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ABSTRACT

Domain encoding is a common technique to compress the columns

of a column store and to accelerate many types of queries at the

same time. It is based on the assumption that most columns contain

a relatively small set of distinct values, in particular string columns.

In this paper, we argue that domain encoding is not the end of the

story. In real world systems, we observe that a substantial amount

of the columns are of string types. Moreover, most of the memory

space is consumed by only a small fraction of these columns.

To address this issue, we make three main contributions: First we

survey several approaches and variants for dictionary compression,

i. e., data structures that store the dictionary of domain encoding in

a compressed way. As expected, there is a trade-off between size of

the data structure and its access performance. This observation can

be used to compress rarely accessed data more than frequently ac-

cessed data. Furthermore the question which approach has the best

compression ratio for a certain column heavily depends on specific

characteristics of its content. Consequently, as a second contribu-

tion, we present non-trivial sampling schemes for all our dictionary

formats, enabling us to estimate their size for a given column. This

way it is possible to identify compression schemes specialized for

the content of a specific column.

Third, we draft how to fully automate the decision of the dic-

tionary format. We sketch a compression manager that selects the

most appropriate dictionary format based on column access and up-

date patterns, characteristics of the underlying data, and costs for

set-up and access of the different data structures. We evaluate an

off-line prototype of a compression manager using a variation of

the TPC-H benchmark [15]. The compression manager can con-

figure the database system to be anywhere in a large range of the

space / time trade-off with a fine granularity, providing significantly

better trade-offs than any fixed dictionary format.

1. INTRODUCTION
In columns stores, domain encoding is a widely used technique

for compression and query acceleration, especially for string columns

[40, 1, 44, 29]. It consists of replacing the values of a column by

a unique integer value ID and storing the mapping between val-
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Figure 1: Distribution of the number of values per column.

ues and IDs in a separate data structure, the dictionary1. Under

the assumption that many values occur multiple times in a column,

domain encoding leads to a compression of the data, since every

value has to be stored only once and the codes are typically much

smaller than the original values. The resulting list of codes can

be compressed further using integer compression schemes [1, 29].

Furthermore, most queries can be processed on the codes directly,

which can be done faster thanks to the smaller and fixed size data

type [1, 42, 29, 41].

In this paper, we argue that it is necessary to go beyond domain

encoding. During the development of the SAP HANA database

[18, 19], we gained several insights about the before-mentioned

assumption and about other characteristics of the usage of string

dictionaries in real-world business applications. To share these in-

sights, we show some statistics of two enterprise resource planning

(ERP) and one business intelligence warehouse (BW) system that

the SAP HANA database department uses for testing: ERP System

1 is an anonymized SAP ERP base system (the core set of tables

that every SAP ERP system has), ERP System 2 is a snapshot of

a productive customer ERP system, BW System is a snapshot of

a productive customer BW system. Our first insight concerns the

distribution of the number of distinct values per string column, i. e.,

the distribution of dictionary sizes in terms of number of entries.

1Note that sometimes, domain encoding is also called dictionary
compression. However when we talk about dictionary compression
in this paper, we mean compressing the dictionary.
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Figure 1 shows the distribution in all three systems: by far most

dictionaries are very small and only few are very big. For every

order of magnitude of smaller size, there is half an order of mag-

nitude less dictionaries of that size. This means that the dictionary

sizes roughly follow a Zipf distribution. The high number of small

dictionaries matches the motivation of domain encoding.
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Figure 2: Distribution of memory consumption of all dictionar-

ies depending on their number of entries.

Our other insights are more surprising and seem to be ignored by

the prior work so far:

• The vast majority of columns in our systems are string columns,

especially in the ERP systems (73%, 77% and 54% in above

systems respectively).

• Large dictionaries have the largest share in memory con-

sumption, even though there are not many of them. Fig-

ure 2 shows the memory consumption of the dictionaries of

columns with different numbers of distinct values in our ex-

ample systems. It is remarkable that in ERP System 1, 87%

of the memory is consumed by the dictionaries with more

than 10
5 entries, which only represents 0.1% of all dictio-

naries. The skew is even more extreme in ERP System 2,

where the same memory share is consumed by just 0.01% of

the dictionaries, while it is 3% in the BW System scenario.

• Many of the string columns are of a specific format, some-

times because they actually represent different types such as

dates, but often just because they represent a specific domain

such as hashes, UUIDs, URLs, product codes, etc. Some

of these could be modelled by a more appropriate data type

today, but many legacy applications still use strings.

We propose to address these issues by going beyond domain en-

coding and applying compression directly on the dictionaries. We

concentrate on the dictionaries of the read-optimized store of the

typical column-store architecture since they are both read-only and

usually larger.

Dictionary compression naturally fits into the architecture of in-

memory column-stores: First, memory is a valuable resource. Higher

compression increases the amount of useful data a single system is

capable to handle and makes more space for indices and query pro-

cessing intermediates. Second, dictionaries reside in RAM at all

times, so explicit dictionary compression is even more important

for fast access to single entries. In contrast the page level com-

pression commonly used in disk-based systems, where entire pages

are transparently compressed with a general purpose compression

scheme, would have a considerably higher cost [34]. Third, there

are several points in the life cycle of columns in a typical column

store where it makes sense to invest the time to compress the dictio-

nary: When the write-optimized store is periodically merged into

the read-optimized store or when aged data is moved into separate

partitions, the dictionary needs to be reconstructed anyways. At

this time the format can be changed without unnecessary recon-

struction costs.

The contributions of this paper consists in proposing answers to

open questions in how to integrate dictionary compression. For

one, there is a lot of work on string dictionary compression from

other research communities, so the first question is which compres-

sion format has attractive characteristics for in-memory column-

stores. Consequently, in the first part of this paper, we implement

and compare several interesting dictionary formats. As expected,

different data structures provide different trade-offs between com-

pression and access performance: higher compression usually means

slower access. But there are also compression formats that can ben-

efit from specific properties of certain columns, such as a fixed size

or very restricted character set. The choice of the best dictionary

format therefore heavily depends on the data. We contribute a sam-

pling method to answer this question: for every dictionary variant

we survey, we build a compression model that is capable to accu-

rately predict its size by only looking at a small fraction of the data.

With these estimated sizes and the performance characteristics of

our survey, we have all the information at hand to manually pick a

dictionary format for a given situation.

For easier set-up and maintenance, we also contribute first steps

towards taking the decision of the dictionary format automatically.

This decision is complex since it involves at least the two dimen-

sions space and time. Our compression models provide knowledge

about the size dimension, but this information should be comple-

mented by information such as global memory pressure and the

size of other data structures of the column. The time dimension is

more complicated, since it is composed of the construction time of

the data structure, its construction frequency, the access time of the

forward and reverse look-up operations, and the respective access

frequencies. To keep the decision reasonably cheap, we map all

available local information onto one of the two axes, size and time,

and let a global compression manager decide what kind of trade-off

to choose depending on global information such as memory pres-

sure or CPU usage. Since we only change the compression scheme

when a dictionary is rebuilt anyways, the overhead of the automatic

selection stays at a minimum.

To validate our approach, we evaluate an off-line prototype of

our compression manager. Since it uses mostly local information,

we believe that it is easily possible to apply the same principle for

online decisions. We use workload and data of a modified TPC-H

benchmark [15] and compare the performance and memory con-

sumption of an automatic selection to the default dictionary for-

mat of the SAP HANA database. By applying an automatic selec-

tion strategy, we can reduce the over memory consumption to 60%

while maintaining the performance of the benchmarks.

The rest of the paper is organized as follows. We first discuss

related work in Section 2. Then we present a survey of dictionary

formats in Section 3 and show how to estimate their size in Sec-

tion 4. This forms the base for our automatic dictionary selection

framework presented in Section 5, which is evaluated in Section 6.

Section 7 concludes the paper.
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2. RELATED WORK
Many column stores employ domain encoding as compression

scheme [19, 40, 1, 44, 38]. Most of them also apply additional

compression on the resulting codes. However to the best of our

knowledge there is no work about dictionary compression in this

context.

The idea to specialize compression schemes for a certain content

type is as old as the idea of compression itself. In the context of

row-store databases, Cormack [13] proposes a compression scheme

that switches between a set of Huffman trees, each optimized for a

different implicit field type, thus adapting compression to different

classes of content. Domain encoding itself is also a general way to

particularly compress a column with a certain domain. By select-

ing the dictionary format with the best compression rate for each

column, we do something similar on another level.

There is a large body of work about automatic physical design for

disk based database systems. All major traditional database ven-

dors offer tools for assisting or replacing the database administra-

tor (DBA) in many physical design decisions, including Microsoft

[12, 11, 3, 8], IBM [5], and Oracle [17]. There are also publications

from research [2]. Most of the above works concerns indexes and

use variants and optimizations of an off-line what-if analysis but

there exist also proposals for on-line solutions [37, 36, 8]. How-

ever, all of the above concentrate on secondary data structures such

as indexes, while the dictionary as storage of the column content is

a primary data structure. This slightly changes the problem: while

the question about index selection is whether or not to create them,

the question about dictionaries is which format to choose.

None of the above include compression as physical design de-

cision. The first work on this topic was done by Idreos et al. [24],

which was later improved by Kimura et al. [25]. For the first time,

they take size and performance of several index compression schemes

into account when selecting a set of indexes for a system. Like we

do with our dictionaries, they describe strategies to estimate the

size of their compressed indexes. Since these estimation methods

are very specific to their index format, they cannot directly be ap-

plied to dictionaries.

In column-stores, there has been some work tackling the problem

to select the right column format. Abadi et al. [1] give a decision

tree for DBAs and Paradies et al. [32] propose how to automatically

select the format of the column depending on compression proper-

ties. While the above work concentrates on the vector of references

into the dictionary, we propose a similar approach for the dictionary

itself.

3. SURVEY OF DICTIONARY FORMATS
In this section, we survey a selection of string dictionary formats

from literature in the context of domain coding in column-stores.

We implemented a large number of variants of them, which we

evaluate and compare on a variety of data sets. This survey is the

base of the subsequent section, where we show how to estimate the

size of our dictionary variants using sampling strategies.

3.1 Basics
We start by defining the requirements for string dictionaries in

the context of an in-memory column-store.

DEFINITION 1 (STRING DICTIONARY). A string dictionary is

a read-only data structure that implements at least the following

two functions:

• Given a value ID id, extract(id) returns the corresponding

string in the dictionary.

• Given a string str, locate(str) returns the unique value ID

of str if str is in the dictionary or the value ID of the first

string greater than str otherwise.

In the context of an in-memory column-store, the following prop-

erties are desirable:

• An access to a string attribute value in a column-store database

often corresponds to an extract-operation in a string dictio-

nary. Thus, it is important that extract operations can be per-

formed very fast.

• A typical use case for the locate operation is a WHERE-

clause in an SQL statement that compares a string attribute

against a string value. Here, only one locate operation is

needed to execute the statement. Hence, the performance of

the locate operation is not as critical as the extract perfor-

mance.

• We concentrate on the static dictionaries of the read-optimized

store, so no updates are needed. However, when the write-

optimized store is merged into the read-optimized store, their

dictionaries also have to be merged. Hence, the construction

time should be minimized, too.

DEFINITION 2 (DICTIONARY COMPRESSION RATE). Let str1,

str2, . . . , strn be a set of strings stored in a string dictionary d and

|d| the memory size of the compressed dictionary. The compression

rate of d, comp(d), is defined as

comp(d) =

∑
n

i=1
|stri|

|d|

3.2 Compression Schemes and Data Structures
There is a large corpus of text compression schemes in the lit-

erature that can be used to compress the strings in the dictionary.

A very popular statistical technique is Huffman encoding [23]. It

creates minimum redundancy codes based on the occurrence fre-

quency of characters. Huffman codes are prefix codes, i. e., given

the starting point of a sequence of Huffman codes, the beginning

and the end of each code can be determined without additional in-

formation.

Hu-Tucker codes [26] are similar to Huffman codes, except for

an additional restriction. Given an ordered sequence of characters

c1 < c2 < · · · < cn, the corresponding Hu-Tucker codes h(ci)
have the same binary order h(c1) < h(c2) < · · · < h(cn). This

leads to a slightly worse compression ratio but the binary order of

two text strings compressed by Hu-Tucker encoding is the same as

the initial order of the uncompressed strings. Since the elements

in a dictionary usually are stored in ascending order, the order pre-

serving property can be used to improve the search for a string and

thus, the performance of the locate operation.

If the strings consist of only a small set of characters, a folklore

compression technique is Bit Compression. Here, each character

occurring in the string dictionary is represented by a constant num-

ber of bits b ≤ 8, b being the smallest number of bits sufficient to

represent every occurring character. If the codes representing the

characters are ordered according to the order of the characters and

the uncompressed strings are binary sorted, the initial sort order is

preserved. Due to the fixed code length, Bit Compression can be

implemented more efficiently than Huffman encoding, which espe-

cially increases the performance of the extract operation.

A different approach to compress text is to create a minimal

grammar from which the text can be constructed [10]. The Re-

Pair algorithm [27] is an approximate solution to this approach. It
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replaces frequent pairs of symbols by a new symbol. Pairs of sym-

bols are replaced until there is no more pair occurring at least two

times. The compression algorithm can be implemented to run in

O(n) for an input text of length n. Despite the linear complexity,

this compression algorithm is quite complex and hence, increases

the construction time of a string dictionary.

Another folklore approach that operates on sequences of char-

acters is the N-Gram compression technique. It collects frequent

character sequences of fixed length n (n-grams) and replaces them

by 12 bit codes. Since 12 bits are usually not enough to encode

all sequences, only the 212 − 256 = 3840 most frequent n-grams

are mapped to 12 bit codes. The remaining 256 codes are used to

encode single characters. Due to the fixed code length, the extract

operation can be implemented very efficiently. On the other hand,

this algorithm does not preserve the sort order of the strings and

hence, is not optimal for locate intensive dictionaries.

Literature also provides us with a variety of dictionary data struc-

tures. Front Coding [43] is a common technique to store sorted

string dictionaries in a compressed way. The method makes use

of the fact that consecutive text strings in a sorted string dictionary

tend to share a common prefix. If two strings share a common pre-

fix, it has to be be stored only once. The remaining suffixes can be

further compressed by a statistical or dictionary-based compression

algorithm.

In [7], Brisaboa et al. give an overview of string dictionaries.

They mention Hashing [14] as a popular method to realize a basic

dictionary. The strings are mapped to an index by a hash function.

The evaluations show that the locate performance of this approach

is quite good, yet both extract performance and compression rate

are dominated by other approaches. Hence, hashing is not consid-

ered in this work.

There are other classes of pointer-based structures that could im-

plement string dictionary functionality, like compressed text self-

indexes [31, 20, 21], prefix trees [26, 22], suffix trees [39, 30],

compressed suffix trees [35, 9], or directed acyclic word graphs [6,

16]. We do not consider these data structures since practical im-

plementations of the many pointers are highly non-trivial, although

there are interesting advances in recent literature (for example [4]).

3.3 Dictionary Implementations
After reviewing the data structures and compression schemes in

the literature, we now show how to combine them to implement

compressed string dictionaries. In particular we implemented the

following string compression schemes:

• Huffman / Hu-Tucker Compression (hu): Hu-Tucker com-

pression is used only if the order preserving property is needed.

• Bit Compression (bc)

• N-Gram Compression (ng2 / ng3): Frequent 2-grams (ng2)

or 3-grams (ng3) are replaced by 12 bit codes.

• Re-Pair Compression (rp 12 / rp 16): Re-Pair Compression

using either 12 bits (rp 12) or 16 bits (rp 16) to store a rule.

We apply these compression schemes to two main dictionary

data structures:

• Array (array): One class of dictionary implementations is

based on a simple consecutive array containing the string

data. Pointers to each string in this array are maintained in a

separate array.

• Front Coding (fc block): The strings of a dictionary are di-

vided into blocks, which are encoded using Front Coding as

explained above. The resulting blocks are then stored in a

consecutive array. Pointers to each block are maintained in

a separate array. The prefix length values of one block are

stored in a header at the beginning of the block.

All of the string compression schemes (plus using uncompressed

strings) can be applied to the strings of both data structures yielding

a total of 14 variants. We denote them by concatenating the names

of the data structure and the compression scheme, e. g., array for

an array with uncompressed strings or fc block hu for a front coded

dictionary with Huffman-encoded prefixes and suffixes.

Additionally, we implemented four special-purpose variants:

• Inline Front Coding (fc inline): In order to improve sequen-

tial access, we implement a Front Coding variant that stores

the prefix lengths interleaved with the string suffixes.

• Front Coding with Difference to First (fc block df ): In or-

der to trade some space for speed, we implement another

Front Coding variant that stores the suffixes differing from

the first string of a block instead of the difference to the pre-

vious string. Hence decompression of a string essentially

consists of two memcpys.

• Fixed Length Array (array fixed): For very fast access to

small dictionaries, we realized an array implementation that

does not need pointers to the string data. For each string, the

same amount of space is allocated in a consecutive array.

• Column-Wise Bit Compression (column bc): For columns

with strings that all have the same length and a similar struc-

ture, we devised a special compression scheme. First we di-

vide the dictionary into blocks. Then we vertically partition

each block into character columns, which are then bit com-

pressed.

Note that all dictionary variants presented above are order-preserving,

i. e., they do not change the mapping between values and IDs. Futher-

more they all allow access to a single tuple without decompressing

other tuples or even the entire dictionary.

3.4 Evaluation of Dictionary Implementations
In the previous section, several dictionary implementations were

introduced. To evaluate their performance, we test them on several

data sets. We selected the following data sets to cover the most

common cases. More details about them can be found in [33].

• Ascending decimal numbers of length 18, padded with zeros

(asc),

• A list of English words2 (engl),

• Tokens from Google Books3, based on the 1-gram dataset

version 20120701, consisting of all words occurring 3 or

more times, with special characters removed (1gram),

• Salted SHA hashes of passwords, all starting with the same

prefix describing the hash algorithm (hash),

• Material numbers extracted from a customer system (mat),

• Strings of length 10, containing random characters (rand1),

2http://code.google.com/p/shooting-
stars/source/browse/trunk/Collaborative+
Text+Editor/dictionary/fulldictionary00.txt (state: 2013/03/27)
3http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
(state: 2013/04/13)

286



• Strings of variable length, containing random characters (rand2),

• Source code lines, contained in a column of a customer sys-

tem (src), and

• URL templates, extracted from a test system (url).

The implementation is realized in C++. All dictionary variants

are integrated in a unified test framework. The tests are compiled

with GCC 4.3.4 and run on a machine with 24GB of main memory

and two Intel Xeon X5550, each with 4 cores running at 2.67GHz.

The operating system is Ubuntu 10.04 x86_64.
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Figure 3: Trade-off between compression rate and extract run-

times for all dictionary variants on the src data set.

Figure 3 shows the trade-offs between compression rate and ex-

tract runtime of our 18 dictionary implementations on the src data

set. We will show later how these results differ for the other data

sets. The src set contains a lot of redundancy, so almost all com-

pression schemes work as intended. Consequently most of the

implementations are close to a pareto optimal curve, yielding the

expected trade-off between “fast but big” and “small but slow”.

Generally speaking the Front-Coding variants are smaller and con-

siderably slower than their array equivalents with the same string

compression scheme. Similarly the compression schemes range

from very fast and big (uncompressed), over slightly slower but

considerably smaller (ng2, ng3, bc, hu) to maximal compression

with considerably worse performance (rp 12, rp 16). Variants with

ng2, ng3, and bc obviously incur computing overhead compared to

uncompressed schemes, but since their fixed size code words can

be extracted with more CPU friendly code, they are faster than hu

with its variable size codes and much faster than rp 12’s and rp 16’s

grammar evaluation. As expected fc block df is just a bit faster but

larger than fc block, and fc inline is just a bit slower on the random

extracts of this test. Still all three variants of Front Coding have

very similar performance and provide a very interesting trade-off

between space and speed. array fixed and, to quite an extreme ex-

tent, column bc have very unattractive properties on this data set,

since they are factors larger than the data itself (about 2 and 3.5

times respectively) without improving extract performance. How-

ever, their large size is not surprising, since both variants are opti-

mized for fixed length columns, which is not at all given in the src

data set.

While the qualitative message of Figure 3 is representative, the

quantitative picture is quite different on other data sets: For each
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Figure 4: Compression rate of smallest dictionary implementa-

tions on different data sets
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data set, there are “fast but big” and “small but slow” variants and

everything in between. However the variants actually lying on the

pareto optimal curve are considerably different. For example ng2

and ng3 have an interesting trade-off between compression rate and

speed when the entire text only consists of the about 212 − 256 n-

grams that have proper 12-bit codes. However if the text contains

many more n-grams, only backup codes will be used, resulting in

bad, possibly negative compression rates and slower extract run-

times. The bad properties of array fixed and column bc in Figure 3

are other examples.

Figure 4 and Figure 5 show how the best variants for the two

extremes of the trade-off, highest possible compression rate and

fastest possible extract time, vary depending on the data set. The

plots show two generally attractive variants and, for each data set,

the best value achieved by any variant (“Best”). Figure 4 shows

that the best compression rate is often achieved by fc block rp 12,

but in three cases column bc is considerably better — three data

sets with constant string lengths. For all other data sets, column

bc performs very badly: the compressed dictionary is larger than

uncompressed data. In the case of the completely random data of

the rand1 data set, fc block rp 12 also has a compression rate below

1. Figure 5 shows a similar picture for the fastest variants: on most

data sets, the uncompressed variants array and array fixed achieve

the same overall fastest performance, but in some cases array fixed
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is considerably better (again data sets with constant string lengths),

whereas the picture is inverted in other cases.

So far we have only seen the trade-off between size and extract

times. Matters are further complicated if we also take locate and

construction times into account. Due to space constraints, we can-

not present our according findings in this paper, but a more exten-

sive evaluation of the dictionary variants can be found in [33].

3.5 Summary
As our evaluation has shown, there are two challenges in picking

the “right” dictionary variant: First, their characteristics concern-

ing size and access performance heavily depend on the data they

contain. To solve this challenge, we present advanced sampling

techniques in the next section. Second, there are various trade-offs

to pick from and the “best” trade-off depends on the usage pattern

of each particular dictionary instance. In the subsequent Section 5,

we sketch how our compression manager selects a trade-off taking

the state of the database system into account.

4. PREDICTING RUNTIME AND COMPRES-

SION RATE
In this section, we describe a prediction framework that mod-

els the properties of the different dictionary implementations for a

given string column. The predictions of the framework will serve

as the basis for an automatic dictionary selection in the subsequent

section.

4.1 Runtime
We model the runtimes of each of the three methods of a dictio-

nary as a constant time per access (for extract and locate) or time

per tuple (for construction). We determine these constants with

microbenchmarks as the average of the respective runtimes of the

methods on the datasets of Section 3.4. New dictionary variants

can be added simply by determining their constants with the same

benchmarks.

Note that this is a rather simplistic model. However in exper-

iments not presented here, we investigated the accuracy of more

sophisticated models for the runtimes and did not find more robust

runtime predictions. For details we refer to [33]. We conclude that

constant runtimes are a good approximation and leave more precise

modelling as an open question for further research.

4.2 Compression Rate
For estimating the dictionary sizes, we propose more sophisti-

cated models than for the runtime. In particular they preserve the

properties of the compression better than naively compressing a

sample of the strings and extrapolating the resulting size to the en-

tire data set, while being cheaper to calculate.

4.2.1 Compression Models

In the following we give formulas for all variants presented in

Section 3.3, breaking down the size of a dictionary to properties

of the data set that are either known beforehand or can be sam-

pled. Table 1 describes the properties used by the models. The

properties that are later sampled are written in italic. As input we

assume a (sorted) dictionary, which in our case is the output of the

domain encoding of the corresponding string column. If not other-

wise mentioned, all sizes are given in bytes.

First we model the effect of the dictionary class on its size. The

array class dictionaries consist of the (possibly compressed) data of

the entire strings and of pointers to the beginning of the dictionary

Property Description / Sampling Method

# strings Number of strings in the dictionary

|pointer| Platform dependent, usually 4 or 8 byte

# blocks Number of blocks (calculated from # strings)

|block header| Block header size (implementation dependent)

# raw chars Sum of all string lengths

|data| Size of the compressed strings of a dictionary

format

|raw data| Size of the uncompressed strings of a dictio-

nary format

# chars Number of distinct characters in a sample of

strings / suffixes

entropy0 0-order entropy of the characters on a sample

of strings / suffixes

coverage Calculated with # covered n-grams and

|raw data| on sample of strings / suffixes

compr rate Compression rate of Re-Pair on a sample of

strings / suffixes

|max string| Maximum of string lengths of sample of

strings / suffixes

avg block size Average block size of sample of blocks

Table 1: Properties of dictionaries used for the compression

models.

entries. Their size can be calculated as

size = |data|+ # strings · |pointer|

The Front Coding class dictionaries (including fc inline and fc

block df ) only need a pointer per block, but also a block header.

Furthermore, the front coding reduces the number of characters per

block. We calculate their size as

size = |data|+ # blocks · (|pointer|+ |block header|)

Now we model the effect of the string compression schemes

applied to the two dictionary classes. The intent is to first use

the formulas given above to calculate the overhead needed by the

class itself as well as which parts of the strings are stored and then

to calculate independently the space needed by these strings after

string compression. We denote the size of the original string parts

raw data and the size of their compressed form |data|.
For uncompressed strings the size of the data is simply

data = |raw data|

For Bit Compression, every character is replaced by a new code

of size ⌈log
2
# chars⌉ bits if there are # chars distinct characters

in the dictionary. The data size can thus be modelled as

data = |raw data| · 1/8 · ⌈log
2
· # chars⌉

Huffman / Hu-Tucker compression approximates a coding where

each character is assigned a code with a number of bits equal to the

characters order-0 entropy. We assume that the difference due to

rounding is not too big in practice and model the size of Huffman

encoded text as

data = |raw data| · entropy0

We model n-Gram compression with the ratio of n-grams in the

text covered by the 212 − 256 proper (i. e., non-backup) codes. We

call this ratio coverage and calculate it as follows: First we count

the occurrences of all n-grams in the dictionary, select the 212 −
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256 most frequent ones, and calculate the sum of their occurrences

denoted # covered n-grams. coverage can then be calculated as

coverage = # covered n-grams/(|raw data| − n+ 1)

As the compression replaces either n characters (for a covered n-

gram) or a single character (as backup) by a single 12 bit code, we

calculate the size of n-gram compressed data as

data =
12

8
· (

1

n
· coverage + (1− coverage)) · |raw data|

The complex, grammar-based approach of Re-Pair compression

makes it difficult to be modelled precisely. We fall back to assum-

ing a uniform compression rate for the entire dictionary and calcu-

late the size of the compressed data as

data =
|raw data|

compr rate

Finally, we model the special purpose variants in isolation. In the

array fixed variant, all strings take the same space, i. e., the space

of the longest string. We calculate the size of a dictionary as

size = # strings · |longest string|

For column bc, we reduce the size of a dictionary to the average

size of its blocks:

size = # blocks · average block size

The above formulas reduce the size of each dictionary variant

to properties that are either known a priori or can be sampled (see

Table 1). For sampling the properties, we draw samples uniformly

at random with a granularity of dictionary entries or blocks as de-

scribed in the tables. The formulas above are then instantiated with

the sampled properties in order to produce an estimation of the size

of each dictionary variant for a given data set. A new dictionary

variant can be added to the framework by defining an according

model and possibly adding new properties that need to be sampled.

Note that for ease of presentation, some of these formulas are

slightly simplified. In order to make the predictions more precise,

they can be extended for example by corrections for cut-off due to

half-used machine words. For details we refer again to [33].

4.2.2 Evaluation

We now evaluate the accuracy of the predictions of the dictionary

sizes by our framework. In particular we empirically answer the

question of how much sampling is needed to get reasonably good

estimations. To that aim we compare the estimated sizes with the

actual memory consumption and calculate the relative error of the

predictions as

err =

∣

∣

∣

∣

Real Size − Predicted Size

Real Size

∣

∣

∣

∣

We determine this prediction error for all our dictionary variants

and for all data sets of Section 3.4 for a variety of sample sizes. The

result is shown in Figure 6. For a particular sample size, the distri-

bution of errors for all combinations of dictionary variants and data

sets is summarized as a box plot. In this plot, the line inside of each

box indicates the median, the box itself indicates the first and third

quartiles, and the whiskers indicate the closest datum closer than

1.5 times the inter quartile range away from the quartiles, while the

small crosses indicate outliers4.

The first observation concerns the sample size 100%, where the

properties from the previous section are determined precisely and

4This is the default configuration of box plots in R and PGFPlots.
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Figure 6: Prediction error of the compression models

the deviance of the prediction from the actual size is due to a sim-

plification by the model and not due to sampling. The plot shows

that more than 75% of all the predictions are less than 2% off the

correct value and all values except some outliers are off by less than

5%.

We now discuss how sampling affects the prediction error. For

a sample size of 10%, the prediction errors increase with 75% of

all estimations still having an error below 4%. For a sample size of

1%, the estimations become significantly worse. 25% of all esti-

mations now deviate more than 10% from the correct value. While

this may still be acceptable, there is now a high number of outliers

and some of them have extreme errors of 100− 500% (outside the

plotted range). However, these extreme mispredictions stem mostly

from very small dictionaries, where 1% sample size represents too

few entries. We fix this corner case by taking at least 5000 string

into the sample. The last column of the plot shows that we now get

an error of less than 8% in more than 75% of the predictions and

virtually all predictions are less than 20% off. This seems like a

good trade-off between sampling costs and accuracy and is there-

fore used throughout the rest of the paper.

4.3 Summary
The prediction framework presented in this section enables us to

estimate the extract, locate, and construct runtimes as well as the

compression rate of the different dictionary implementations. For

a given string column, this gives us the possibility to choose the

trade-off between speed and space of its dictionary similar to what

Figure 3 shows in Section 3.4. Using sampling, we are able to

greatly reduce the estimation overhead while the precision remains

sufficiently good. Until here our work can be used in a tuning ad-

visor to assist the database administrator in taking the decision of

the format of the most important dictionaries manually. In the fol-

lowing section, we will go a step further and draft a compression
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manager that selects an appropriate dictionary variant completely

automatically.

5. AUTOMATIC SELECTION
In this section, we present the different components of our com-

pression manager, which decides for every string dictionary what

implementation should be used. First we motivate on an intuitive

level how the compression manager should make its decisions. We

then show how we automate these decisions, before giving details

about the different steps involved in the process.

5.1 Problem Statement and Solution Overview
There is a large number of factors that may influence the fact

which dictionary variant is the optimal one for a given string col-

umn. Our aim is to monitor or collect these factors and translate

them into an automatic decision. Intuitively, the following factors

should be taken into account:

• The access pattern of a column is an important factor. Columns

that are accessed very frequently should use a fast dictio-

nary implementation, while mostly passive data should be

compressed more heavily and intermediate cases should have

something in-between. If either locate or extract dominates,

we may want to choose an implementation that optimizes the

relevant method over the other.

• Similarly, update-intensive columns need a string dictionary

supporting fast construction times.

• As discussed in detail in Section 3.4, the properties of the im-

plementations, in particular their compression rate, depend

on the content of the column. Furthermore these properties

may change depending on the hardware.

• The size of the dictionary should also be taken into account.

As we have seen in Figure 2, a very small fraction of the

dictionaries dominates their overall memory consumption.

Compressing these huge dictionaries more heavily is there-

fore beneficial for the overall system. However, the mem-

ory consumption of these large dictionaries should be put

into relation with the memory consumption of the rest of the

column. A dictionary roughly as large as its column vector

should be compressed more than a dictionary whose size is

dominated by its column vector.

Figure 7 summarizes these factors and shows how they are taken

into account for the selection of the dictionary implementation: To

keep the decision reasonably cheap, we reduce the factors local

to the column to the two dimensions space and time. This way

we have a variety of space / time trade-offs to choose from for ev-

ery column provided by the different dictionary variants. The re-

maining factors are reduced to a single, global trade-off parameter,

which is kept up-to-date by the compression manager.

This decouples the local decisions from the global factors: The

compression manager monitors the global factors and asynchronously

updates the trade-off parameter when necessary. Every time a dic-

tionary is reconstructed, this parameter is taken into account by the

selection strategy in order to select an optimal space / time trade-

off.

Furthermore the decisions of the dictionary format of different

columns are also decoupled. This is important because they are

taken at different points in time: Depending on the usage of a table,

the write-optimized stored of the table runs full sooner or later and

needs to be merged into the read-optimized store. This entails a
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Figure 7: Overview of the information taken into account by

the compression manager for selecting the dictionary imple-

mentation.

reconstruction of the dictionaries of the concerned table. The deci-

sion of their format is then simply based on the current value of the

global trade-off parameter.

5.2 Reduction of Dimensionality
We now show how we can reduce all of the above factors to either

the time dimension or the space dimension. In the space dimension,

we have the content of the dictionary and the size of the rest of the

column, i. e., the size of the (compressed) column vector. To reduce

this to a single value, we simply view the column as a single unit

and take the aggregated size of column vector and dictionary.

Formally this can be expressed as follows: Let D be the set of

dictionary implementations, c the column in question, and dict_size(d, c)
the dictionary size of c using implementation d ∈ D. Then the size

of c using d can be calculated as

size(d, c) = dict_size(d, c) + columnvector_size(c)

We suppose that columnvector_size(c) is known, since the

column vector is a product of domain encoding just like the dic-

tionary. dict_size(d, c) can be estimated using the prediction

models described in Section 4.2.

With this definition, the size of the dictionary is put into rela-

tion with the size of the entire column. If the dictionary is small

compared to the table, the size will be dominated by the size of the

column vector. Consequently differences in the compression rate

of different dictionary variants will only have a small influence on

the total column size.

In the time dimension, we have the runtime of the three meth-

ods extract, locate, and construct. Let us assume that during the

lifetime of a single dictionary instance extract and locate are called

#extracts and #locates times respectively and that the dic-

tionary contains #strings entries. Then we can calculate the

total runtime time(d) spent in this dictionary instance:

time(d) =#extracts · timee(d)+

#locates · timel(d)+

#strings · timec(d)

290



The runtimes of the methods, time∗(d), are constants deter-

mined at installation time by microbenchmarks as described in Sec-

tion 4.1. We assume that at the point in time when a new dictionary

is created, the number of calls to the three methods is known or

an approximation can be deduced from the usage statistics of the

corresponding column or table.

As the final value for the time dimension, we normalize this run-

time over the lifetime of the dictionary, lifetime(d). The life-

time of a dictionary corresponds to the time between two periodic

merges of the read-optimized store into the write-optimized store

of the column. Formally this translates to

rel_time(d) =
time(d)

lifetime(d)

With this definition, the construction time of a dictionary is amor-

tized over the lifetime of the object and long living dictionaries can

afford more expensive construction time than those that are recon-

structed frequently.

5.3 Determining the Global Trade-Off Param-
eter

We now describe how a global value for ∆c is determined, the

parameter used to choose a space / time trade-off of the dictionary

format. It is periodically updated by the compression manager,

which monitors the system state, in particular the memory con-

sumption. If the memory consumption is above a certain threshold,

the memory manager decreases the value of ∆c. Dictionaries cre-

ated after this point in time will use implementations favoring small

size a bit more over access speed than before. If on the contrary

the memory consumption is below a certain threshold, the memory

manager increases the value of ∆c. New dictionaries will now use

faster implementations instead.

One can describe this process as a closed loop feedback control

system. The reference input is the desired amount of free memory.

The measured output is the currently available free memory. In or-

der to avoid over-shooting, this value is smoothed before feedback.

Using the difference between the (smoothed) measured and the de-

sired amount of free memory, the compression manager can then

decide to adjust ∆c. Figure 8 illustrates the feedback loop.

Compression
Manager

Database
System

Workload

∆c

Smoothing

Desired
Free

Memory Error

Free
Memory

−

(Smoothed)
Free Memory

Figure 8: Feedback loop to configure ∆c.

Now that we have defined the global trade-off parameter ∆c, we

can select a dictionary variant. The following section will introduce

several possible selection strategies.

5.4 Trade-Off Selection Strategy
In this section we incrementally develop a strategy to use the

global trade-off parameter to locally select a space / time trade-off

provided by the different dictionary implementations for a given

column. The main idea is similar to the approach of Lemke et al.

[28]: To select a space / time trade-off for their data structure, they

use the fastest variant that is not larger than the smallest variant

plus a fraction of ∆c. While they have a fixed value for ∆c, we let

the compression manager control this value. Furthermore, they do

not take access frequency into account.

For a first, illustrative approach, we apply this principle in a naive

manner to the trade-off introduced above. Let D, c, and size(d, c)
be defined as above. Then the size of the smallest dictionary variant

sizemin can be formalized as

sizemin = min
d∈D

(size(d, c))

and the set D̃const of variants not larger than sizemin plus a fraction

of ∆c can be formalized as

D̃const = {d ∈ D | size(d, c) ≤ (1 + ∆c) · sizemin}

We can now formally introduce tradeoff_strategyconst,

which selects the smallest variant from D̃const, as

tradeoff_strategyconst(c) = argmin
d∈D̃const

(rel_time(d))

To illustrate tradeoff_strategyconst, Figure 9 shows a pos-

sible dictionary performance distribution. It was generated using

the src input file and arbitrarily chosen extract and locate frequen-

cies, as well as an arbitrarily chosen merge interval. Absolute size

values are not relevant for illustration purposes and are therefore

omitted. Each point represents a dictionary variant, the diamond

corresponds to the dictionary variant with the smallest size. The

parameter ∆c can be seen as a dividing line, separating “allowed”

dictionary variants (included) from “too big” ones (excluded). All

points below this line correspond to dictionary variants with a com-

pression rate high enough to fulfill the size requirement defined by

∆c. From these variants, we choose the one with the lowest run-

time, i. e., the leftmost one, plotted as a black dot.
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Figure 9: Possible distribution of dictionary performances.

While this naive approach may look convincing on first sight, it

does not fulfill important design goals set forth at the beginning of

this section. Note that D̃const only depends on the sizes of the dic-

tionaries and not on the access frequency of the column. In terms

of the plot, changing frequencies only scale the plot on the x-axis

and (through a changing mix of the methods extract, locate, and

construct) potentially the relative order of the dictionary variants.

D̃const however is invariant to changes on the x-axis, so the allowed

size of variants is not increased by higher access rates.

To address this issue, we extend the principle from Lemke et al.

to take access frequencies into account. We keep the general idea

to define a subset of the dictionary variants and then to select the

fastest one of this subset. But we generalize the approach to use a
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subset defined by an arbitrary dividing function. For any function

f , we define D̃f as

D̃f = {d ∈ D | size(d, c) ≤ f (rel_time(d))}

and we define tradeoff_strategyf (c), the corresponding se-

lection strategy, as

tradeoff_strategyf (c) = argmin
d∈D̃f

(rel_time(d))

The naive approach with a constant offset naturally fits into this

definition with f(t) = fconst(t) = (1+∆c)·sizemin. Furthermore

we propose two other strategies that take the access frequency into

account. Both of them define f in terms of the smallest dictionary

variant dmin.

• tradeoff_strategyrel shifts the dividing line up by a

multiple of rel_time(dmin), the runtime of the smallest

dictionary variant. It is defined with f = frel with

frel(t) = (1+∆c·(1+rel_time(dmin)·α))·size(dmin, c)

where α is a configuration parameter. Note that frel = fconst

for α = 0. Since a higher access frequency of the dictionary

increases size(dmin, c), the size threshold for dictionaries

in D̃ is also increased.

• tradeoff_strategytilt tilts the dividing line in favor of

faster but bigger variants than dmin. In order insure that we

include more dictionaries than with fconst, we define ftilt such

that it crosses fconst at the x-value of dmin, i. e., we define ftilt

as

f(t) = −α · rel_time(dmin) · t+ b

such that b is defined by the equation f (rel_time(dmin)) =
(1 + ∆c) · sizemin. Again α is a configuration parameter

that specifies the slope of f .

The last open question is how to choose the parameter α used

in both above functions. It adjusts how much the new dividing

function differs from the dividing line defined by fconst. There are

at least the following two possibilities:

• Experiment with different values for α and try to find a good

trade-off for dictionaries with high access frequencies, or

• Add another constraint to the function f(t) that defines α.

We opt for the latter using the following intuitive constraint: if the

runtime of the smallest dictionary variant is greater than or equal

to 100% of the available time until the next merge operation, the

fastest dictionary variant should be chosen. Formally this trans-

lates into setting rel_time(dmin) = 1 and solving the equation

f(rel_time(dspeed)) = size(dspeed) for α, where dspeed is the

fastest dictionary variant. Note that for tradeoff_strategyrel,

this constraint cannot be applied for ∆c = 0 since in this case frel

is a constant function (equal to the old dividing line).

5.5 Summary
As presented in this section, the compression manager takes the

decision of the dictionary format of a column in two steps: On a

global level it maintains a trade-off parameter ∆c indicating the

need of the overall system to trade space for speed. On a local

level upon dictionary reconstruction, it maps all characteristics of

a column to the dimensions space and time and uses ∆c to select a

trade-off between the two dimensions. The next section shows how

this works in practice.

6. EVALUATION
In this section, we evaluate an off-line prototype of the compres-

sion manager, which is implemented in the following way: The

characteristics about the lifetime, the number of calls to extract

and locate, and size estimations of every dictionary instance are

determined while running a representative workload on an instru-

mented version of the SAP HANA database. This information is

then be combined to produce a configuration of the system for a

given ∆c, i. e., a mapping of columns to dictionary formats, using

the tradeoff_strategytilt of Section 5. When the system is

restarted the next time, the according formats are used upon con-

struction of each dictionary. We believe that the same approach can

be used for an online decision.

6.1 Test Setup
We base our experiments on a slightly modified version of the

TPC-H benchmark [15]. In particular we modify the schema in the

following way: We change the type of all key columns, i. e., all

columns whose names end with KEY such as C_CUSTKEY, from

INT to VARCHAR(10). This reflects our observations from Sec-

tion 1, suggesting that real-world business applications use strings

for a large fraction of columns including key columns. Since the

data of the TPC-H benchmark is synthetic, the achieved compres-

sion rates need a careful interpretation, but it allows us to show

the most important point of our work, the adaptive selection of the

dictionary formats. We use scale factor 1 in the experiments pre-

sented here, but punctual comparisons with other scale factors did

not reveal significant differences.

For the experiments in this section, we use the same hardware as

in Section 3.4.

6.2 Experimental Results
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Figure 10: Space / time trade-off of different dictionary format

selection strategies on queries of the TPC-H benchmark.

We now study the effect of the dictionary configuration on the

runtime of the TPC-H queries and the size of the dictionaries. Fig-

ure 10 shows our results. Every point on the plot represents a

space / time trade-off of one configuration: The space dimension is

the total memory consumption of the TPC-H tables, including col-

umn vector and dictionary. The time dimension is the sum of the
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medians of 100 executions of each of the 22 queries. Both dimen-

sions are normalized against fc inline. Each such point is produced

by configuring and restarting the system as described above, then

running the workload and measuring time and space consumption.

The results of configurations with a fixed format for all dictionar-

ies correspond to the results of the microbenchmarks in Section 3.4:

We have “fast but big” formats like array fixed and array, balanced

formats like fc block and fc inline, and “small but slow” formats

like fc block rp 12/16. They seem to form a pareto-optimal curve,

which dominates some “big and slow” formats but does not reach

the “fast and small” region of the plot. column bc is outside of the

plot. There is a difference in the end-to-end runtime of roughly

25% between the fastest and the slowest format and difference in

the total memory consumption of factor 3.5, confirming the impor-

tance of the dictionary format.

The same plot also shows workload-driven configurations pro-

duced by our compression manager for a logarithmic range be-

tween 10
−3 and 10 as values of ∆c. The workload we use to trace

the lifetime and the calls to extract and locate consists of 100 repe-

titions of all TPC-H queries, which minimizes the influence of the

construction time.

The plot shows that all workload-driven configurations are closer

to the “fast and small” region than any single format. For every

fixed-format configuration, there is a workload-driven configura-

tion that is smaller while maintaining the same speed and another

one that is faster while maintaining the same size. For example the

most balanced format in this plot, fc block, is outperformed by a

roughly 10% faster configuration of the same size and its perfor-

mance can be achieved with a configuration using only two thirds

of its space. This shows the benefit of adapting the compression

format to the workload. Last but not least, the plot also shows

that the space / time trade-off of a configuration produced by the

compression manager can be controlled by varying ∆c, making it

suitable as “trade-off knob”.

We now analyze what dictionary formats the compression man-

ager selected depending on ∆c in order to understand how the dif-

ferent trade-offs were achieved. Figure 11 shows how ∆c affects

the distribution of the dictionary formats: Starting from very small

values of ∆c, i. e., the most heavily compressing configurations,

the pointer-free format array fixed is used for a large fraction of

the dictionaries. The reason is that this is actually the smallest for-

mat for the numerous columns with very low cardinalities such as

C_MKTSEGMENT thanks to its small constant overhead. For small

values of ∆c, we can also observe the largest diversification of

formats. This suggests that the compression manager successfully

identified specialized dictionary formats thanks to the compression

models. As ∆c increases, the usage of heavily compressing formats

such as fc block rp 12/16 and (on specific data) column bc declines

more and more in favor of more balanced formats such as fc block

df. Towards the end of the largest values of ∆c, even these formats

are more and more replaced by the fastest one, array fixed, which

finally accounts for all columns. All in all, the selections of the

compression manager presented in Figure 11 provide an intuitive

explanation for the performance presented in Figure 10.

7. SUMMARY
In this paper we studied the question of how to adaptively com-

press the string dictionaries of in-memory column-store database

systems. Our analysis of real-world business applications showed

that strings are more commonly used than previously thought. In

alignment with the requirement of single tuple access of in-memory

column-stores, we studied a broad variety of compressed dictionary

formats. We found that for a single dictionary, there is always a
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Figure 11: Dictionary formats selected by the compression

manager for the TPC-H columns depending on the value of ∆c.

trade-off between access time, construction time, and space con-

sumption.

In order to improve the space / time trade-off of the overall sys-

tem, we built a compression manager automatically selecting the

most appropriate dictionary format for every column, based on char-

acteristics of the data, usage pattern of the column, and overall

system state. The compression manager uses elaborate compres-

sion models allowing to predict the size of a dictionary format for

a given data set using only a small sample of the data. Further-

more we showed how to decouple local information needed for the

format selection from the global information in order to keep the

decision cheap.

We confirmed the approach of our compression manager with

experiments on a slightly modified TPC-H benchmark. We showed

that the adaptive compression can improve overall performance by

10% using the same space than the most balanced single dictionary

format or reduce the over space consumption to 60% while main-

taining the performance of the single format.
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