17],

Naiad [15], and Storm [4] are based on the continuous operator model. In this model, the streaming

computation is expressed as a graph of long-lived operators that exchange messages with each other

to process the streaming data. For efficiency, many of these systems employ batching of messages

between pairs of operators. While such systems are not the direct focus of this paper, our adaptation

technique may be applicable to message streams within each pair of operators. Incremental bulk

data processing systems such as CBP [14], Percolator [16] and Incoop [9] allows updated view of

processed data set to be maintained by incrementally and efficiently recomputing the updates to

the input data. In such systems, the recomputation is triggered whenever an update to the input

dataset is detected. Percolator briefly discusses the adjustment of batch size of data updates based

on server load. In general, this has not been well-explored in such systems, and our algorithm may

be prove useful in them.

Adaptive Stream Processing Systems: There has been much work in area of load-based adapta-

tion in stream processing systems based on the continuous operator model. Load shedding tech-

niques adaptively discards a fraction of the received data when the processing load exceeds the

capacity of the system [8, 22]. This is of course a lossy technique, which introduces errors in the

result. By comparison, our dynamic batch sizing is a lossless technique because as long as there is

a batch interval at which the system can be stable, no load will be shed. However, we do assume

the presence of load shedder when the data rate too high for the system to handle at any batch

interval. Some have proposed elastic adjustment of available resources based on the progress of

operators [7, 18, 23]. Others have proposed dynamic reconfiguration of the operator graph [17, 19].

Since these techniques have the designed with continuous operator model, it remains to be seen

whether they are directly applicable to the batched streaming model. However, they are orthogonal

to our technique, and can be used in conjunction.

Control and Queueing Theory The dynamic batch sizing problem falls under the broad category

of feedback control [20], since our batching decisions are only based on the feedback and statistics

that we receive from earlier batching decisions. We can also view the problem as a queueing theory

problem, where customer inter-arrival times correspond to batch intervals, and customer service

requirements correspond to processing times of the batches. However, our problem is distinct

from traditional queuing problems in that the batch intervals (or inter-arrival times) are control

decisions, and processing times depend on batch intervals in a complicated manner. To the best of

our knowledge, our problem formulation is new, hence it is difficult to compare the performance

of our algorithm with those in other contexts.

8 Conclusion

In this paper, we have present a novel control algorithm for dynamically adapting the batch size

in batched stream processing systems. We have shown that, without any workload-specific con-

figuration, it is able to adapt to changing data rates and cluster resources and also provide a low

28

end-to-end latency.

References

[1] Banach fixed-point theorem. http://en.wikipedia.org/wiki/Banach_fixed_

point_theorem.

[2] Fixed-point iteration. http://en.wikipedia.org/wiki/Fixed-point_

iteration.

[3] Spark. http://spark-project.org.

[4] Storm. https://github.com/nathanmarz/storm/wiki.

[5] Spotty twitter service. http://goo.gl/XUBqd9.

[6] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H. Hwang, W. Lind-

ner, A. Maskey, A. Rasin, E. Ryvkina, et al. The design of the borealis stream processing

engine. In CIDR, volume 5, pages 277–289, 2005.

[7] L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheure. Adaptive control of extreme-scale

stream processing systems. In Distributed Computing Systems, 2006. ICDCS 2006. 26th

IEEE International Conference on, pages 71–71. IEEE, 2006.

[8] B. Babcock, M. Datar, and R. Motwani. Load shedding for aggregation queries over data

streams. In Data Engineering, 2004. Proceedings. 20th International Conference on, pages

350–361. IEEE, 2004.

[9] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquin. Incoop: Mapreduce for

incremental computations. In Proceedings of the 2nd ACM Symposium on Cloud Computing,

page 7. ACM, 2011.

[10] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong,

S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. Shah. TelegraphCQ: Continuous

dataflow processing for an uncertain world. In CIDR, 2003.

[11] D.-M. Chiu and R. Jain. Analysis of the increase and decrease algorithms for congestion

avoidance in computer networks. Computer Networks and ISDN systems, 17(1):1–14, 1989.

[12] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Commu-

nications of the ACM, 51(1):107–113, 2008.

[13] B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin, and L. Zhou. Comet: batched stream pro-

cessing for data intensive distributed computing. In Proceedings of the 1st ACM symposium

on Cloud computing, pages 63–74. ACM, 2010.

29

[14] D. Logothetis, C. Olston, B. Reed, K. C. Webb, and K. Yocum. Stateful bulk processing

for incremental analytics. SoCC, 2010. ISBN 978-1-4503-0036-0. doi: http://doi.acm.

org/10.1145/1807128.1807138. URL http://doi.acm.org/10.1145/1807128.

1807138.

[15] D. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad: A timely

dataflow system. In SOSP ’13, 2013.

[16] D. Peng and F. Dabek. Large-scale incremental processing using distributed transactions and

notifications. In OSDI 2010.

[17] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu, and Z. Zhang. Timestream:

Reliable stream computation in the cloud. In EuroSys ’13, 2013.

[18] S. Schneider, H. Andrade, B. Gedik, A. Biem, and K.-L. Wu. Elastic scaling of data parallel

operators in stream processing. In Parallel & Distributed Processing, 2009. IPDPS 2009.

IEEE International Symposium on, pages 1–12. IEEE, 2009.

[19] M. Shah, J. Hellerstein, and E. Brewer. Highly available, fault-tolerant, parallel dataflows.

SIGMOD, 2004.

[20] E. D. Sontag. Mathematical control theory: deterministic finite dimensional systems, vol-

ume 6. Springer, 1998.

[21] W. R. Stevens. Tcp slow start, congestion avoidance, fast retransmit, and fast recovery algo-

rithms. 1997.

[22] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker. Load shedding in a

data stream manager. In Proceedings of the 29th international conference on Very large data

bases-Volume 29, pages 309–320. VLDB Endowment, 2003.

[23] Y. Xing, S. Zdonik, and J.-H. Hwang. Dynamic load distribution in the borealis stream pro-

cessor. In Data Engineering, 2005. ICDE 2005. Proceedings. 21st International Conference

on, pages 791–802. IEEE, 2005.

[24] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica. Discretized streams: Fault-tolerant

streaming computation at scale. In Proceedings of the 24th ACM Symposium on Operating

Systems Principles. ACM, 2013.

30

