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ADAPTIVE STREAMLINE DIFFUSION FINITE ELEMENT METHODS
FOR STATIONARY CONVECTION-DIFFUSION PROBLEMS

KENNETH ERIKSSON AND CLAES JOHNSON

Abstract. Adaptive finite element methods for stationary convection- diffusion
problems are designed and analyzed. The underlying discretization scheme is
the Shock-capturing Streamline Diffusion method. The adaptive algorithms
proposed are based on a posteriori error estimates for this method leading to
reliable methods in the sense that the desired error control is guaranteed. A
priori error estimates are used to show that the algorithms are efficient in a
certain sense.

0. Introduction

The Streamline Diffusion method (SD-method for short) is a general finite
element method for hyperbolic problems developed during the 1980s with appli-
cations in particular to convection-diffusion and compressible and incompress-
ible flow problems (see [5-14, 18-19]). The SD-method is a generalization of
the Standard Galerkin method obtained by two modifications. First, the test
functions are modified by adding a multiple of a linearized form of the hy-
perbolic operator involved, which gives a weighted least squares control of the
residual of the finite element solution (where the residual, roughly speaking, is
the deviation from equality when the computed finite element solution is in-
serted into the given differential equation), and secondly, artificial viscosity of
a particular form is added with the viscosity coefficient depending on the local
mesh size and the absolute value of the local residual of the finite element solu-
tion. We refer to the first and second modification as streamline diffusion and
shock-capturing artificial viscosity, respectively. The SD-method combines good
stability with high accuracy, so that, e.g., shocks are resolved within few mesh
points without under- or overshoots, and the precision in regions of smoothness
of the exact solution is high. Extensive theoretical results are available, rang-
ing from local error estimates for scalar linear convection problems to global
error estimates for the incompressible Euler or Navier-Stokes equations with
no lower bound on the viscosity. Further, convergence results for scalar con-
servation laws in several space dimensions and entropy consistency results for
systems of conservation laws like the compressible Euler equations have been
derived. Numerical results for a wide range of problems, including compressible
and incompressible flow, are also available.
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168 KENNETH ERIKSSON AND CLAES JOHNSON

In recent years we have developed adaptive finite element methods for elliptic
and parabolic problems based on a posteriori error estimates (see [1-3]). In
each of these cases we consider the following problem (P): Given a problem
with exact solution u and a norm || • ||, design an efficient adaptive algorithm
(A) for constructing a finite element mesh T such that

(0.1) ||m-C/|| <TOL,
where U is the finite element solution on the mesh T and TOL > 0 is the
error tolerance. Clearly, our problem (P) has two ingredients: First, we want the
adaptive algorithm (A) to be reliable in the sense that the error control (0.1 ) is
guaranteed by the construction. Secondly, we want (A) to be efficient in the sense
that, ideally, the constructed mesh T is nowhere overly refined, as compared to
an optimal mesh T which is a mesh with minimal degrees of freedom such that
||m - m|| < TOL, where ü is a standard nodal interpolant on T of u. In [1-3]
we have demonstrated theoretically and in numerical experiments that problem
(P) may be solved (with varying degree of precision concerning the efficiency)
in the case of linear model problems of elliptic and parabolic type. For such
problems the adaptive algorithms are based on a posteriori error estimates of
the form

(0.2) \\u-U\\ <£(U,h, data),
where the error bound I? depends on the computed solution U, the mesh size
parameter h (which is here a function of space (and time)) and the data of the
problem. The typical form of the a posteriori error bound (0.2) is as follows
for an elliptic problem with piecewise linear basis functions and with || • ||, e.g.,
the L2-norm:

(0.3) ||M-i/||<C||Ä27?(C/)||,
where R(U) is the residual of U properly evaluated. The adaptive algorithm
based on (0.2) seeks to construct a mesh T with mesh size h and corresponding
discrete solution U such that f(i/, h, data) < TOL, usually by constructing a
sequence of meshes 7} of mesh size hj with corresponding solutions Uj, where
Tj+x is constructed from Uj by equidistribution of the element contributions to
%iUj, hj+l, data) such that !?([//, hj+x, data) £ TOL. Clearly, an adaptive
algorithm based on an a posteriori error estimate of the form (0.2) will be reli-
able in the sense that if l?( U, h, data) < TOL, then (0.1 ) will be satisfied. To
prove efficiency we have used a priori error estimates to bound f(C/, A , data)
by quantities measuring relevant interpolation errors. Note that in order to
demonstrate the efficiency of the adaptive algorithm, both the a posteriori error
estimate (0.2) and the a priori error estimates used to bound %>{U, h, data)
need to be (reasonably) sharp.

The main purpose of the present work is to extend our results on adaptive
finite element methods for linear elliptic and parabolic problems to the SD-
method for linear convection-diffusion problems in model form. In this case
our adaptive algorithms will not be fully efficient in the above sense, compared
to interpolation, but may be viewed as being reasonably efficient in the sense that
in typical cases the meshes generated by the algorithms may be only mildly over-
refined. As far as we know, the present work is the first to show that reliable and
reasonably efficient adaptive error control based on a posteriori error estimates
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is indeed possible also for hyperbolic problems. Previous adaptive techniques
(see, e.g., [16, 17]) for hyperbolic problems such as convection-diffusion prob-
lems have been based either on ad hoc criteria suggested by interpolation error
estimates, refining the mesh locally according to the size of the gradient or a
difference quotient of the computed solution, or on simple a posteriori error
estimates of the form

(0.4) ||M-L/||<C||7?(t/)||,

where || • || is the L2-norm and 7?(t/), again, the residual of the finite element
solution U. In the first case the reliability, in particular, can be questioned since
the relation between the mesh refinement criteria and the actual error is unclear,
and in the second case the efficiency may be very low since in the interesting
cases of a nonsmooth exact solution, ||/?(Í7)|| may tend to infinity as h tends
to zero because 7?(£7) may be large (typically of order 0(/z~1/2) or 0(/j-1)) in
regions of nonsmoothness. Comparing (0.4) and (0.3), one notes the presence
of the factor A2 in (0.3), which reflects the ellipticity of the underlying problem
in that case.

The a posteriori error estimate for the SD-method to be presented in this
paper may be formulated roughly as follows:

(0.5) ||M-c/||<C||min(l,7?(i/))||,

where now the right-hand side may tend to zero (at close to optimal rate) as h
tends to zero, leading to reliable and efficient adaptive methods. In the proofs
of the a posteriori error estimates for the SD-method and the reliability and
efficiency of the associated adaptive methods, we use in an essential way the
special features of the SD-method, both the streamline diffusion modification
and the shock-capturing modification. Both modifications were originally de-
signed from stability and accuracy considerations without having adaptivity in
mind, but this paper shows that the SD-method in fact has the basic features
required to make reliable and efficient adaptive error control possible (which is
not the case, e.g., for the Standard Galerkin method for convection-diffusion
problems). In particular, we note that the residual plays a fundamental role in
both the design of the SD-method and in the a posteriori error estimates.

The proofs of the a posteriori error estimates follow the same general pattern
in both the elliptic and parabolic cases, and also in the present hyperbolic case:
An error representation formula involving the computed discrete solution and
the exact solution of an associated dual problem is established, and the error
is estimated in terms of the residual of the finite element solution and the lo-
cal discretization parameter h, using the orthogonality present in the discrete
equations and elliptic regularity of the dual problem. Note that the improved
estimate (0.5), as compared to the standard estimate (0.4), results from using
the elliptic regularization built into the SD-method through the shock-capturing
artificial viscosity (and not simply by cutoff and localization, cf. below), which
gives a new way of viewing the advantages (and necessity) of elliptic regulariza-
tion through artificial viscosity in hyperbolic problems.

Our long-term goal is to design adaptive algorithms with some degree of
reliability and efficiency for complex hyperbolic problems such as the Navier-
Stokes equations for compressible or incompressible flow. Formally, we may
extend our techniques for proving a posteriori error estimates also to these
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complex problems, by linearization and introducing again a certain continuous
dual problem. The main technical problem is now to quantitatively estimate
the stability of the dual solution, which in a certain sense reflects the stability
of a linearized version of the given equations. In general (e.g., for systems
in several dimensions), it seems impossible to establish the required stability
estimates including certain solution-dependent constants by theoretical analysis,
but it may still be possible to obtain the desired estimates by solving the dual
problem numerically. Extensions of the results of this note to time-dependent
linear convection-diffusion problems are given in [4]. Further extensions to
adaptivity, including mesh orientation and stretching, will be presented in future
work.

For numerical experiments based on the adaptive methods presented in this
note we refer to [13].

The remaining part of this paper is organized as follows: In § 1 we introduce
the two stationary convection-diffusion type model problems to be considered
and derive stability estimates for their solutions in terms of data. In §§2 and
3 we introduce the SD-method for the approximate solution of these problems
and derive the a posteriori error estimates to be used in the final §4, where we
formulate corresponding adaptive algorithms and discuss their reliability and
efficiency.

1. TWO MODEL PROBLEMS

We shall consider, in parallel, the two model problems

(1.1a) ux - div(eVM) = /   inf2,
(1.1b) m = 0    onr.uTo,

(1.1c) |^ = 0    onr+,

and

(1.2a) ux - div(eVM) = f   in Si,
(1.2b) m = 0    onT,
where Si is a bounded, convex polygonal domain in 7?2 with boundary T =
T_ U r0 U r+ , ux = du/dx , du/dn = Vm • n , n = (nx, n2) is the exterior unit
normal to T, and / and e > 0 are given data. The pieces T_ , To and T+
denote the parts of T where the x-component nx of n is negative, zero, and
positive, respectively.

We shall mainly be concerned with the case when e is small, in which
case (1.1a) and (1.2a) models a stationary, convection-dominated, convection-
diffusion type process with flow velocity (1, 0). Note that we are seeking es-
timates valid for arbitrary e > 0 with, in particular, all constants appearing
being independent of e. For convenience, we shall assume that e < \ in
Si, which, if not already satisfied, can be achieved by the change of variables
x' = sx, y' = sy with s = l/(2e) and ë = rnax^e .

It is well known that the solutions of problems (1.1) and (1.2) may have
singular layers of width 0(sfï) along characteristics {(x, y) : y = y0} of the
corresponding reduced equation with e = 0. This will be the case, e.g., if /
has a jump discontinuity along such a characteristic or, in a more general class
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of problems, if there is a jump discontinuity in the boundary data along the
'inflow' part T_ of F. Moreover, the solution of problem (1.2), with Dirichlet
boundary conditions all around the domain, will in general also have an 'outflow'
singular layer of width 0(e) along T+ .

Stability estimates. Below we shall use the following basic stability estimate for
the problem (1.1), where the control of ux and sD2u is of particular interest:

Lemma 1.1. Assume there is a constant c such that

(1.3a) -c < ex < cmin(l, e)       in Si,
(1.3b) |ey| <cmin(l,e1/2)   in Si,

and let u be the solution of (1.1). Then there is a constant C = C(c, Si) such
that

e1/2VM|| + ||m|| + \\ux\\ + \\eD2u\\ + ( Í u2nxdY

+ (J e\Vu\2\nx\dr^j     <C\\f\\,
(1.4)

1/2

where \\v\\ = ijav2dSi)xl2 and D2u = (u2xx + 2u2xy + u2yy)xl2.
Proof. We first multiply (1.1a) by u and integrate over Si to obtain, after
integration by parts using (1.1b, c),

(1.5) l-J  u2nxdT+\\ex'2Vu\\2 = (f,u)< \\f\\ \\u\\,

where (•, •) denotes the L2(Si) inner product.
We then multiply (1.1a) by ux and integrate to obtain

\\ux\\2 + (cVm , Vux) - J   £-^uxdT = (f, ux).

On T_ , where u is constant ( = 0), we have that uxn2 = uynx  and, conse-
quently,

— ux = (uxnx + uyn2)ux = |Vw|2«i.

After integration by parts in the term (eVu, Vux) = \ Jnej^\Vu\2dSi we thus
have

1   Í 1
||«xl|2+2 / e|VM|2|«j|i/r=(/,Mx) + -(exVM, Vm).

We now use our assumption (1.3a) together with (1.5) and the fact that ||m|| <
C||mx|| (since u = 0 on part of the boundary) to conclude that

(1.6) ||M,||2 + \ £\Vu\2\nx\dT < \\f\\(\\ux\\ + C\\u\\) < C\\f\\ \\ux\\.

The desired estimate for ||e1/2Vw||, ||m|| , ||mx|| , and the boundary integrals in
(1.4) now follows at once.
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172 KENNETH ERIKSSON AND CLAES JOHNSON

In order to estimate the term ||eD2M|| in (1.4) we first note that after inte-
gration by parts twice we have

/ e2uXyUxydSi =  / e2(uxyn2-uyynx)uxdT+ 2 / e(exuyy - eyuxy)uxdSi
Ja Jt Jn

+ / s2uyyuxxdSi = I + II + III.
Jn

Here, by our assumptions (1.3ab), |II| < C||e7J>2M|| ||mx||. We shall now estimate
the boundary integral I. On To, the integral vanishes, since ux = 0. On T+ ,
we have that ux = -uyn2/nx and consequently (uxyn2 - uyynx)ux = \^ j^u2,
where §¿ = -n2¿^ + "i tJj denotes the tangential derivative along T. For each
(straight) line segment 1+   of T+ , we thus get

/   e2(uxyn2-uyynx)uxdT = -—       e2—u2dY=-—       e—uldT.Jy<¡) y " 2nxJTw    dx y nx Jx<i)   dx y

Here we have used the fact that Vm vanishes at the endpoints of T+' , or n2 = 0
on T+'. Similarly, on T_ we have ux = uynx/n2 and, consequently, for each
line segment Fi' of T_ ,

/   e2(uxyn2-uyynx)uxdY=--—       e2 — uldT=—       e^-u2dT.Jjii} r 2n2 Jx<i]    dx y n2 JyO)   dx y

In the special case «2 = 0 the integrand vanishes. Using our assumption
(1.3ab), we now conclude that |I| < C/re|VM|2|«i|i/r. Putting things together,
we find that

||e7J>2M||2 = / e2(u2xx + 2u2xy + u2yy)dxdy
Jn

= i e2(u2xx + 2uxxuyy + u2 )dxdy + 21 + 211
Jn

< ||eAM||2 + C [ e\Vu\2nxdT+ U\eD2u\\2 + C\\ux\\2.
Jr+ 2

Now using the differential equation (1.1a) and the assumptions ( 1.3a, b) together
with our previous estimates (1.5) and (1.6), we conclude that

\\eD2u\\ < C ( 11/11 + \\ux\\ + ||Ve • Vm|| + Qf e\Vu\2nxdT^j     j < C||/||.

This completes the proof of Lemma 1.1.    D

For problem (1.2) with Dirichlet data also along T+ , we have the following
counterpart of Lemma 1.1:

Lemma 1.2. Assume (1.3), let u be the solution of (1.2), and let <p be a 'cutoff'
function such that 0 < tp < 1 in Si, tp = 0 onT+ and

(1.7a) 0 < -q>x < max(l, tp/e)      in Si,
(1.7b) \tpy\ < max(l, (p/s/e)   in Si,
(1.7c) tpex < ce in Si.
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Then there is a constant C depending only on Si and c such that

(1.8) llMll + IIVMll. + llM^II^+^e^lVMl2!«,!^     <C||/||,

where \\v\\9 = (ja<pv2dSi)xi2.

Proof. Multiplication of (1.2) by u now gives ||Vm||2 = (/, u) < \\f\\ \\u\\.
Given a positive lower bound c for e , we would have ||m|| < C||Vm||£ , and

it would follow that

(1-9) IMI + ||Vm||£<C||/||,
with C = C(c). By considering the corresponding equation for the transformed
dependent variable v = e~xu (with 0 < e < ¿ as above) it is easy to see that,
in fact, (1.9) holds with C independent of e.

We now multiply (1.2a) by tpux and integrate to obtain

\\ux\\l + (£Vm , tpVux) + (eVM, V<pux) - I   £<P^-ux dT
JV-       v"

= (/,^)<C||/||2 + i||M,||2.

Here,
III IV

1   Í
(eVM, <pVux) = -I   <pe\Vu\2nxdT + ^\\s7u\\l(_Vx) -~iex<pVu, Vu) .

Consequently, using (1.7a,b), we obtain

I + IV = --Ija^jj^j + (eM},, <pyux) + ¿IKlß-^) > -g WuxWl - C||Vm||2.
Finally, as in the proof of Lemma 1.1 we deduce that

11 + 111 = 1   e? Q|Vm|2«, - !£mx) dV=^j   e<p\Vu\2\nx\dr>0.

Together, our estimates now show that

(1.10) ||mx||, + (£<p\Vu\2\nx\dr)     < CiWfW + ||Vm||£)

if we also take into account the boundary condition on <p . The desired estimate
(1.8) now follows from (1.9) and (1.10).    D

2. The streamline diffusion method
We now formulate the SD-method for the discretization of (1.1) and (1.2).

Let T = {K} be a partition of Si into 'edge-to-edge' triangular elements K
such that

(2.1) ch\< [ dSi,    Vü: er,
Jk
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where hx is the diameter of K and c is a positive constant. Depending on
the problem under consideration, (1.1) or (1.2), we define V by

(2.2a) V = {v £ C(Si) : v\K is linear in (x, y), VK £ T, v|r_ur0 = 0},

or

(2.2b) V = {v £ CiSi) : v\K is linear in (x, y), \/K £ T, v\r = 0},

and seek U £ V such that

(2.3) B(U,v) = L(v),    \/v£V,

where

B(w, v) = (wx , v + ôvx) + (êVw , Vv) - (div(êVw), ôvx)t ,

L(v) = (f, v + ôvx),    (w,v)T= Y / wvdSi,
K£TJK

(2.4) ô = cx max(0, h - è),
(2.5) e(t/, A) = max(e,C2/í2|/-£/*!),

h being the mesh function defined by h\K = h¡c, and cx and c2 positive
constants. (Concerning the definition of ê, cf. Remark 1.2 below.)

Note that in general, since ê depends on U (unless ê = e ), the discrete
problem (2.3) is nonlinear, even though the continuous problems (1.1) and (1.2)
are linear. In practice, when iterative methods are used to solve the discrete
equations, the additional complication due to the nonlinearity introduced by ê
is small (cf. below).

For technical reasons we shall assume that the modified diffusion coefficient
ê does not vary too abruptly from one element to another. In particular, we
shall assume that for some constant C independent of K ,

(2.6) maxê<Cminê,
K N(K)

where N(K) denotes the neighborhood of K consisting of the elements K'
sharing at least one node with K. Note that by smoothing of ê by local aver-
aging we may guarantee that (2.6) holds. Below we shall make further regular-
ity assumptions on ê, which may require additional smoothing. For simplicity
we shall assume that ê already as defined by (2.5) has the desired regularity
properties and leave the analysis of the general case to future work. Note that
smoothing of ê also improves the convergence properties of iterative methods
when solving the nonlinear discrete problem (2.3).

3. A posteriori error estimates
In this section we shall derive a posteriori error estimates for the discretiza-

tion method (2.3) for the problems (1.1) and (1.2). It is then natural to split the
error u—U into two parts, p = u-ii and 8 = u-U , where m is the solution
of the problem obtained by replacing e by ê in (1.1) and (1.2), respectively,
so that m satisfies

(3.1)        Mx-div(e"VM) = /inn,     M = 0onr_ur0,     |^ = 0 on T+,
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or

(3.2) ux - div(êVM) = f in Si,    û = 0 on T.

Note that p = u-u is the difference between the solutions of two continuous
problems with different diffusion coefficients, and that 8 = û - U is the error
in an SD-approximation of (3.1) or (3.2) in a case when the shock-capturing
viscosity is equal to the given viscosity, and thus the discrete problem may be
viewed as being linear. We remark that we may view m as a regularizaron of
the exact solution u such that the current mesh is sufficiently fine to resolve all
details of it, whereas if m ̂  u (i.e., if ê > e ), then some details of u may be
left unresolved. Since the mesh fits with the regularity of m we can prove almost
optimal a posteriori estimates for 8 = it - U, using the elliptic regularization
built in through the artificial viscosity ê, whereas for p = u - û we will obtain
somewhat less precise results. In the next section, we shall formulate different
adaptive methods based on controlling each of the error bounds for p and 8
on, say, the tolerance level TOL/2. Alternatively, we shall force p to be zero
by refining until ê = e , in which case û = u. Clearly, in the second case there
is no need to estimate p and it suffices to estimate 8 .

Below we shall denote by D\ U the piecewise constant function defined by

(3.3) D2U\K =[\Y (I[v^I/"t)2)      -        K e T>

where hT is the length of edge x of K and [ ]T denotes the jump across x.
Note that D\U may be viewed as a discrete counterpart of D2u. Below we
shall also be using the notation

f 1 in K if dK n T_ ¿ 0,
min*(l, s) = <     . ,,     ,

( min( 1, s)    otherwise.

We now first consider the case of Neumann data along the outflow boundary.
For the 0-part of the error we then have the following estimate:

Lemma 3.1. Assume (cf. Remark 3.1 below) that \êx\ < cmin(l, ê) and \êy\ <
cmin(l,ê1/2) in Si. Let û be the solution of (3.1) and let U £ V with V
defined as in (2.2a) be the corresponding discrete solution determined by (2.3).
Then there is a constant C such that

(3.4) \\û-U\\<ïïeiU,h,f),
where

ge(U,h,f) = C (||min*(l, h2i-l)R(U)\\ +max ê1/2||/||) ,

R(U) = r(U) + iD\U   and   r(U) = \f - Ux + Ve" -VU\.

Proof. With 8 = m - U, let z be the solution of the associated continuous
'dual' problem

(3.5) -z, - div(êVz) = 0 in £2,     z = 0onr+uT0,     ^ = 0 on T_.
on
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Then

||0||2 = (0, -zx - div(êVz)) = i8x, z) + (eV0, Vz) - J êd^dT

= (ûx, z) + (êvû,vz) - (ux, z) - (êvu,vz) - [ êd^dr
7r+     on

= if,z)+ [   êp-zdT-(Ux,z)-(êVU,Vz)- í  ¿8^dY.Jt-   dn Jt+     an
Using (2.3), we get for any interpolant z £ V of z ,

\\e\\2 = (f-ux,z-¿- Szx) - (ëvu, v(z - z)) -ivê-vu, ôzx)

+ i ê^-zdr- [ ês^drJr.   dn Jr+     dn

= if-Ux + Vê-VU,z-z-ôzx) + Y Y  [ê§^(z-z)dx
K   x€dKJx    °Hk

+ [   êp-zdT- [ È8~dY = 1 + 11 + 111 + IV,h.   dn Jv+     dn
where n^ denotes the exterior unit normal to dK, K eT.

Let us first estimate the term I. We note that on one hand,

\z — z — 5zx\ < \z\ + \z\ + 6\zx\,
and on the other hand,

\z - z - dzx\ < Ch2ê~x (h~2ê\z - z\ + h~xê\zx - zx\ + \zx\).

Here we have used the fact that ô < Cmin(h, h2ê~x), since 5 = 0 whenever
ê>h. We recall that the interpolant z of z may be defined so that

(3.6a) n*l|jr<C||*|U(Jt),
(3.6b) ||z-z||^<CA¿||D'z|Uw,        i=l,2,
(3.6c) ||V(z - z)||jc < ChK\\D2z\\N{K),
(3.6d) \\zx\\K<Ch-Kx\\z\\K,
where Dx = V and N(K) is defined as above. Note that in order to be able
to estimate the interpolant in terms of the function values as in (3.6a), z is
defined from local averages of z around each nodal point. This explains why
the norms on the right-hand side in the estimates (3.6a-c) have to be taken over
a small neighborhood of K and not just over K. Note also that (2.1) gives an
upper bound (depending on c ) on the number of elements in NiK) for any
K. The last inequality (3.6d) is an 'inverse' estimate based on the fact that z
is a polynomial on each K.

From the above properties of z and our assumptions on ê which, in partic-
ular, imply (2.6), and the obvious counterpart of the regularity estimate (1.4)
for the dual problem (3.5), we now get

|7| < C|| min*(l, h2s-l)riU)\\ (||z|| + ||*|| + ||¿2X|| + ||/r2e(z - z)||
+ ||A-,ê(zx-zJC)|| + ||zx||)

< C||min*(l, h2s-x)riU)\\ (||z|| + \\ëD2z\\ + \\zx\\)
<C\\mm*il,h2è-x)riU)\\\\8\\.
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Here we have taken into account the fact that the estimates (3.6b, c) are not
valid on the elements along T_ , since z, as a function in V, has to vanish
there, and this is not the case with z in general.

Further, as in the proof of Lemma 4.3 of [3], we have

(z - z)dxÇA
< E(U) l Y /max*(l, èh~2)hx(z - z)2dx J

1/2

< CE(U)\\ max*(l, e7r2)(|z - z\ + A|Vz - Vz|)||
<CEiU)i\\z\\ + \\êD2z\\)<CEiU)\\8\\,

where max*(l, s) is the obvious counterpart of min*(l, s) and

2       \'/2
E(U)=\TJ mm* (l, h2ê-x)Kx(i dU

dnT
dx

Here the sum is taken over all edges which are not part of To U T+ (where
z - z = 0), and for the edges along T_ we set [f^] = |j . As in [3, Remark
2.3], the sum E(U) may be estimated in terms of D\U defined by (3.3), and
we have that

E(U) < C||min*(l, h2e~x)eD2hU\\.
It now remains to estimate the boundary integrals HI and IV. From Lemma 1.1
we have

(2 x  1/2   / v  1/2

jf   ê(j£)   \nx\dr)      U   z2\nx\dr\

<Cmaxêx/2\\f\\\\8\\,

where C may depend on Si, for instance, on the upper bound for -nx  on
r_.

In order to estimate IV, we first note that by the triangle inequality,

/  82dT<C f (u2 + U2)nxdT,Jt+ Jt+
where again C = C(Si). From Lemma 1.1 we know that /r u2nxdT < C||/||2.
By putting v = U in (2.3) we find similarly, using our assumptions on ê, that

X-j  U2nxdr+\\VU\\2é + \\Ux\\2<if,U + ÔUx) + iVê-VU,ÔUx)

< \\f\\{\\U\\ + \\*UX\\) + cmaxôx/2\\VU\\ê\\Ux\\s.
n

Since Ô is small, we may here use a standard kick-back argument to conclude
that

/  U2n,Jr+
rfr<c(||/||(||t/|| +Hác^iD) <c||/||||t/||,
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where we have also used a counterpart of (3.6d) for U. Since U = û - 8,
and m may be estimated in terms of / using Lemma 1.1, we have that \\U\\ <
c{\\f\\ + l|0||) • By Lemma 1.1, we further have that

SA^)äT-cwt
We may thus conclude that

|IV| < Cmaxêx'2(\\f\\2 + 11/111|0||)1/2||0|| < ^||0||2 + Cmaxê|' '
r+ ä 14

where C = C(Si).
Putting all these estimates together, we find that

II" - U\\ < C (||min*(l, h2ê-l)r(U)\\

+ ||min*(l, h2ê-x)êD2hU\\ + max e1/2
" r_ur+

Clearly, by estimating the two terms I and II simultaneously, we can derive the
somewhat more precise estimate (3.4). This completes the proof of Lemma
3.1.    D

We now turn to the case of problem (1.2) with Dirichlet outflow boundary
data. The counterpart of the estimate (3.4) for the 0-part of the error then
reads:
Lemma 3.2. Assume dist(T_ , T+) > 0; let it be the solution of (3.2) and let
U £ V be the corresponding discrete solution determined by (2.3) with V as
in (2.2b). Then, under the assumptions on ê of Lemma 3.1 (cf. Remark 3.1
below), there is a constant C such that

(3.7) ||M-C/||<rfl(£/,A,/),

where %e(U, h,f) = C(\\ min*(l, h2ê~x)R(U)\\ + maxr_ êx'2\\f\\).
Proof. The proof is essentially the same as that of Lemma 3.1. The only differ-
ences are that now the boundary integral IV vanishes, so that the 'max' is taken
over T_ only, and that in order to be able to estimate dû/dn on T_ we now
need to assume that T_ and T+ are separated so as to be able to find a cutoff
function tp as in Lemma 1.2 with tp = 1 , say, on L.    D

Remark 3.1. The assumptions in Lemmas 3.1 and 3.2 on ê may be consider-
ably relaxed. For instance, it suffices to assume, in addition to (1.3b), that the
inequality êx < ce (which we cannot expect to hold near an outflow singular
layer) holds in a neighborhood of T_ , since this condition is used only to bound
(du/dn)\r_ , and that -cmin(l, ê) < êx < C in Q. Note that in a typical ap-
plication with an outflow boundary layer (of width 0(h)) we expect to have
ê = 0(/z3) outside the layer and ê = 0(h) in the layer, which is consistent with
the stated requirements on ê.

Remark 3.2. Note that in a singular layer where \f - Ux\ is large, we expect to
have \f - Ux\ » R(U), and consequently, with ê = ch2\f - Ux\,

min(l, h2ê~x)R(U) = min(R(U), R(U)/(c\f - Ux\)) < Cmin(R(U), I).
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The term involving R(U) in the error bound ## may therefore be small also
in the presence of characteristic and outflow singular layers (of width 0(e1/2)
and 0(e), respectively) in which 7?((7) is big, cf. (0.4), (0.5). Note that
it is natural to use instead of (2.5) the following slightly different (implicit)
definition of ê : ê = max(e, c2h2RiU)), involving the full residual 7?(c/) and
not just the part \f - Ux\ as in (2.5). With this choice of ê, we clearly have
min(l, A2ê-l)7*(cO<Cmin(7?(C/), 1).

We shall now proceed by deriving error bounds also for the p = u - m part of
the error. We shall then first consider the case of Neumann outflow boundary
data as in problem (1.1) and the problem of characteristic singular layers. In
the following two lemmas we first derive a preliminary estimate for p in terms
of m , ê and data, and then complete this via an estimate for V0 to a full a
posteriori estimate for p. The proofs of these two lemmas can be found in the
Supplement section.

Lemma 3.3. Assume f £ H0X (Q) and ifor simplicity) that e is constant in Si.
Let u and û be the solutions of (1.1) and (3.1), respectively. Then there is a
constant C such that

(3.8) ||m-û|| <#,(û,ê, data),
where

iPiû, ê, data) = C(||ffVM||i + ||^V/|U),
<p = ë~2(ë - e)2 and o = max(3|ê_3/2eVê| + 1 + ((pê)x , 0).

Lemma 3.4. Let û be the solution of (3.1), and let U be determined by (2.3)
with V as in (2.2a). Then, under the assumption (2.6) there is a constant C
such that for 8 = û- U
(3.9) ||V0||,- < C||min*(l, hê~x'2)R(U)\\.

We may now put the estimates of Lemmas 3.1, 3.3 and 3.4 together to obtain
a full a posteriori estimate for u-U in the case of Neumann outflow boundary
data:
Theorem 3.1. Assume f £ H0x(Si) and that e is constant in Si, and let u and
U be the solutions of (I.I) and (2.3), respectively, with V defined as in (2.2a).
Then, under the assumptions of Lemma 3.1 on ê, there are constants C such
that

(3.10) \\u-U\\<%e(U,h,f) + %p(U,h,f),
where

%P(U, h,f) = C(||min*(l, hê-l'2)RiU)\\ + \\VU\\ê + \\<pVf\\ê),
(p = ê~2(ê - e)2, and 1% is defined as in Lemma 3.1.

Proof. Under the assumptions of Lemma 3.1, the function o defined in Lemma
3.3 is bounded uniformly in Si, so that by the triangle inequality,

ll«TVM||í<c(||v0||¿ + ||vc/y,
and consequently, by Lemmas 3.3 and 3.4,

||m-m|| <gp(U,h,f)
= C(||min*(l, hè~xl2)RiU)\\ + ||VC/||é + \\<pVf\\ê).
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The a posteriori error bound for the 0 = ù-U part of the error is given directly
by Lemma 3.1. This completes the proof.    D

It is possible to extend Theorem 3.1 to the case / ^ #ô(^) by simply
replacing / by an appropriate approximation / £ H0x(Si) and using the L2
stability in problem (1.1) to get the result:

Theorem 3.2. Let u be the solution of (1.1) and let U £ V be determined by
(2.3), with V as in (2.2a) and f replaced by any f £ H0x(Si). Then there is a
constant C such that

(3.12) \\u-U\\ < geiU,h,f) + %PiU,h,f, f),
where

gpiU, h,f,f) = C(||min*(l, he~x'2)RiU)\\ + \\pVf\\£ + \\f - f\\ + ||VJ7||£-),

7?(c/) = |/-c/x + Vê-V{/| + êD2t/ and ê = max(e, cA2|/- Ux\).

Proof. Let m be the solution of ( 1.1 ) with / replaced by /. Then by Lemma
1.1,

||"-«II<C||/-/||,
and from Theorem 3.1 we get the desired estimate for m - U.     D

We now turn our attention to problem (1.2) with Dirichlet data along Y+ and
the additional problem of an outflow singular layer. We note at once that in this
case the estimate of Lemma 3.3 is not sharp, since we expect to have |Vm| =
0(e_1) in an outflow layer and thus in this case ||ctVm||¿ = 0(ê-1/2). One
possible way of deriving analogues of Theorems 3.1 and 3.2 for problem (1.2)
would then be to replace the L2-norm estimate of Lemma 3.3 by an estimate in
a weighted L2 norm, using 0(A) cutoff at the outflow boundary, together with
a separate estimate for the boundary layer error using maximum-norm error
control of m and U. Although probably feasible, such a procedure has the
disadvantage of not being 'automatic', requiring, in particular, the specification
of an appropriate (problem-dependent) cutoff procedure and a special treatment
of the outflow layer. We shall therefore consider another possibility of replacing
Lemma 3.3 by a sharper estimate in terms of m , where, however, the step
replacing m by U leading to an adequate full a posteriori error estimate is
technically more complex and therefore will be omitted in the present paper.
We shall thus derive a sharp estimate for p in terms of m , e and data, as
before, and base an adaptive method for p directly on this estimate by simply
replacing the unknown argument m by the computed solution U, leaving the
problem of deriving a full a posteriori error estimate for p for future work.
We note that since the finite element mesh for U fits with the regularity of û,
it is natural to expect that replacing m by U in this way is possible, whereas a
direct replacement of u by U in an a priori error estimate involving u may
be more difficult to justify.

Alternatively, as we shall see below, it is possible to derive an adaptive algo-
rithm for full error control simply by adding ê = e as an additional control, in
which case, of course, p = 0.

The sharper estimate replacing Lemma 3.3 reads as follows:
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Lemma 3.5. Assume dist(T_ , T+) > 0 and that (for simplicity) e is constant,
\êy\ < cêxl2, and \ëx\ < ce in Si (cf. Remark 3.1), and let u and û be the
solutions of (1.2) and (3.2), respectively. Then there is a constant C such that

(3.13) ||M-M||<r,(M,£,data),
where

§p(û, e\ data) = C (\\(e - e)ûx\\ + \\d+((ê - e)ûy)y\\ + maxêx/2\\f\\\ ,

and d+ is the distance to the outflow boundary F+ in the direction (1,0).
Proof. As in the proof of Lemma 3.3 (see the Supplement section), we have
that

px - div(eVp) = cp   in Si,
where <j> = -div((e - c)Vm) . Let z be the solution of

(3.14) -zx-div(eVz) = /?inQ,     z = 0onr+ur0,     -^- = 0 on T_.

We then find that
\\p\\2 = (p, -zx - div(eVz)) = (px - div(eVp), z) +1

= (-div((e - e)Vû), z) + I = ((ê - e)ûx, zx)
- iiiê - e)ûy)y, z) + I + H,

where
1= /   e-^-zdT,       II = - /   (ê - e)uxznx dY.Jr.   dn Jt-

Since z vanishes along T+ , we have that

z(x,y) = - /   zx(s,y)ds,
Jx+

where (jc+ , y) is a point on T+ . From the boundedness in L2 of the Hubert
transform Fix) = j¡ JQX fis)ds, we easily get that ||i/+'z|| < 2||zx||. We now
need to estimate I and II. Using Lemma 1.2, we have that

'/2   /   . \  1/2

. 1/2
<Cmaxê1/2|

r

where C = C(Q). Putting things together, we now obtain

l2

|I + II|<Cmaxê'/2 ( /  (elVMp + êlVMl2)!«,!^)      (/   ^2|«il^r)

(/r/2|"'!ár)"2-

hings together, we n

< C ( p - e)Mx|| + \\d+((Ê - e)ûy)y\\ + maxêx'2\\f\\\

+ ÍJ   z2\nx\dT

If we now use the counterpart of (1.4) for the solution z of the dual problem
(3.14), we obtain the desired estimate at once. This completes the proof.      D

Let us now put the estimates of Lemmas 3.2 and 3.5 together to obtain the
following result:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



182 KENNETH ERIKSSON AND CLAES JOHNSON

Theorem 3.3. Under the assumptions of Lemmas 3.2 and 3.5 there is a constant
C such that

(3.15) ||m - U\\ < We(U,h,f) + ip(û,è, data).
Note that this is not a full a posteriori estimate, since m is unknown. As

indicated above, we shall design an adaptive algorithm for the SD-method for
(1.2) based simply on replacing m by U in (3.15). To prove that this is pos-
sible, leading to a reliable algorithm, would require a counterpart of Lemma
3.4 in certain weighted norms, the technicalities of which we leave to future
investigations. Thus, in this paper we do not prove that the adaptive algorithm
based on (3.15) to be presented below is fully reliable.

Remark 3.3. As indicated in the introduction, it is easy to prove a posteriori
error estimates of the form

(3.16) ||M-t/||<CP(C/)||,
for various Galerkin methods for convection-diffusion problems, including the
SD-method and also standard Galerkin methods, by using only the L2 -stability
of the continuous (dual) problem (i.e., ||m|| < C\\f\\ for problem (1.1) or (1.2)).
However, an a posteriori error estimate of the form (3.16) cannot be used as a
basis for an adaptive algorithm for controlling ||m - f7|| in general, since in the
presence of characteristic or outflow layers we will have that ||7?(£/)|| = 0(A_a)
with a = 1/8 or a = 1/2 unless h = 0(e2/3) or h = 0(e), respectively (cf.
the discussion in §4.1 below). In particular, (3.16) is useless in the initial stages
of an adaptive procedure when the mesh is not yet properly refined.

4. Adaptive procedures
We shall now design adaptive algorithms for the SD-method for the problems

(1.1) and (1.2) based on the error estimates of the previous section, seeking
procedures for which we can demonstrate reliability and efficiency as discussed
in the introduction. In each case our basic computational goal is to solve the
following (optimization) problem (O): With TOL a given error tolerance, find,
using the SD-method, an approximate solution U of problem (1.1) or (1.2) on
a mesh T such that

(4.1) \\u-U\\ <TOL,
at minimal computational 'cost' (here measured simply in terms of the total
number of nodes of the mesh T). We recall that a mesh T with minimal
number of nodes such that ||m - m|| < TOL, where m is an interpolant of u
on T, is referred to as an optimal mesh. When discussing the efficiency of
our adaptive procedures, we shall compare the constructed mesh T with the
optimal mesh f.

4.1.   Neumann outflow boundary data.   We first consider the case of problem
(1.1) without the singular outflow layer complication. Clearly, the adaptive
method suggested by the a posteriori error estimates (3.10) and (3.12) is to seek
a mesh T with (nearly) minimal number of nodes such that

(4.2) %e(U,h,f) + %p(U,h,f)<TOL
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or

(4.3) r,(C/, A,/) + #,(£/, A,/,/)< TOL.
For the purpose of our discussion below we label this adaptive method (or
strategy) (A/i). An algorithm designed for the search of the mesh T with min-
imal number of nodes satisfying (4.2) and the associated U could be designed
roughly as follows:

Io. Start with a (coarse) quasi-uniform mesh To .
2°. Given a mesh 7) with mesh size h}-, compute the corresponding approx-

imate solution Uj £ Vj determined by (2.3), where V¡ is the space of piecewise
linear functions defined by (2.2a) based on 7) .

3°. If (4.2) or (4.3) holds with U = Uj and h = hj, then stop and accept Uj
and Tj as an (approximate) solution of (0). Otherwise, construct a new mesh
Tj+X with corresponding mesh size hj+l with (approximately) as few nodes as
possible such that

(4.4) g¡,(Uj , hj+x, f) + gp(Uj, hj+x, f) < TOL,
and then go back to 2°.

In practice, to construct a mesh T¡+\ with (approximately) as few degrees
of freedom as possible, we seek an equidistributed mesh 7)+1 in the sense that
all element contributions in the integrals in the L2 -norms || • || in 1% and %p
are approximately equal (see [3] for details).

As we shall see below, the a posteriori error estimate of Theorem 3.2 does
not appear to be quite sharp, and as a consequence the adaptive method (Mx )
will possibly not be fully efficient. As an alternative we may therefore consider
the following method based on the 'quasi' a posteriori error estimate obtained
by combining the estimates of Lemmas 3.1 and 3.3. This gives us the following
method (M2) : Seek a mesh T with (nearly) minimal number of nodes such
that for the corresponding U,

(4.5) ^e(U,h,f) + ip(U,ê, data) < TOL.
Note that this method is based on heuristically replacing the unknown argument
m in Ê?p by the known computed solution U.

As a third possibility, changing the computational goal somewhat, we con-
sider the following method (A/j) : Seek a mesh T with (nearly) minimal num-
ber of nodes such that for the corresponding U,

(4.6) gg(U,h,f)< TOL   and   s = ê(t/, A) = e.
We note that once ê = e, then p = 0, and thus (4.2) will be guaranteed if only
%e(U, h, f) < TOL. As we will indicate below, it appears that the requirement
ê = e in (4.6) will force the refinement to continue until all details of the flow
have been resolved to their true scale, in particular, the mesh size will be smaller
than 0(v/e) in a characteristic layer. This is not necessarily the case with the
methods (A/i) and (A/2) where, depending on the tolerance chosen and the
given diffusion coefficient e, characteristic layers may be left unresolved.

Remark. In the implementation of the adaptive algorithm Io - 3° above one
faces, in particular, the problem of assigning appropriate values to the constants
C appearing in the definitions of §0 and %p . Clearly, for efficiency reasons one
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would like to choose these constants as small as possible. Consider for instance
the constant C in the definition of #e m Lemma 3.1. Tracing the origin of
this constant, one realizes, first of all, that one should actually have different
weighting constants associated with the different terms in 1% and write

&o(U,h,f) = ||min*(l, h2e-x)iCxriU) + C2êD2U)\\ + C3 max êx'2\\f\\.

Secondly, the constants Cx and C2 associated with the two most important
terms basically are of the form CSC¡, where C, is an interpolation error con-
stant which can be determined rather easily (cf. the discussion in [3]) and
Cs is the stability constant in Lemma 1.1. In the case of the simple model
problems under consideration here, the stability constant Cs could easily be
evaluated theoretically simply by following the proof of Lemma 1.1. For more
complicated problems, however, it seems more realistic to seek an appropriate
computational replacement for such a procedure and estimate Cs from a nu-
merical solution of the dual problem (3.5). The latter problem is the subject of
ongoing research. Note here that in Lemma 1.1, too, one should actually use
individual stability constants for the individual terms ( ||e1/,2VM||, ||m|| , ||mx|| ,
||e7)2M||, ... ) in the estimate.

In the discussions below, we shall always assume that the problem of finding
suitable values for the constants C has been appropriately solved.

Reliability and efficiency. Let us now discuss the reliability and efficiency of the
adaptive methods (A/i), iM2), and (A/3). The methods (A/i) and (A73), of
course, will be reliable in the sense that if the corresponding algorithm reaches
its stopping criterion, by finding a mesh T and the corresponding U such that
(4.2), (4.3), or (4.6) holds, then we know from the corresponding a posteriori
estimates that (4.2) will be guaranteed. For the method (A/2), on the other
hand, our analysis does not guarantee full reliability in the above sense, since
the stopping criterion (4.3) is based on replacing it by U in Lemma 3.3, which
has not been justified. Nevertheless, replacing m by U seems to be a reasonable
thing to do, since it is sufficiently regular and the finite element mesh for U
fits with the regularity of M so as to admit error estimates for û - U, e.g., as
in Lemma 3.1 (cf. also the discussion preceding Lemma 3.5).

Concerning the efficiency, we would like to know that a mesh generated by
the adaptive algorithm corresponding to the method (Afi), (A/2), or (A/3)
under consideration is (reasonably) close to an optimal mesh and not excessively
overrefined for the computational goal (4.1). As the weakest possible demand
on efficiency, we would like to know that the method is operational in the sense
that (4.2) may be realized by refining the mesh.

For the purpose of a brief discussion of these matters in a simple model
situation, we consider the case of an interior singular layer due to a jump dis-
continuity in / across a characteristic y = const. With our interest focused
on the case when e is very small, we shall assume for simplicity that e < C/z3
everywhere in Si, and further that e is constant. As we shall see below, we
then expect to have that ê = 0(ha) with a > 1 everywhere in Q, so that, in
particular, we may control the terms depending directly on the data / in (3.4),
(3.7), (3.10) etc. We may thus concentrate on the terms involving the computed
solution U and its residual 7?(Í7). In order to be able to estimate these terms,
we shall first derive a preliminary estimate for f - Ux in the different parts of
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the computational domain. To this end, we shall use the fact that

(4.7) f-Ux = Ûx-Ux-div(êVÛ)

and estimate separately ux - Ux and div(êVu). We recall (see [8]) that one
can derive a priori error estimates for the SD-method of the form

(4.8a) ||m - U\\¥ < C(\\h^2D2û\\¥ + \\h2f\\)
and

(4.8b) \\ûx - Ux\\¥ < C(\\hD2û\\v + \\h2f\\),
where y/ is a cutoff function subject to certain conditions similar to those in
(1.7) with e replaced by h. Strictly speaking, existing proofs of these esti-
mates require additional assumptions, such as a constant ê and certain quasi-
uniformity of the mesh, but it seems reasonable to believe that the results of
[8] should be extendable to the case of a variable ê subject to the conditions
of Lemma 1.1 and for a fairly general class of locally refined meshes such as in
[3]. The estimates (4.8a, b) indicate that in the parts of Q where m is smooth
we should have û - U = 0(A3/2) and iix - Ux = 0(h). In order to estimate
the div(êVo)-term in (4.7), we first note that div(êVo) = Vê-Vm + cAm . Here,
ê is of order 0(h2\f - Ux\)), and under reasonable mesh assumptions as in [3]
it follows that Vê = 0(h\f - Ux\). We may therefore conclude that, in regions
of smoothness of m , we have \f - Ux\ = 0(h) and consequently ê = 0(h3),
exl2VU = 0(h3'2), R(U) = 0(h) and min(l, h2ê~x)R(U) = R(U) = 0(h).

We now note that for all three methods, (Mi), (M2) and (A/3), owing to
the presence of the term || min(l, h2ê~x)R(U)\\ in êg, the a posteriori error
estimates do not seem to be fully sharp in the smooth parts of the domain.
In particular, it seems as if we have lost a factor of hxl2 compared to (4.8a),
according to which m - U = 0(h3/2) in the parts of the domain where it is
smooth (and a factor h as compared to the interpolation error of order 0(h2)
in smooth regions). This indicates that the method will overrefine slightly in
smooth regions. However, as we shall soon see, in the case of a characteristic
singular layer, the majority of the elements will be located in the characteristic
layer, so that the total number of elements is not much affected by a moderate
overrefinement in the smooth region.

In the characteristic layer we expect to have f - Ux = 0(/z~1/2) and ê =
0(h*l2). This is based on the following heuristic argument. We recall the a
priori error estimate (4.8b). Since this estimate is more or less local, we expect to
have a corresponding pointwise estimate under reasonable assumptions. Since
D2u = 0(e~x) and |Vê| = 0(e~1/2) in the layer, and since we know that
ê = 0(h) just by applying an inverse estimate, we are led to believe, neglecting
the /-term in (4.8b) and under appropriate assumptions on Vê, that

\f-Ux\ < \ûx - Ux\ + |div(eVM)| < C(hê~x + 1) < C(h~x\f-Ux\-X + 1).
From this we conclude that \f - Ux\ = 0(h'xl2), ê = 0(A3/2) and R(U) =
0(h~x/2) in the layer. Further, we expect the width of the numerical singu-
lar layer to be 0(max(e'/2, A3/4)) = 0(A3/4) (cf. [10]), and Vê • Vf7 and
D\U should both be of order 0(1). From this we conclude that ê1/2VÎ7 =
0(1), min(l, h2ê~x)R(U) = h2e~lR(U) = 0(1) and min(l, he~x'2)R(U) =
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hê XI2R(U) = 0(h 1/4) in the layer. If we square all these quantities, multi-
ply by the width of the layer and then take the square root, we find that the
contribution to Wg, %?p, and %?p coming from the layer should be of order
0(A3/8), 0(A'/8),and 0(A3/8), respectively. (Note that by defining an / such
that |V/| = 0(A-1/4) in the layer and with / = / in the smooth region, and
using (3.12) rather than (3.11), we may include also the contributions from the
data terms in these estimates.) We see that we have lost a factor of A1/4 in the
1^,-and Ép-terms, since 0(A1/2) is optimal according to interpolation theory.
The reason is, of course, that we have not been able to derive an error bound
of second order in A for p, since we have been using (3.9). The estimates
for the ê'g-and í^,-terms, on the other hand, appear to be close to the optimal
interpolation error 0(hx¡2).

4.2. Dirichlet outflow boundary data. Let us now turn our attention to the
case of problem (1.2) and the additional complication due to the presence of
an outflow singular layer. Now we base our adaptive method on the estimate of
Theorem 3.1 and consider the following method (A/4) : Seek a mesh T with
(nearly) minimal number of nodes such that for the corresponding U

(4.9) rfl(C/, A, f) + ip(U, ê, data) < TOL,

where

ip(U,Ê, data) = C (\\(ê - e)Ux\\ + \\d+(ê - e)DhyUy\\ + maxêx'2\\f\\\

and (with notation as in the definition of D2h )

„»„.        1    V-    (v(P')-v(P))(P'-P)2
Dyv\« = 3   Z,   -\p'-p\2-•

K'eN(K) ' '

Clearly, this method is based on replacing û by U in the i^-term in the 'quasi'
a posteriori error estimate (3.15).

Alternatively, we consider here also (A/3), which applies to the outflow sin-
gular layer problem as well, with i?e defined as in Lemma 3.2.

Reliability and efficiency. Method (A/3), of course, is reliable as before, whereas
the method (A/4) based partly on a heuristic step is not fully reliable (cf. the
discussion preceding Lemma 3.5). Concerning the efficiency, let us first consider
method (A/4). Again, the term min(l, h2ê~x)R(U) will be of order 0(A) in
the parts of the domain where m is smooth. In a characteristic layer we will
have min(l, h2ê~x)R(U) = h2ê~xR(U) = 0(1). The width of the characteristic
layer is expected to be 0(A3/4), which would give an error contribution to §0
of order 0(A3/8), which is close to optimal. In the outflow singular layer we
expect to have \f—Ux\ = 0(h~x), simply by applying an inverse estimate, and
consequently ê = 0(h) and R(U) = 0(A_1), so that

min(l, h2ê~x)R(U) = 0(1).

The width of the outflow singular layer is known to be 0(A), so that the con-
tribution to the .?0-term will be 0(hx/2), which is optimal.
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In smooth parts, the first two terms in %p seem to be of order 0(A2) and
the /-term of order 0(A3/2), which is optimal compared to (4.8a). In a char-
acteristic layer, the second term in %p determines the order and appears to
be 0(A3/8), since uyy = 0(ê_1) and the width of the layer is 0(A3/4). In
the outflow layer, finally,  ûx = 0(ê_1) and ûyy = 0(ê~2) or better, so that
d+((ê - e)ûy)y = 0(1) and consequently Wp = 0(hx/2), which again is optimal.

Concerning the efficiency of method (A/3) we have already seen that êg
appears to be a sharp bound for the 0-part of the error. We now would like to
analyze the additional effect of the control ê = e. We shall give an argument
which indicates that the additional control ê(U, h) = e in (4.6) will lead to
resolution of both outflow layers and characteristic layers. To see this, note that
in an outflow layer, in order to have ê = e , we must have that

e = ê>cA2|/- Ux\ >ch,

since |/- Ux\ > cA_1 in the layer, so that the outflow layer of width 0(e) will
be resolved. In a characteristic layer we expect to have A < ce2/3, since

ê > cA2|/- Ux\ s ch3D2û ~ cA3ê_1,

which states that
ê>cA3/2   or   A3/4<ce1/2,

if ê = e, which again indicates resolution, since the width of the characteristic
layer is 0(ex/2) and the width of the corresponding numerical layer (according
to recent but yet preliminary results, see also [10]) is 0(A3^4). Note that the
adaptive method (A/4) may or may not, depending on the tolerance TOL, lead
to resolution of characteristic and outflow singular layers. Roughly speaking, if
the tolerance is set greater than 0(e'/4), then neither an outflow singular layer
nor characteristic singular layers will be resolved. If the tolerance is between
0(e1/2) and 0(e'/4), then characteristic layers will be resolved, but not an
outflow singular layer. Finally, if TOL is of order 0(e1/2), then all layers will
be resolved. Thus, imposing ê = e corresponding to resolution of all layers,
may lead to an overrefinement. On the other hand, resolution of the layers
may be a computational goal as well, in addition to (4.1). Observe that the
condition ê = e in (4.6) corresponds to continuing the refinement until no
shock-capturing artificial viscosity is effectively added. Even in this case, the
shock-capturing artificial viscosity plays an important role during the adaptive
refinement process when the mesh is not fine enough to resolve all details of the
flow, but "disappears" on the final mesh where ê = e and all details are resolved.
Note that in a natural adaptive process we start with a coarse mesh and refine
locally (e.g., until ê = e, i.e., A < e in outflow layers) instead of starting with
an extremely fine quasi-uniform mesh (satisfying A < e everywhere) and then
unrefine locally, which clearly would be an inefficient procedure.
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Supplement to

ADAPTIVE STREAMLINE DIFFUSION FINITE ELEMENT METHODS
FOR STATIONARY CONVECTION-DIFFUSION PROBLEMS

KENNETH ERIKSSON AND CLAES JOHNSON

Proof of Lemma 3.3.  We find that p = u — û solves the following problem:

p, - div(sVp) = <j>    in f!,
p = 0    oiiT-UTo,

dP      n r—— =0     on 1 +,
dn +

where <j> = —div((s — ;)Vû).
From Lemma 1.1 and the fact that ¡|p|| < C||pi.|| we get that

(A) ||p||<C||div((f-c)VÛ)||.

Since : is constant, we have that

(B) div((f - ï)Vû) = Vf- Vû + (ê-e)Aû
= VÉ ■ Vu + f"'(í - e)(ûx -f -Vi- Vf/)
= f~1£VÊ-Vû + é"I(ê-e)(ûI -/)■

Further, with 9 = í~2(í - e)2 we have that

II*.-/Hi = (?(««-/), «fiY(êVû))
J *(ûz - f)ê^ drdn

- (<ps7ûz,is7û) + (ipV/, ¿Vu)
= / +17 + /IJ + /V.

Here

///= -- /^é|VÛ|2n,dr + -((s;i)IVi},VÛ) = V + V J,

and since / vanishes on T, dû/dn on T+ and û on T_, we get as in (1.8

I + V = j vê{ûz^-l-\Vû\2n,)dT

= -l-j^\Vù\2\nl\dT<0.

) 1993 American Mathematical Society
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