
Journal of Artificial Intelligence Research 42 (2011) 427-486 Submitted 1/11; published 11/11

Adaptive Submodularity: Theory and Applications in Active Learning

and Stochastic Optimization

Daniel Golovin DGOLOVIN@CALTECH.EDU

California Institute of Technology

Pasadena, CA 91125, USA

Andreas Krause KRAUSEA@ETHZ.CH

Swiss Federal Institute of Technology

8092 Zurich, Switzerland

Abstract

Many problems in artificial intelligence require adaptively making a sequence of decisions with

uncertain outcomes under partial observability. Solving such stochastic optimization problems

is a fundamental but notoriously difficult challenge. In this paper, we introduce the concept of

adaptive submodularity, generalizing submodular set functions to adaptive policies. We prove

that if a problem satisfies this property, a simple adaptive greedy algorithm is guaranteed to be

competitive with the optimal policy. In addition to providing performance guarantees for both

stochastic maximization and coverage, adaptive submodularity can be exploited to drastically speed

up the greedy algorithm by using lazy evaluations. We illustrate the usefulness of the concept

by giving several examples of adaptive submodular objectives arising in diverse AI applications

including management of sensing resources, viral marketing and active learning. Proving adaptive

submodularity for these problems allows us to recover existing results in these applications as

special cases, improve approximation guarantees and handle natural generalizations.

1. Introduction

In many problems arising in artificial intelligence one needs to adaptively make a sequence of deci-

sions, taking into account observations about the outcomes of past decisions. Often these outcomes

are uncertain, and one may only know a probability distribution over them. Finding optimal policies

for decision making in such partially observable stochastic optimization problems is notoriously in-

tractable (see, e.g. Littman, Goldsmith, & Mundhenk, 1998). A fundamental challenge is to identify

classes of planning problems for which simple solutions obtain (near-) optimal performance.

In this paper, we introduce the concept of adaptive submodularity, and prove that if a partially

observable stochastic optimization problem satisfies this property, a simple adaptive greedy algo-

rithm is guaranteed to obtain near-optimal solutions. In fact, under reasonable complexity-theoretic

assumptions, no polynomial time algorithm is able to obtain better solutions in general. Adaptive

submodularity generalizes the classical notion of submodularity1, which has been successfully used

to develop approximation algorithms for a variety of non-adaptive optimization problems. Submod-

ularity, informally, is an intuitive notion of diminishing returns, which states that adding an element

to a small set helps more than adding that same element to a larger (super-) set. A celebrated result of

the work of Nemhauser, Wolsey, and Fisher (1978) guarantees that for such submodular functions,

a simple greedy algorithm, which adds the element that maximally increases the objective value,

1. For an extensive treatment of submodularity, see the books of Fujishige (2005) and Schrijver (2003).

c©2011 AI Access Foundation. All rights reserved.

427

GOLOVIN & KRAUSE

selects a near-optimal set of k elements. Similarly, it is guaranteed to find a set of near-minimal

cost that achieves a desired quota of utility (Wolsey, 1982), using near-minimum average time to do

so (Streeter & Golovin, 2008). Besides guaranteeing theoretical performance bounds, submodular-

ity allows us to speed up algorithms without loss of solution quality by using lazy evaluations (Mi-

noux, 1978), often leading to performance improvements of several orders of magnitude (Leskovec,

Krause, Guestrin, Faloutsos, VanBriesen, & Glance, 2007). Submodularity has been shown to be

very useful in a variety of problems in artificial intelligence (Krause & Guestrin, 2009a).

The challenge in generalizing submodularity to adaptive planning — where the action taken in

each step depends on information obtained in the previous steps — is that feasible solutions are

now policies (decision trees or conditional plans) instead of subsets. We propose a natural gener-

alization of the diminishing returns property for adaptive problems, which reduces to the classical

characterization of submodular set functions for deterministic distributions. We show how these

results of Nemhauser et al. (1978), Wolsey (1982), Streeter and Golovin (2008), and Minoux (1978)

generalize to the adaptive setting. Hence, we demonstrate how adaptive submodular optimization

problems enjoy theoretical and practical benefits similar to those of classical, nonadaptive submod-

ular problems. We further demonstrate the usefulness and generality of the concept by showing

how it captures known results in stochastic optimization and active learning as special cases, admits

tighter performance bounds, leads to natural generalizations and allows us to solve new problems

for which no performance guarantees were known.

As a first example, consider the problem of deploying (or controlling) a collection of sensors to

monitor some spatial phenomenon. Each sensor can cover a region depending on its sensing range.

Suppose we would like to find the best subset of k locations to place the sensors. In this application,

intuitively, adding a sensor helps more if we have placed few sensors so far and helps less if we have

already placed many sensors. We can formalize this diminishing returns property using the notion

of submodularity – the total area covered by the sensors is a submodular function defined over all

sets of locations. Krause and Guestrin (2007) show that many more realistic utility functions in

sensor placement (such as the improvement in prediction accuracy w.r.t. some probabilistic model)

are submodular as well. Now consider the following stochastic variant: Instead of deploying a fixed

set of sensors, we deploy one sensor at a time. With a certain probability, deployed sensors can fail,

and our goal is to maximize the area covered by the functioning sensors. Thus, when deploying

the next sensor, we need to take into account which of the sensors we deployed in the past failed.

This problem has been studied by Asadpour, Nazerzadeh, and Saberi (2008) for the case where

each sensor fails independently at random. In this paper, we show that the coverage objective is

adaptive submodular, and use this concept to handle much more general settings (where, e.g., rather

than all-or-nothing failures there are different types of sensor failures of varying severity). We also

consider a related problem where the goal is to place the minimum number of sensors to achieve the

maximum possible sensor coverage (i.e., the coverage obtained by deploying sensors everywhere),

or more generally the goal may be to achieve any fixed percentage of the maximum possible sensor

coverage. Under the first goal, the problem is equivalent to one studied by Goemans and Vondrák

(2006), and generalizes a problem studied by Liu, Parthasarathy, Ranganathan, and Yang (2008).

As with the maximum coverage version, adaptive submodularity allows us to recover and generalize

previous results.

As another example, consider a viral marketing problem, where we are given a social network,

and we want to influence as many people as possible in the network to buy some product. We do that

by giving the product for free to a subset of the people, and hope that they convince their friends

428

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

to buy the product as well. Formally, we have a graph, and each edge e is labeled by a number

0 ≤ pe ≤ 1. We “influence” a subset of nodes in the graph, and for each influenced node, their

neighbors get randomly influenced according to the probability annotated on the edge connecting

the nodes. This process repeats until no further node gets influenced. Kempe, Kleinberg, and

Tardos (2003) show that the set function which quantifies the expected number of nodes influenced

is submodular. A natural stochastic variant of the problem is where we pick a node, get to see

which nodes it influenced, then adaptively pick the next node based on these observations and so

on. We show that a large class of such adaptive influence maximization problems satisfies adaptive

submodularity.

Our third application is in active learning, where we are given an unlabeled data set, and we

would like to adaptively pick a small set of examples whose labels imply all other labels. The same

problem arises in automated diagnosis, where we have hypotheses about the state of the system (e.g.,

what illness a patient has), and would like to perform tests to identify the correct hypothesis. In both

domains we want to pick examples / tests to shrink the remaining version space (the set of consistent

hypotheses) as quickly as possible. Here, we show that the reduction in version space probability

mass is adaptive submodular, and use that observation to prove that the adaptive greedy algorithm

is a near-optimal querying policy, recovering and generalizing results by Kosaraju, Przytycka, and

Borgstrom (1999) and Dasgupta (2004). Our results for active learning and automated diagnosis

are also related to recent results of Guillory and Bilmes (2010, 2011) who study generalizations of

submodular set cover to an interactive setting. In contrast to our approach however, Guillory and

Bilmes analyze worst-case costs, and use rather different technical definitions and proof techniques.

We summarize our main contributions below, and provide a more technical summary in Table 1.

At a high level, our main contributions are:

• We consider a particular class of partially observable adaptive stochastic optimization prob-

lems, which we prove to be hard to approximate in general.

• We introduce the concept of adaptive submodularity, and prove that if a problem instance sat-

isfies this property, a simple adaptive greedy policy performs near-optimally, for both adaptive

stochastic maximization and coverage, and also a natural min-sum objective.

• We show how adaptive submodularity can be exploited by allowing the use of an accelerated

adaptive greedy algorithm using lazy evaluations, and how we can obtain data-dependent

bounds on the optimum.

• We illustrate adaptive submodularity on several realistic problems, including Stochastic Max-

imum Coverage, Stochastic Submodular Coverage, Adaptive Viral Marketing, and Active

Learning. For these applications, adaptive submodularity allows us to recover known results

and prove natural generalizations.

1.1 Organization

This article is organized as follows. In §2 (page 430) we set up notation and formally define the rel-

evant adaptive optimization problems for general objective functions. For the reader’s convenience,

we have also provided a reference table of important symbols on page 480. In §3 (page 433) we re-

view the classical notion of submodularity and introduce the novel adaptive submodularity property.

429

GOLOVIN & KRAUSE

Name New Results Location

A.S. Maximization Tight (1− 1/e)-approx. for A.M.S. objectives §5.1,

page 438

A.S. Min Cost Coverage Tight logarithmic approx. for A.M.S. objectives §5.2,

page 440

A.S. Min Sum Cover Tight 4-approx. for A.M.S. objectives §5.3,

page 443

Data Dependent Bounds Generalization to A.M.S. functions §5.1,

page 438

Accelerated Greedy Generalization of lazy evaluations to the adaptive setting §4, page 436

Stochastic Submodular

Maximization

Generalization of the previous (1 − 1/e)-approx. to

arbitrary per–item set distributions, and to item costs

§6, page 445

Stochastic Set Cover Generalization of the previous (ln(n) + 1)-approx. to

arbitrary per-item set distributions, with item costs

§7, page 446

Adaptive Viral

Marketing

Adaptive analog of previous (1− 1/e)-approx. for non-

adaptive viral marketing, under more general reward

functions; tight logarithmic approx. for the adaptive min

cost cover version

§8, page 448

Active Learning Improved approx. factor of generalized binary search

and its approximate versions with and without item costs

§9, page 454

Hardness in the absence

of Adapt. Submodularity

Ω(|E|1−ǫ)-approximation hardness for A.S. Maximiza-

tion, Min Cost Coverage, and Min-Sum Cover, if f is

not adaptive submodular.

§12,

page 464

Table 1: Summary of our theoretical results. A.S. is shorthand for “adaptive stochastic”, and A.M.S.

is shorthand for “adaptive monotone submodular.”

In §4 (page 436) we introduce the adaptive greedy policy, as well as an accelerated variant. In §5

(page 438) we discuss the theoretical guarantees that the adaptive greedy policy enjoys when applied

to problems with adaptive submodular objectives. Sections 6 through 9 provide examples on how to

apply the adaptive submodular framework to various applications, namely Stochastic Submodular

Maximization (§6, page 445), Stochastic Submodular Coverage (§7, page 446), Adaptive Viral Mar-

keting (§8, page 448), and Active Learning (§9, page 454). In §10 (page 459) we report empirical

results on two sensor selection problems. In §11 (page 462) we discuss the adaptivity gap of the

problems we consider, and in §12 (page 464) we prove hardness results indicating that problems

which are not adaptive submodular can be extremely inapproximable under reasonable complexity

assumptions. We review related work in §13 (page 465) and provide concluding remarks in §14

(page 467). The Appendix (page 468) gives details of how to incorporate item costs and includes

all of the proofs omitted from the main text.

2. Adaptive Stochastic Optimization

We start by introducing notation and defining the general class of adaptive optimization problems

that we address in this paper. For sake of clarity, we will illustrate our notation using the sensor

placement application mentioned in §1. We give examples of other applications in §6, §7, §8, and §9.

430

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

2.1 Items and Realizations

Let E be a finite set of items (e.g., sensor locations). Each item e ∈ E is in a particular (initially

unknown) state from a set O of possible states (describing whether a sensor placed at location e
would malfunction or not). We represent the item states using a function φ : E → O, called a

realization (of the states of all items in the ground set). Thus, we say that φ(e) is the state of e
under realization φ. We use Φ to denote a random realization. We take a Bayesian approach and

assume that there is a known prior probability distribution p (φ) := P [Φ = φ] over realizations (e.g.,

modeling that sensors fail independently with failure probability), so that we can compute posterior

distributions2. We will consider problems where we sequentially pick an item e ∈ E, get to see

its state Φ(e), pick the next item, get to see its state, and so on (e.g., place a sensor, see whether it

fails, and so on). After each pick, our observations so far can be represented as a partial realization

ψ, a function from some subset of E (i.e., the set of items that we already picked) to their states

(e.g., ψ encodes where we placed sensors and which of them failed). For notational convenience,

we sometimes represent ψ as a relation, so that ψ ⊆ E ×O equals {(e, o) : ψ(e) = o}. We use the

notation dom(ψ) = {e : ∃o.(e, o) ∈ ψ} to refer to the domain of ψ (i.e., the set of items observed

in ψ). A partial realization ψ is consistent with a realization φ if they are equal everywhere in the

domain of ψ. In this case we write φ ∼ ψ. If ψ and ψ′ are both consistent with some φ, and

dom(ψ) ⊆ dom(ψ′), we say ψ is a subrealization of ψ′. Equivalently, ψ is a subrealization of ψ′ if

and only if, when viewed as relations, ψ ⊆ ψ′.

Partial realizations are similar to the notion of “belief states” in Partially Observable Markov

Decision Problems (POMDPs), as they encode the effect of all actions taken (items selected) and

observations made, and determine our posterior belief about the state of the world (i.e., the state of

all items e not yet selected, p (φ | ψ) := P [Φ = φ | Φ ∼ ψ]).

2.2 Policies

We encode our adaptive strategy for picking items as a policy π, which is a function from a set of

partial realizations to E, specifying which item to pick next under a particular set of observations

(e.g., π chooses the next sensor location given where we have placed sensors so far, and whether they

failed or not). We also allow randomized policies that are functions from a set of partial realizations

to distributions on E, though our emphasis will primarily be on deterministic policies. If ψ is not in

the domain of π, the policy terminates (stops picking items) upon observation of ψ. We use dom(π)
to denote the domain of π. Technically, we require that dom(π) be closed under subrealizations.

That is, if ψ′ ∈ dom(π) and ψ is a subrealization of ψ′ then ψ ∈ dom(π). We use the notation

E(π, φ) to refer to the set of items selected by π under realization φ. Each deterministic policy π
can be associated with a decision tree T π in a natural way (see Fig. 1 for an illustration). Here, we

adopt a policy-centric view that admits concise notation, though we find the decision tree view to

be valuable conceptually.

Since partial realizations are similar to POMDP belief states, our definition of policies is similar

to the notion of policies in POMDPs, which are usually defined as functions from belief states

to actions. We will further discuss the relationship between the stochastic optimization problems

considered in this paper and POMDPs in Section 13.

2. In some situations, we may not have exact knowledge of the prior p (φ). Obtaining algorithms that are robust to

incorrect priors remains an interesting source of open problems. We briefly discuss some robustness guarantees of

our algorithm in §4 on page 437.

431

GOLOVIN & KRAUSE

Figure 1: Illustration of a policy π, its corresponding decision tree representation, and the decision

tree representation of π[2], the level 2 truncation of π (as defined in §5.1).

2.3 Adaptive Stochastic Maximization, Coverage, and Min-Sum Coverage

We wish to maximize, subject to some constraints, a utility function f : 2E × OE → R≥0 that

depends on which items we pick and which state each item is in (e.g., modeling the total area

covered by the working sensors). Based on this notation, the expected utility of a policy π is

favg(π) := E [f(E(π,Φ),Φ)] where the expectation is taken with respect to p (φ). The goal of the

Adaptive Stochastic Maximization problem is to find a policy π∗ such that

π∗ ∈ argmax
π

favg(π) subject to |E(π, φ)| ≤ k for all φ, (2.1)

where k is a budget on how many items can be picked (e.g., we would like to adaptively choose k
sensor locations such that the working sensors provide as much information as possible in expecta-

tion).

Alternatively, we can specify a quota Q of utility that we would like to obtain, and try to find the

cheapest policy achieving that quota (e.g., we would like to achieve a certain amount of information,

as cheaply as possible in expectation). Formally, we define the average cost cavg(π) of a policy as

the expected number of items it picks, so that cavg(π) := E [|E(π,Φ)|]. Our goal is then to find

π∗ ∈ argmin
π

cavg(π) such that f(E(π, φ), φ) ≥ Q for all φ, (2.2)

i.e., the policy π∗ that minimizes the expected number of items picked such that under all possible

realizations, at least utility Q is achieved. We call Problem 2.2 the Adaptive Stochastic Minimum

Cost Cover problem. We will also consider the problem where we want to minimize the worst-case

cost cwc(π) := maxφ |E(π, φ)|. This worst-case cost cwc(π) is the cost incurred under adversarially

chosen realizations, or equivalently the depth of the deepest leaf in T π, the decision tree associated

with π.

Yet another important variant is to minimize the average time required by a policy to obtain

its utility. Formally, let u(π, t) be the expected utility obtained by π after t steps3, let Q =
E [f(E,Φ)] be the maximum possible expected utility, and define the min-sum cost cΣ(π) of a

policy as cΣ(π) :=
∑∞

t=0 (Q− u(π, t)). We then define the Adaptive Stochastic Min-Sum Cover

problem as the search for

π∗ ∈ argmin
π

cΣ(π) . (2.3)

3. For a more formal definition of u(π, t), see §A.5 on page 478.

432

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

Unfortunately, as we will show in §12, even for linear functions f , i.e., those where f(A, φ) =
∑

e∈Awe,φ is simply the sum of weights (depending on the realization φ), Problems (2.1), (2.2),

and (2.3) are hard to approximate under reasonable complexity theoretic assumptions. Despite the

hardness of the general problems, in the following sections we will identify conditions that are

sufficient to allow us to approximately solve them.

2.4 Incorporating Item Costs

Instead of quantifying the cost of a set E(π, φ) by the number of elements |E(π, φ)|, we can also

consider the case where each item e ∈ E has a cost c(e), and the cost of a set S ⊆ E is c(S) =
∑

e∈S c(e). We can then consider variants of Problems (2.1), (2.2), and (2.3) with the |E(π, φ)|
replaced by c(E(π, φ)). For clarity of presentation, we will focus on the unit cost case, i.e., c(e) = 1
for all e, and explain how our results generalize to the non-uniform case in the Appendix.

3. Adaptive Submodularity

We first review the classical notion of submodular set functions, and then introduce the novel notion

of adaptive submodularity.

3.1 Background on Submodularity

Let us first consider the very special case where p (φ) is deterministic or, equivalently, |O| = 1
(e.g., in our sensor placement applications, sensors never fail). In this case, the realization φ is

known to the decision maker in advance, and thus there is no benefit in adaptive selection. Given

the realization φ, Problem (2.1) is equivalent to finding a set A∗ ⊆ E such that

A∗ ∈ argmax
A⊆E

f(A, φ) such that |A| ≤ k. (3.1)

For most interesting classes of utility functions f , this is an NP-hard optimization problem. How-

ever, in many practical problems, such as those mentioned in §1, f(A) = f(A, φ) satisfies submod-

ularity. A set function f : 2E → R is called submodular if, whenever A ⊆ B ⊆ E and e ∈ E \ B
it holds that

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B), (3.2)

i.e., adding e to the smaller set A increases f by at least as much as adding e to the superset B.

Furthermore, f is called monotone, if, whenever A ⊆ B it holds that f(A) ≤ f(B) (e.g., adding

a sensor can never reduce the amount of information obtained). A celebrated result by Nemhauser

et al. (1978) states that for monotone submodular functions with f(∅) = 0, a simple greedy algo-

rithm that starts with the empty set, A0 = ∅ and chooses

Ai+1 = Ai ∪ {argmax
e∈E\Ai

f(Ai ∪ {e})} (3.3)

guarantees that f(Ak) ≥ (1− 1/e)max|A|≤k f(A). Thus, the greedy set Ak obtains at least a (1−
1/e) fraction of the optimal value achievable using k elements. Furthermore, Feige (1998) shows

that this result is tight if P �= NP; under this assumption no polynomial time algorithm can do strictly

better than the greedy algorithm, i.e., achieve a (1−1/e+ ǫ)-approximation for any constant ǫ > 0,

even for the special case of Maximum k-Cover where f(A) is the cardinality of the union of sets

433

GOLOVIN & KRAUSE

indexed by A. Similarly, Wolsey (1982) shows that the same greedy algorithm also near-optimally

solves the deterministic case of Problem (2.2), called the Minimum Submodular Cover problem:

A∗ ∈ argmin
A⊆E

|A| such that f(A) ≥ Q. (3.4)

Pick the first set Aℓ constructed by the greedy algorithm such that f(Aℓ) ≥ Q. Then, for integer-

valued submodular functions, ℓ is at most |A∗|(1 + logmaxe f(e)), i.e., the greedy set is at most a

logarithmic factor larger than the smallest set achieving quota Q. For the special case of Set Cover,

where f(A) is the cardinality of a union of sets indexed by A, this result matches a lower bound

by Feige (1998): Unless NP ⊆ DTIME(nO(log logn)), Set Cover is hard to approximate by a factor

better than (1− ε) lnQ, where Q is the number of elements to be covered.

Now let us relax the assumption that p (φ) is deterministic. In this case, we may still want to

find a non-adaptive solution (i.e., a constant policy πA that always picks set A independently of

Φ) maximizing favg(πA). If f is pointwise submodular, i.e., f(A, φ) is submodular in A for any

fixed φ, the function f(A) = favg(πA) is submodular, since nonnegative linear combinations of

submodular functions remain submodular. Thus, the greedy algorithm allows us to find a near-

optimal non-adaptive policy. That is, in our sensor placement example, if we are willing to commit

to all locations before finding out whether the sensors fail or not, the greedy algorithm can provide

a good solution to this non-adaptive problem.

However, in practice, we may be more interested in obtaining a non-constant policy π, that

adaptively chooses items based on previous observations (e.g., takes into account which sensors are

working before placing the next sensor). In many settings, selecting items adaptively offers huge

advantages, analogous to the advantage of binary search over sequential (linear) search4. Thus, the

question is whether there is a natural extension of submodularity to policies. In the following, we

will develop such a notion – adaptive submodularity.

3.2 Adaptive Monotonicity and Submodularity

The key challenge is to find appropriate generalizations of monotonicity and of the diminishing

returns condition (3.2). We begin by again considering the very special case where p (φ) is de-

terministic, so that the policies are non-adaptive. In this case a policy π simply specifies a se-

quence of items (e1, e2, . . . , er) which it selects in order. Monotonicity in this context can be

characterized as the property that “the marginal benefit of selecting an item is always nonnega-

tive,” meaning that for all such sequences (e1, e2, . . . , er), items e and 1 ≤ i ≤ r it holds that

f({ej : j ≤ i} ∪ {e}) − f({ej : j ≤ i}) ≥ 0. Similarly, submodularity can be viewed as the

property that “selecting an item later never increases its marginal benefit,” meaning that for all

sequences (e1, e2, . . . , er), items e, and all i ≤ r, f({ej : j ≤ i} ∪ {e}) − f({ej : j ≤ i}) ≥
f({ej : j ≤ r} ∪ {e})− f({ej : j ≤ r}).

We take these views of monotonicity and submodularity when defining their adaptive analogues,

by using an appropriate generalization of the marginal benefit. When moving to the general adaptive

setting, the challenge is that the items’ states are now random and only revealed upon selection. A

natural approach is thus to condition on observations (i.e., partial realizations of selected items),

and take the expectation with respect to the items that we consider selecting. Hence, we define our

4. We provide a well–known example in active learning that illustrates this phenomenon crisply in §9; see Fig. 4 on

page 454. We consider the general question of the magnitude of the potential benefits of adaptivity in §11 on page 462

.

434

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

adaptive monotonicity and submodularity properties in terms of the conditional expected marginal

benefit of an item.

Definition 3.1 (Conditional Expected Marginal Benefit). Given a partial realization ψ and an

item e, the conditional expected marginal benefit of e conditioned on having observed ψ, denoted

∆(e |ψ), is

∆(e |ψ) := E

[

f(dom(ψ) ∪ {e} ,Φ)− f(dom(ψ),Φ)

∣

∣

∣

∣

Φ ∼ ψ

]

(3.5)

where the expectation is computed with respect to p (φ | ψ) = P [Φ = φ | Φ ∼ ψ]. Similarly, the

conditional expected marginal benefit of a policy π is

∆(π |ψ) := E

[

f(dom(ψ) ∪ E(π,Φ),Φ)− f(dom(ψ),Φ)

∣

∣

∣

∣

Φ ∼ ψ

]

. (3.6)

In our sensor placement example, ∆(e |ψ) quantifies the expected amount of additional area cov-

ered by placing a sensor at location e, in expectation over the posterior distribution pΦ(e)(o) :=
P [Φ(e) = o | Φ ∼ ψ] of whether the sensor will fail or not, and taking into account the area cov-

ered by the placed working sensors as encoded by ψ. Note that the benefit we have accrued upon

observing ψ (and hence after having selected the items in dom(ψ)) is E [f(dom(ψ),Φ) | Φ ∼ ψ],
which is the benefit term subtracted out in Eq. (3.5) and Eq. (3.6). Similarly, the expected total

benefit obtained after observing ψ and then selecting e is E [f(dom(ψ) ∪ {e} ,Φ) | Φ ∼ ψ]. The

corresponding benefit for running π after observing ψ is slightly more complex. Under realization

φ ∼ ψ, the final cumulative benefit will be f(dom(ψ) ∪ E(π, φ), φ). Taking the expectation with

respect to p (φ | ψ) and subtracting out the benefit already obtained by dom(ψ) then yields the

conditional expected marginal benefit of π.

We are now ready to introduce our generalizations of monotonicity and submodularity to the

adaptive setting:

Definition 3.2 (Adaptive Monotonicity). A function f : 2E×OE → R≥0 is adaptive monotone with

respect to distribution p (φ) if the conditional expected marginal benefit of any item is nonnegative,

i.e., for all ψ with P [Φ ∼ ψ] > 0 and all e ∈ E we have

∆(e |ψ) ≥ 0. (3.7)

Definition 3.3 (Adaptive Submodularity). A function f : 2E ×OE → R≥0 is adaptive submodular

with respect to distribution p (φ) if the conditional expected marginal benefit of any fixed item does

not increase as more items are selected and their states are observed. Formally, f is adaptive

submodular w.r.t. p (φ) if for all ψ and ψ′ such that ψ is a subrealization of ψ′ (i.e., ψ ⊆ ψ′), and

for all e ∈ E \ dom(ψ′), we have

∆(e |ψ) ≥ ∆
(

e |ψ′
)

. (3.8)

From the decision tree perspective, the condition ∆(e |ψ) ≥ ∆(e |ψ′) amounts to saying that

for any decision tree T , if we are at a node v in T which selects an item e, and compare the expected

marginal benefit of e selected at v with the expected marginal benefit e would have obtained if it

were selected at an ancestor of v in T , then the latter must be no smaller than the former. Note

that when comparing the two expected marginal benefits, there is a difference in both the set of

435

GOLOVIN & KRAUSE

items previously selected (i.e., dom(ψ) vs. dom(ψ′)) and in the distribution over realizations (i.e.,

p (φ | ψ) vs. p (φ | ψ′)). It is also worth emphasizing that adaptive submodularity is defined relative

to the distribution p (φ) over realizations; it is possible that f is adaptive submodular with respect

to one distribution, but not with respect to another.

We will give concrete examples of adaptive monotone and adaptive submodular functions that

arise in the applications introduced in §1 in §6, §7, §8, and §9. In the Appendix, we will explain

how the notion of adaptive submodularity can be extended to handle non-uniform costs (since, e.g.,

the cost of placing a sensor at an easily accessible location may be smaller than at a location that is

hard to get to).

3.3 Properties of Adaptive Submodular Functions

It can be seen that adaptive monotonicity and adaptive submodularity enjoy similar closure prop-

erties as monotone submodular functions. In particular, if w1, . . . , wm ≥ 0 and f1, . . . , fm are

adaptive monotone submodular w.r.t. distribution p (φ), then f(A, φ) =
∑m

i=1wifi(A, φ) is adap-

tive monotone submodular w.r.t. p (φ). Similarly, for a fixed constant c ≥ 0 and adaptive monotone

submodular function f , the function g(E, φ) = min(f(E, φ), c) is adaptive monotone submod-

ular. Thus, adaptive monotone submodularity is preserved by nonnegative linear combinations

and by truncation. Adaptive monotone submodularity is also preserved by restriction, so that if

f : 2E × OE → R≥0 is adaptive monotone submodular w.r.t. p (φ), then for any e ∈ E, the func-

tion g : 2E\{e} × OE → R≥0 defined by g(A, φ) := f(A, φ) for all A ⊆ E \ {e} and all φ is also

adaptive submodular w.r.t. p (φ). Finally, if f : 2E ×OE → R≥0 is adaptive monotone submodular

w.r.t. p (φ) then for each partial realization ψ the conditional function g(A, φ) := f(A∪dom(ψ), φ)
is adaptive monotone submodular w.r.t. p (φ | ψ) := P [Φ = φ | Φ ∼ ψ].

3.4 What Problem Characteristics Suggest Adaptive Submodularity?

Adaptive submodularity is a diminishing returns property for policies. Speaking informally, it can

be applied in situations where there is an objective function to be optimized does not feature syner-

gies in the benefits of items conditioned on observations. In some cases, the primary objective might

not have this property, but a suitably chosen proxy of it does, as is the case with active learning with

persistent noise (Golovin, Krause, & Ray, 2010; Bellala & Scott, 2010). We give example appli-

cations in §6 through §9. It is also worth mentioning where adaptive submodularity is not directly

applicable. An extreme example of synergistic effects between items conditioned on observations

is the class of “treasure hunting” instances used to prove Theorem 12.1 on page 464, where the (bi-

nary) state of certain groups of items encode the treasure’s location in a complex manner. Another

problem feature which adaptive submodularity does not directly address is the possibility that items

selection can alter the underlying realization φ, as is the case for the problem of optimizing policies

for general POMDPs.

4. The Adaptive Greedy Policy

The classical non-adaptive greedy algorithm (3.3) has a natural generalization to the adaptive set-

ting. The greedy policy πgreedy tries, at each iteration, to myopically increase the expected objective

value, given its current observations. That is, suppose f : 2E × OE → R≥0 is the objective, and

ψ is the partial realization indicating the states of items selected so far. Then the greedy policy will

436

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

select the item e maximizing the expected increase in value, conditioned on the observed states of

items it has already selected (i.e., conditioned on Φ ∼ ψ). That is, it will select e to maximize the

conditional expected marginal benefit ∆(e |ψ) as defined in Eq. (3.5). Pseudocode of the adaptive

greedy algorithm is given in Algorithm 1. The only difference to the classic, non-adaptive greedy

algorithm studied by Nemhauser et al. (1978), is Line 6, where an observation Φ(e∗) of the selected

item e∗ is obtained. Note that the algorithms in this section are presented for Adaptive Stochastic

Maximization. For the coverage objectives, we simply keep selecting items as prescribed by πgreedy

until achieving the quota on objective value (for the min-cost objective) or until we have selected

every item (for the min-sum objective).

4.1 Incorporating Item Costs

The adaptive greedy algorithm can be naturally modified to handle non-uniform item costs by re-

placing its selection rule by

e∗ ∈ argmax
e

∆(e |ψ)

c(e)
.

In the following, we will focus on the uniform cost case (c ≡ 1), and defer the analysis with costs

to the Appendix.

4.2 Approximate Greedy Selection

In some applications, finding an item maximizing ∆(e |ψ) may be computationally intractable, and

the best we can do is find an α-approximation to the best greedy selection. This means we find an

e′ such that

∆
(

e′ |ψ
)

≥
1

α
max

e
∆(e |ψ) .

We call a policy which always selects such an item an α-approximate greedy policy.

Input: Budget k; ground set E; distribution p (φ); function f .

Output: Set A ⊆ E of size k
begin

A ← ∅; ψ ← ∅;1

for i = 1 to k do2

foreach e ∈ E \A do compute ∆(e |ψ) = E [f(A ∪ {e} ,Φ)− f(A,Φ) | Φ ∼ ψ] ;3

Select e∗ ∈ argmaxe∆(e |ψ);4

Set A ← A ∪ {e∗};5

Observe Φ(e∗); Set ψ ← ψ ∪ {(e∗,Φ(e∗))};6

end
Algorithm 1: The adaptive greedy algorithm, which implements the greedy policy.

4.3 Robustness & Approximate Greedy Selection

As we will show, α-approximate greedy policies have performance guarantees on several problems.

The fact that these performance guarantees of greedy policies are robust to approximate greedy

selection suggests a particular robustness guarantee against incorrect priors p (φ). Specifically, if

our incorrect prior p′ is such that when we evaluate ∆(e |ψ) we err by a multiplicative factor of at

437

GOLOVIN & KRAUSE

most α, then when we compute the greedy policy with respect to p′ we are actually implementing

an α-approximate greedy policy (with respect to the true prior), and hence obtain the corresponding

guarantees. For example, a sufficient condition for erring by at most a multiplicative factor of α is

that there exists c ≤ 1 and d ≥ 1 with α = d/c such that c p (φ) ≤ p′ (φ) ≤ d p (φ) for all φ, where

p is the true prior.

4.4 Lazy Evaluations and the Accelerated Adaptive Greedy Algorithm

The definition of adaptive submodularity allows us to implement an “accelerated” version of the

adaptive greedy algorithm using lazy evaluations of marginal benefits as originally suggested for

the non-adaptive case by Minoux (1978). The idea is as follows. Suppose we run πgreedy under

some fixed realization φ, and select items e1, e2, . . . , ek. Let ψi := {(ej , φ(ej) : j ≤ i)} be the

partial realizations observed during the run of πgreedy. The adaptive greedy algorithm computes

∆(e |ψi) for all e ∈ E and 0 ≤ i < k, unless e ∈ dom(ψi). Naively, the algorithm thus needs

to compute Θ(|E|k) marginal benefits (which can be expensive to compute). The key insight is

that i �→ ∆(e |ψi) is nonincreasing for all e ∈ E, because of the adaptive submodularity of the

objective. Hence, if when deciding which item to select as ei we know ∆(e′ |ψj) ≤ ∆(e |ψi) for

some items e′ and e and j < i, then we may conclude ∆(e′ |ψi) ≤ ∆(e |ψi) and hence eliminate

the need to compute ∆(e′ |ψi). The accelerated version of the adaptive greedy algorithm exploits

this observation in a principled manner, by computing ∆(e |ψ) for items e in decreasing order of

the upper bounds known on them, until it finds an item whose value is at least as great as the upper

bounds of all other items. Pseudocode of this version of the adaptive greedy algorithm is given in

Algorithm 2.

In the non-adaptive setting, the use of lazy evaluations has been shown to significantly reduce

running times in practice (Leskovec et al., 2007). We evaluated the naive and accelerated implemen-

tations of the adaptive greedy algorithm on two sensor selection problems, and obtained speedup

factors that range from roughly 4 to 40 for those problems. See §10 on page 459 for details.

5. Guarantees for the Greedy Policy

In this section we show that if the objective function is adaptive submodular with respect to the

probabilistic model of the environment in which we operate, then the greedy policy inherits pre-

cisely the performance guarantees of the greedy algorithm for classic (non-adaptive) submodular

maximization and submodular coverage problems, such as Maximum k-Cover and Minimum Set

Cover, as well as min-sum submodular coverage problems, such as Min-Sum Set Cover. In fact,

we will show that this holds true more generally: α–approximate greedy policies inherit precisely

the performance guarantees of α–approximate greedy algorithms for these classic problems. These

guarantees suggest that adaptive submodularity is an appropriate generalization of submodularity

to policies. In this section we focus on the unit cost case (i.e., every item has the same cost). In

the Appendix we provide the proofs omitted in this section, and show how our results extend to

non-uniform item costs if we greedily maximize the expected benefit/cost ratio.

5.1 The Maximum Coverage Objective

In this section we consider the maximum coverage objective, where the goal is to select k items

adaptively to maximize their expected value. The task of maximizing expected value subject to

438

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

Input: Budget k; ground set E; distribution p (φ); function f .

Output: Set A ⊆ E of size k
begin

A ← ∅; ψ ← ∅; Priority Queue Q ← EMPTY QUEUE;1

foreach e ∈ E do Q. insert(e,+∞);2

for i = 1 to k do3

δmax ← −∞; emax ← NULL;4

while δmax < Q.maxPriority() do5

e ← Q. pop();6

δ ← ∆(e |ψ) = E [f(A ∪ {e} ,Φ)− f(A,Φ) | Φ ∼ ψ];7

Q. insert(e, δ);8

if δmax < δ then9

δmax ← δ; emax ← e;10

A ← A ∪ {emax}; Q. remove(emax);11

Observe Φ(emax); Set ψ ← ψ ∪ {(emax,Φ(emax))};12

end

Algorithm 2: The accelerated version of the adaptive greedy algorithm. Here, Q. insert(e, δ)
inserts e with priority δ, Q. pop() removes and returns the item with greatest priority,

Q.maxPriority() returns the maximum priority of the elements in Q, and Q. remove(e)
deletes e from Q.

more complex constraints, such as matroid constraints and intersections of matroid constraints, is

considered in the work of Golovin and Krause (2011). Before stating our result, we require the

following definition.

Definition 5.1 (Policy Truncation). For a policy π, define the level-k-truncation π[k] of π to be the

policy obtained by running π until it terminates or until it selects k items, and then terminating.

Formally, dom(π[k]) = {ψ ∈ dom(π) : |ψ| < k}, and π[k](ψ) = π(ψ) for all ψ ∈ dom(π[k]).

We have the following result, which generalizes the classic result of the work of Nemhauser et al.

(1978) that the greedy algorithm achieves a (1− 1/e)-approximation to the problem of maximizing

monotone submodular functions under a cardinality constraint. By setting ℓ = k and α = 1 in

Theorem 5.2, we see that the greedy policy which selects k items adaptively obtains at least (1−1/e)
of the value of the optimal policy that selects k items adaptively, measured with respect to favg. For a

proof see Theorem A.10 in Appendix A.3, which generalizes Theorem 5.2 to nonuniform item costs.

Theorem 5.2. Fix any α ≥ 1. If f is adaptive monotone and adaptive submodular with respect to

the distribution p (φ), and π is an α-approximate greedy policy, then for all policies π∗ and positive

integers ℓ and k,

favg(π[ℓ]) >
(

1− e−ℓ/αk
)

favg(π
∗
[k]).

In particular, with ℓ = k this implies any α-approximate greedy policy achieves a
(

1− e−1/α
)

approximation to the expected reward of the best policy, if both are terminated after running for an

equal number of steps.

If the greedy rule can be implemented only with small absolute error rather than small relative

error, i.e., ∆(e′ |ψ) ≥ maxe∆(e |ψ) − ε, an argument similar to that used to prove Theorem 5.2

439

GOLOVIN & KRAUSE

shows that

favg(π[ℓ]) ≥
(

1− e−ℓ/k
)

favg(π
∗
[k])− ℓε.

This is important, since small absolute error can always be achieved (with high probability) when-

ever f can be evaluated efficiently, and sampling p (φ | ψ) is efficient. In this case, we can approxi-

mate

∆(e |ψ) ≈
1

N

N
∑

i=1

[

f(dom(ψ) ∪ {e} , φi)− f(dom(ψ), φi)
]

,

where φi are sampled i.i.d. from p (φ | ψ).

5.1.1 DATA DEPENDENT BOUNDS

For the maximum coverage objective, adaptive submodular functions have another attractive feature:

they allow us to obtain data dependent bounds on the optimum, in a manner similar to the bounds

for the non-adaptive case (Minoux, 1978). Consider the non-adaptive problem of maximizing a

monotone submodular function f : 2A → R≥0 subject to the constraint |A| ≤ k. Let A∗ be an

optimal solution, and fix any A ⊆ E. Then

f(A∗) ≤ f(A) + max
B:|B|≤k

∑

e∈B

(f(A ∪ {e})− f(A)) (5.1)

because setting B = A∗ we have f(A∗) ≤ f(A∪B) ≤ f(A)+
∑

e∈B (f(A ∪ {e})− f(A)). Note

that unlike the original objective, we can easily compute maxB:|B|≤k

∑

e∈B (f(A ∪ {e})− f(A))
by computing δ(e) := f(A ∪ {e}) − f(A) for each e, and summing the k largest values. Hence

we can quickly compute an upper bound on our distance from the optimal value, f(A∗) − f(A).
In practice, such data-dependent bounds can be much tighter than the problem-independent per-

formance guarantees of Nemhauser et al. (1978) for the greedy algorithm (Leskovec et al., 2007).

Further note that these bounds hold for any set A, not just sets selected by the greedy algorithm.

These data dependent bounds have the following analogue for adaptive monotone submodular

functions. See Appendix A.2 for a proof.

Lemma 5.3 (The Adaptive Data Dependent Bound). Suppose we have made observations ψ after

selecting dom(ψ). Let π∗ be any policy such that |E(π∗, φ)| ≤ k for all φ. Then for adaptive

monotone submodular f

∆(π∗ |ψ) ≤ max
A⊆E,|A|≤k

∑

e∈A

∆(e |ψ) . (5.2)

Thus, after running any policy π, we can efficiently compute a bound on the additional benefit

that the optimal solution π∗ could obtain beyond the reward of π. We do that by computing the

conditional expected marginal benefits for all elements e, and summing the k largest of them. Note

that these bounds can be computed on the fly when running the greedy algorithm, in a similar

manner as discussed by Leskovec et al. (2007) for the non-adaptive setting.

5.2 The Min Cost Cover Objective

Another natural objective is to minimize the number of items selected while ensuring that a sufficient

level of value is obtained. This leads to the Adaptive Stochastic Minimum Cost Coverage problem

described in §2, namely π∗ ∈ argminπ cavg(π) such that f(E(π, φ), φ) ≥ Q for all φ. Recall that

440

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

cavg(π) is the expected cost of π, which in the unit cost case equals the expected number of items

selected by π, i.e., cavg(π) := E [|E(π,Φ)|]. If the objective is adaptive monotone submodular,

this is an adaptive version of the Minimum Submodular Cover problem (described on line (3.4) in

§3.1). Recall that the greedy algorithm is known to give a (ln(Q)+1)-approximation for Minimum

Submodular Cover assuming the coverage function is integer-valued in addition to being monotone

submodular (Wolsey, 1982). Adaptive Stochastic Minimum Cost Coverage is also related to the

(Noisy) Interactive Submodular Set Cover problem studied by Guillory and Bilmes (2010, 2011),

which considers the worst-case setting (i.e., there is no distribution over states; instead states are

realized in an adversarial manner). Similar results for active learning have been proved by Kosaraju

et al. (1999) and Dasgupta (2004), as we discuss in more detail in §9.

We assume throughout this section that there exists a quality threshold Q such that f(E, φ) = Q
for all φ, and for all S ⊆ E and all φ, f(S, φ) ≤ Q. Note that, as discussed in Section 3, if we

replace f(S, φ) by a new function g(S, φ) = min(f(S, φ), Q′) for some constant Q′, g will be

adaptive submodular if f is. Thus, if f(E, φ) varies across realizations, we can instead use the

greedy algorithm on the function truncated at some threshold Q′ ≤ minφ f(E, φ) achievable by all

realizations.

In contrast to Adaptive Stochastic Maximization, for the coverage problem additional subtleties

arise. In particular, it is not enough that a policy π achieves value Q for the true realization; in order

for π to terminate, it also requires a proof of this fact. Formally, we require that π covers f :

Definition 5.4 (Coverage). Let ψ = ψ(π, φ) be the partial realization encoding all states observed

during the execution of π under realization φ. Given f : 2E × OE → R, we say a policy π covers

φ with respect to f if f(dom(ψ), φ′) = f(E, φ′) for all φ′ ∼ ψ. We say that π covers f if it covers

every realization with respect to f .

Coverage is defined in such a way that upon terminating, π might not know which realization

is the true one, but has guaranteed that it has achieved the maximum reward in every possible case

(i.e., for every realization consistent with its observations). We obtain results for both the average

and worst-case cost objectives.

5.2.1 MINIMIZING THE AVERAGE COST

Before presenting our approximation guarantee for the Adaptive Stochastic Minimum Cost Cov-

erage, we introduce a special class of instances, called self–certifying instances. We make this

distinction because the greedy policy has stronger performance guarantees for self–certifying in-

stances, and such instances arise naturally in applications. For example, the Stochastic Submodular

Cover and Stochastic Set Cover instances in §7, the Adaptive Viral Marketing instances in §8, and

the Pool-Based Active Learning instances in §9 are all self–certifying.

Definition 5.5 (Self–Certifying Instances). An instance of Adaptive Stochastic Minimum Cost Cov-

erage is self–certifying if whenever a policy achieves the maximum possible value for the true

realization it immediately has a proof of this fact. Formally, an instance (f, p (φ)) is self–certifying

if for all φ, φ′, and ψ such that φ ∼ ψ and φ′ ∼ ψ, we have f(dom(ψ), φ) = f(E, φ) if and only if

f(dom(ψ), φ′) = f(E, φ′).

One class of self–certifying instances which commonly arise are those in which f(A, φ) depends

only on the state of items in A, and in which there is a uniform maximum amount of reward that

can be obtained across realizations. Formally, we have the following observation.

441

GOLOVIN & KRAUSE

Proposition 5.6. Fix an instance (f, p (φ)). If there exists Q such that f(E, φ) = Q for all φ and

there exists some g : 2E×O → R≥0 such that f(A, φ) = g ({(e, φ(e)) : e ∈ A}) for all A and φ,

then (f, p (φ)) is self–certifying.

Proof. Fix φ, φ′, and ψ such that φ ∼ ψ and φ′ ∼ ψ. Assuming the existence of g and treating ψ as a

relation, we have f(dom(ψ), φ) = g(ψ) = f(dom(ψ), φ′). Hence f(dom(ψ), φ) = Q = f(E, φ)
if and only if f(dom(ψ), φ′) = Q = f(E, φ′).

For our results on minimum cost coverage, we also need a stronger monotonicity condition:

Definition 5.7 (Strong Adaptive Monotonicity). A function f : 2E ×OE → R is strongly adaptive

monotone with respect to p (φ) if, informally “selecting more items never hurts” with respect to the

expected reward. Formally, for all ψ, all e /∈ dom(ψ), and all possible outcomes o ∈ O such that

P [Φ(e) = o | Φ ∼ ψ] > 0, we require

E [f(dom(ψ),Φ) | Φ ∼ ψ] ≤ E [f(dom(ψ) ∪ {e} ,Φ) | Φ ∼ ψ,Φ(e) = o] . (5.3)

Strong adaptive monotonicity implies adaptive monotonicity, as the latter means that “selecting

more items never hurts in expectation,” i.e.,

E [f(dom(ψ),Φ) | Φ ∼ ψ] ≤ E [f(dom(ψ) ∪ {e} ,Φ) | Φ ∼ ψ] .

We now state our main result for the average case cost cavg(π):

Theorem 5.8. Suppose f : 2E ×OE → R≥0 is adaptive submodular and strongly adaptive mono-

tone with respect to p (φ) and there exists Q such that f(E, φ) = Q for all φ. Let η be any value

such that f(S, φ) > Q − η implies f(S, φ) = Q for all S and φ. Let δ = minφ p (φ) be the mini-

mum probability of any realization. Let π∗
avg be an optimal policy minimizing the expected number of

items selected to guarantee every realization is covered. Let π be an α-approximate greedy policy.

Then in general

cavg(π) ≤ α cavg(π
∗
avg)

(

ln

(

Q

δη

)

+ 1

)

and for self–certifying instances

cavg(π) ≤ α cavg(π
∗
avg)

(

ln

(

Q

η

)

+ 1

)

.

Note that if range(f) ⊂ Z, then η = 1 is a valid choice, and then for general and self–certifying

instances we have cavg(π) ≤ α cavg(π
∗
avg) (ln(Q/δ) + 1) and cavg(π) ≤ α cavg(π

∗
avg) (ln(Q) + 1),

respectively.

5.2.2 MINIMIZING THE WORST-CASE COST

For the worst-case cost cwc(π) := maxφ |E(π, φ)|, strong adaptive monotonicity is not required;

adaptive monotonicity suffices. We obtain the following result.

Theorem 5.9. Suppose f : 2E ×OE → R≥0 is adaptive monotone and adaptive submodular with

respect to p (φ), and let η be any value such that f(S, φ) > f(E, φ)− η implies f(S, φ) = f(E, φ)
for all S and φ. Let δ = minφ p (φ) be the minimum probability of any realization. Let π∗

wc be

442

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

the optimal policy minimizing the worst-case number of queries to guarantee every realization is

covered. Let π be an α-approximate greedy policy. Finally, let Q := E [f(E, φ)] be the maximum

possible expected reward. Then

cwc(π) ≤ α cwc(π
∗
wc)

(

ln

(

Q

δη

)

+ 1

)

.

The proofs of Theorems 5.8 and 5.9 are given in Appendix A.4.

Thus, even though adaptive submodularity is defined w.r.t. a particular distribution, perhaps

surprisingly, the adaptive greedy algorithm is competitive even in the case of adversarially chosen

realizations, against a policy optimized to minimize the worst-case cost. Theorem 5.9 therefore

suggests that if we do not have a strong prior, we can obtain the strongest guarantees if we choose

a distribution that is “as uniform as possible” (i.e., maximizes δ) while still guaranteeing adaptive

submodularity.

5.2.3 DISCUSSION

Note that the approximation factor for self–certifying instances in Theorem 5.8 reduces to the

(ln(Q) + 1)-approximation guarantee for the greedy algorithm for Set Cover instances with Q
elements, in the case of a deterministic distribution p (φ). Moreover, with a deterministic dis-

tribution p (φ) there is no distinction between average-case and worst-case cost. Hence, an im-

mediate corollary of the result of Feige (1998) mentioned in §3 is that for every constant ǫ > 0
there is no polynomial time (1− ǫ) ln (Q/η) approximation algorithm for self–certifying instances

of Adaptive Stochastic Min Cost Cover, under either the cavg(·) or the cwc(·) objective, unless

NP ⊆ DTIME(nO(log logn)). It remains open to determine whether or not Adaptive Stochastic

Min Cost Cover with the worst-case cost objective admits a ln (Q/η) + 1 approximation for self–

certifying instances via a polynomial time algorithm, and in particular whether the greedy pol-

icy has such an approximation guarantee. However, in Lemma A.14 we show that Feige’s result

also implies there is no (1 − ǫ) ln (Q/δη) polynomial time approximation algorithm for general

(non self-certifying) instances of Adaptive Stochastic Min Cost Cover under either objective, unless

NP ⊆ DTIME(nO(log logn)). In that sense, each of the three results comprising Theorem 5.8 and

Theorem 5.9 are best-possible under reasonable complexity-theoretic assumptions. As we show

in Section 9, our result for the average-case cost of greedy policies for self–certifying instances

also matches (up to constant factors) results on hardness of approximating the optimal policy in the

special case of active learning, also known as the Optimal Decision Tree problem.

5.3 The Min-Sum Cover Objective

Yet another natural objective is the min-sum objective, in which an unrealized reward of x incurs a

cost of x in each time step, and the goal is to minimize the total cost incurred.

5.3.1 BACKGROUND ON THE NON-ADAPTIVE MIN-SUM COVER PROBLEM

In the non-adaptive setting, perhaps the simplest form of a coverage problem with this objective is

the Min-Sum Set Cover problem (Feige, Lovász, & Tetali, 2004) in which the input is a set system

(U,S), the output is a permutation of the sets 〈S1, S2, . . . , Sm〉, and the goal is to minimize the sum

of element coverage times, where the coverage time of u is the index of the first set that contains

it (e.g., it is j if u ∈ Sj and u /∈ Si for all i < j). In this problem and its generalizations the

443

GOLOVIN & KRAUSE

min-sum objective is useful in modeling processing costs in certain applications, for example in

ordering diagnostic tests to identify a disease cheaply (Kaplan, Kushilevitz, & Mansour, 2005),

in ordering multiple filters to be applied to database records while processing a query (Munagala,

Babu, Motwani, Widom, & Thomas, 2005), or in ordering multiple heuristics to run on boolean

satisfiability instances as a means to solve them faster in practice (Streeter & Golovin, 2008). A

particularly expressive generalization of min-sum set cover has been studied under the names Min-

Sum Submodular Cover (Streeter & Golovin, 2008) and L1-Submodular Set Cover (Golovin, Gupta,

Kumar, & Tangwongsan, 2008). The former paper extends the greedy algorithm to a natural online

variant of the problem, while the latter studies a parameterized family of Lp-Submodular Set Cover

problems in which the objective is analogous to minimizing the Lp norm of the coverage times for

Min-Sum Set Cover instances. In the Min-Sum Submodular Cover problem, there is a monotone

submodular function f : 2E → R≥0 defining the reward obtained from a collection of elements5.

There is an integral cost c(e) for each element, and the output is a sequence of all of the elements

σ = 〈e1, e2, . . . , en〉. For each t ∈ R≥0, we define the set of elements in the sequence σ within a

budget of t:

σ[t] :=

⎧

⎨

⎩

ei :
∑

j≤i

c(ej) ≤ t

⎫

⎬

⎭

.

The cost we wish to minimize is then

cΣ(σ) :=

∞
∑

t=0

(

f(E)− f(σ[t])
)

. (5.4)

Feige et al. (2004) proved that for Min-Sum Set cover, the greedy algorithm achieves a 4-approximation

to the minimum cost, and also that this is optimal in the sense that no polynomial time algorithm

can achieve a (4− ǫ)-approximation, for any ǫ > 0, unless P = NP. Interestingly, the greedy algo-

rithm also achieves a 4-approximation for the more general Min-Sum Submodular Cover problem

as well (Streeter & Golovin, 2008; Golovin et al., 2008).

5.3.2 THE ADAPTIVE STOCHASTIC MIN-SUM COVER PROBLEM

In this article, we extend the result of Streeter and Golovin (2008) and Golovin et al. (2008) to an

adaptive version of Min-Sum Submodular Cover. For clarity’s sake we will consider the unit-cost

case here (i.e., c(e) = 1 for all e); we show how to extend adaptive submodularity to handle general

costs in the Appendix. In the adaptive version of the problem, π[t] plays the role of σ[t], and favg

plays the role of f . The goal is to find a policy π minimizing

cΣ(π) :=
∞
∑

t=0

(

E [f(E,Φ)]− favg(π[t])
)

=
∑

φ

p (φ)
∞
∑

t=0

(

f(E, φ)− f(E(π[t], φ), φ)
)

. (5.5)

We call this problem the Adaptive Stochastic Min-Sum Cover problem. The key difference between

this objective and the minimum cost cover objective is that here, the cost at each step is only the

fractional extent that we have not covered the true realization, whereas in the minimum cost cover

objective we are charged in full in each step until we have completely covered the true realization

5. To encode Min-Sum Set Cover instance (U,S), let E := S and f(A) := | ∪e∈A e|, where each e ∈ E is a subset of

elements in U .

444

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

(according to Definition 5.4). We prove the following result for the Adaptive Stochastic Min-Sum

Cover problem with arbitrary item costs in Appendix A.5.

Theorem 5.10. Fix any α ≥ 1. If f is adaptive monotone and adaptive submodular with respect to

the distribution p (φ), π is an α-approximate greedy policy with respect to the item costs, and π∗ is

any policy, then cΣ(π) ≤ 4α cΣ(π
∗).

6. Application: Stochastic Submodular Maximization

As our first application, consider the sensor placement problem introduced in §1. Suppose we

would like to monitor a spatial phenomenon such as temperature in a building. We discretize the

environment into a set E of locations. We would like to pick a subset A ⊆ E of k locations that is

most “informative”, where we use a set function f̂(A) to quantify the informativeness of placement

A. Krause and Guestrin (2007) show that many natural objective functions (such as reduction

in predictive uncertainty measured in terms of Shannon entropy with conditionally independent

observations) are monotone submodular.

Now consider the problem, where the informativeness of a sensor is unknown before deploy-

ment (e.g., when deploying cameras for surveillance, the location of objects and their associated

occlusions may not be known in advance, or varying amounts of noise may reduce the sensing

range). We can model this extension by assigning a state φ(e) ∈ O to each possible location, in-

dicating the extent to which a sensor placed at location e is working. To quantify the value of a

set of sensor deployments under a realization φ indicating to what extent the various sensors are

working, we first define (e, o) for each e ∈ E and o ∈ O, which represents the placement of a

sensor at location e which is in state o. We then suppose there is a function f̂ : 2E×O → R≥0

which quantifies the informativeness of a set of sensor deployments in arbitrary states. (Note f̂ is a

set function taking a set of (sensor deployment, state) pairs as input.) The utility f(A, φ) of placing

sensors at the locations in A under realization φ is then

f(A, φ) := f̂({(e, φ(e)) : e ∈ A}).

We aim to adaptively place k sensors to maximize our expected utility. We assume that sensor

failures at each location are independent of each other, i.e., P [Φ = φ] =
∏

e∈E P [Φ(e) = φ(e)] ,
where P [φ(e) = o] is the probability that a sensor placed at location e will be in state o. Asadpour

et al. (2008) studied a special case of our problem, in which sensors either fail completely (in which

case they contribute no value at all) or work perfectly, under the name Stochastic Submodular Max-

imization. They proved that the adaptive greedy algorithm obtains a (1 − 1/e) approximation to

the optimal adaptive policy, provided f̂ is monotone submodular. We extend their result to multiple

types of failures by showing that f(A, φ) is adaptive submodular with respect to distribution p (φ)
and then invoking Theorem 5.2. Fig. 2 illustrates an instance of Stochastic Submodular Maximiza-

tion where f(A, φ) is the cardinality of union of sets index by A and parameterized by φ.

Theorem 6.1. Fix a prior such that P [Φ = φ] =
∏

e∈E P [Φ(e) = φ(e)] and an integer k, and let

the objective function f̂ : 2E×O → R≥0 be monotone submodular. Let π be any α-approximate

greedy policy attempting to maximize f , and let π∗ be any policy. Then for all positive integers ℓ,

favg(π[ℓ]) ≥
(

1− e−ℓ/αk
)

favg(π
∗
[k]).

In particular, if π is the greedy policy (i.e., α = 1) and ℓ = k, then favg(π[k]) ≥
(

1− 1
e

)

favg(π
∗
[k]).

445

GOLOVIN & KRAUSE

Proof. We prove Theorem 6.1 by first proving f is adaptive monotone and adaptive submodular in

this model, and then applying Theorem 5.2. Adaptive monotonicity is readily proved after observing

that f(·, φ) is monotone for each φ. Moving on to adaptive submodularity, fix any ψ, ψ′ such that

ψ ⊆ ψ′ and any e /∈ dom(ψ′). We aim to show ∆(e |ψ′) ≤ ∆(e |ψ). Intuitively, this is clear,

as ∆(e |ψ′) is the expected marginal benefit of adding e to a larger base set than is the case with

∆(e |ψ), namely dom(ψ′) as compared to dom(ψ), and the realizations are independent. To prove

it rigorously, we define a coupled distribution μ over pairs of realizations φ ∼ ψ and φ′ ∼ ψ′ such

that φ(e′) = φ′(e′) for all e′ /∈ dom(ψ′). Formally, μ(φ, φ′) =
∏

e∈E\dom(ψ) P [Φ(e) = φ(e)] if

φ ∼ ψ, φ′ ∼ ψ′, and φ(e′) = φ′(e′) for all e′ /∈ dom(ψ′); otherwise μ(φ, φ′) = 0. (Note that

μ(φ, φ′) > 0 implies φ(e′) = φ′(e′) for all e′ ∈ dom(ψ) as well, since φ ∼ ψ, φ′ ∼ ψ′, and

ψ ⊆ ψ′.) Also note that p (φ | ψ) =
∑

φ′ μ(φ, φ′) and p (φ′ | ψ′) =
∑

φ μ(φ, φ
′). Calculating

∆(e |ψ′) and ∆(e |ψ) using μ, we see that for any (φ, φ′) in the support of μ,

f(dom(ψ′) ∪ {e} , φ′)− f(dom(ψ′), φ′) = f̂(ψ′ ∪
{

(e, φ′(e))
}

)− f̂(ψ′))

≤ f̂(ψ ∪ {(e, φ(e))})− f̂(ψ))

= f(dom(ψ) ∪ {e} , φ)− f(dom(ψ), φ)

from the submodularity of f̂ . Hence

∆(e |ψ′) =
∑

(φ,φ′) μ(φ, φ
′) (f(dom(ψ′) ∪ {e} , φ′)− f(dom(ψ′), φ′))

≤
∑

(φ,φ′) μ(φ, φ
′) (f(dom(ψ) ∪ {e} , φ)− f(dom(ψ), φ)) = ∆(e |ψ)

which completes the proof.

7. Application: Stochastic Submodular Coverage

Suppose that instead of wishing to adaptively place k unreliable sensors to maximize the utility of

the information obtained, as discussed in §6, we have a quota on utility and wish to adaptively place

the minimum number of unreliable sensors to achieve this quota. This amounts to a minimum-cost

coverage version of the Stochastic Submodular Maximization problem introduced in §6, which we

call Stochastic Submodular Coverage.

As in §6, in the Stochastic Submodular Coverage problem we suppose there is a function

f̂ : 2E×O → R≥0 which quantifies the utility of a set of sensors in arbitrary states. Also, the

states of each sensor are independent, so that P [Φ = φ] =
∏

e∈E P [Φ(e) = φ(e)]. The goal is

to obtain a quota Q of utility at minimum cost. Thus, we define our objective as f(A, φ) :=

min
{

Q, f̂({(e, φ(e)) : e ∈ A})
}

, and want to find a policy π covering every realization and min-

imizing cavg(π) := E [|E(π,Φ)|]. We additionally assume that this quota can always be obtained

using sufficiently many sensor placements; formally, this amounts to f(E, φ) = Q for all φ. We

obtain the following result, whose proof we defer until the end of this section.

Theorem 7.1. Fix a prior with independent sensor states so that P [Φ = φ] =
∏

e∈E P [Φ(e) = φ(e)],

and let f̂ : 2E×O → R≥0 be a monotone submodular function. Fix Q ∈ R≥0 such that f(A, φ) :=

min
(

Q, f̂({(e, φ(e)) : e ∈ A})
)

satisfies f(E, φ) = Q for all φ. Let η be any value such that

f(S, φ) > Q − η implies f(S, φ) = Q for all S and φ. Finally, let π be an α-approximate greedy

446

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

Figure 2: Illustration of part of a Stochastic Set Cover instance. Shown are the supports of two

distributions over sets, indexed by items e (marked in blue) and e′ (yellow).

policy for maximizing f , and let π∗ be any policy. Then

cavg(π) ≤ α cavg(π
∗)

(

ln

(

Q

η

)

+ 1

)

.

7.1 A Special Case: The Stochastic Set Coverage Problem

The Stochastic Submodular Coverage problem is a generalization of the Stochastic Set Coverage

problem (Goemans & Vondrák, 2006). In Stochastic Set Coverage the underlying submodular ob-

jective f̂ is the number of elements covered in some input set system. In other words, there is a

ground set U of n elements to be covered, and items E such that each item e is associated with a

distribution over subsets of U . When an item is selected, a set is sampled from its distribution, as

illustrated in Fig. 2. The problem is to adaptively select items until all elements of U are covered

by sampled sets, while minimizing the expected number of items selected. Like us, Goemans and

Vondrák also assume that the subsets are sampled independently for each item, and every element

of U can be covered in every realization, so that f(E, φ) = |U | for all φ.

Goemans and Vondrák primarily investigated the adaptivity gap (quantifying how much adaptive

policies can outperform non-adaptive policies) of Stochastic Set Coverage, for variants in which

items can be repeatedly selected or not, and prove adaptivity gaps of Θ(log n) in the former case,

and between Ω(n) and O(n2) in the latter. They also provide an n-approximation algorithm. More

recently, Liu et al. (2008) considered a special case of Stochastic Set Coverage in which each item

may be in one of two states. They were motivated by a streaming database problem, in which

a collection of queries sharing common filters must all be evaluated on a stream element. They

transform the problem to a Stochastic Set Coverage instance in which (filter, query) pairs are to be

covered by filter evaluations; which pairs are covered by a filter depends on the (binary) outcome

of evaluating it on the stream element. The resulting instances satisfy the assumption that every

element of U can be covered in every realization. They study, among other algorithms, the adaptive

greedy algorithm specialized to this setting, and show that if the subsets are sampled independently

for each item, so that P [Φ = φ] =
∏

e P [Φ(e) = φ(e)], then it is an Hn :=
∑n

x=1
1
x approximation.

(Recall ln(n) ≤ Hn ≤ ln(n) + 1 for all n ≥ 1.) Moreover, Liu et al. report that it empirically

outperforms a number of other algorithms in their experiments.

447

GOLOVIN & KRAUSE

The adaptive submodularity framework allows us to recover Liu et al.’s result, and generalize

it to richer item distributions over subsets of U , all as a corollary of Theorem 7.1. Specifically, we

obtain a (ln(n)+1)-approximation for the Stochastic Set Coverage problem, where n := |U |, which

matches the approximation ratio for the greedy algorithm for classical Set Cover that Stochastic Set

Coverage generalizes. Like Liu et al.’s result, our result is tight if NP � DTIME(nO(log logn)),
since it matches Feige’s lower bound of (1− ε) lnn for the approximability of Set Cover under that

assumption (Feige, 1998).

We model the Stochastic Set Coverage problem by letting φ(e) ⊆ U indicate the random

set sampled from e’s distribution. Since the sampled sets are independent we have P [Φ = φ] =
∏

e P [Φ(e) = φ(e)]. For any A ⊆ E let f(A, φ) := | ∪e∈A φ(e)| be the number of elements of U
covered by the sets sampled from items in A. As in the previous work mentioned above, we assume

f(E, φ) = n for all φ. Therefore we may set Q = n. Since the range of f includes only integers,

we may set η = 1. Applying Theorem 7.1 then yields the following result.

Corollary 7.2. The adaptive greedy algorithm achieves a (ln(n)+1)-approximation for Stochastic

Set Coverage, where n := |U | is the size of the ground set.

We now provide the proof of Theorem 7.1.

Proof of Theorem 7.1: We will ultimately prove Theorem 7.1 by applying the bound from The-

orem 5.8 for self–certifying instances. The proof mostly consists of justifying this final step.

Without loss of generality we may assume f̂ is truncated at Q, otherwise we may use ĝ(S) =

min
{

Q, f̂(S)
}

in lieu of f̂ . This removes the need to truncate f . Since we established the adaptive

submodularity of f in the proof of Theorem 6.1, and by assumption f(E, φ) = Q for all φ, to apply

Theorem 5.8 we need only show that f is strongly adaptive monotone, and that the instances under

consideration are self–certifying.

We begin by showing the strong adaptive monotonicity of f . Fix a partial realization ψ, an item

e /∈ dom(ψ) and a state o. Let ψ′ = ψ ∪ {(e, o)}. Then treating ψ and ψ′ as subsets of E ×O, and

using the monotonicity of f̂ , we obtain

E [f(dom(ψ),Φ) | Φ ∼ ψ] = f̂(ψ) ≤ f̂(ψ′) ≤ E
[

f(dom(ψ′),Φ) | Φ ∼ ψ′
]

,

which is equivalent to the strong adaptive monotonicity condition.

Next we prove that these instances are self–certifying. Consider any ψ and φ, φ′ consistent with

ψ. Then

f(dom(ψ), φ) = f̂(ψ) = f(dom(ψ), φ′).

Since f(E, φ) = f(E, φ′) = Q by assumption, it follows that f(dom(ψ), φ) = f(E, φ) iff

f(dom(ψ), φ′) = f(E, φ′), so the instance is self–certifying.

We have shown that f and p (φ) satisfy the assumptions of Theorem 5.8 on this self–certifying

instance. Hence we may apply it to obtain the claimed approximation guarantee.

8. Application: Adaptive Viral Marketing

For our next application, consider the following scenario. Suppose we would like to generate de-

mand for a genuinely novel product. Potential customers do not realize how valuable the new

product will be to them, and conventional advertisements are failing to convince them to try it. In

448

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

Figure 3: Illustration of the Adaptive Viral Marketing problem. Left: the underlying social network.

Middle: the people influenced and the observations obtained after one person is selected.

this case, we may try to spur demand by offering a special promotional deal to a select few people,

and hope that demand builds virally, propagating through the social network as people recommend

the product to their friends and associates. Supposing we know something about the structure of

the social networks people inhabit, and how ideas, innovation, and new product adoption diffuse

through them, this begs the question: to which initial set of people should we offer the promotional

deal, in order to spur maximum demand for our product?

This, broadly, is the viral marketing problem. The same problem arises in the context of spread-

ing technological, cultural, and intellectual innovations, broadly construed. In the interest of unified

terminology we follow Kempe et al. (2003) and talk of spreading influence through the social net-

work, where we say people are active if they have adopted the idea or innovation in question, and

inactive otherwise, and that a influences b if a convinces b to adopt the idea or innovation in question.

There are many ways to model the diffusion dynamics governing the spread of influence in

a social network. We consider a basic and well-studied model, the independent cascade model,

described in detail below. For this model Kempe et al. (2003) obtain a very interesting result; they

show that the eventual spread of the influence f (i.e., the ultimate number of customers that demand

the product) is a monotone submodular function of the seed set S of people initially selected. This,

in conjunction with the results of Nemhauser et al. (1978) implies that the greedy algorithm obtains

at least
(

1− 1
e

)

of the value of the best feasible seed set of size at most k, i.e., argmaxS:|S|≤k f(S),
where we interpret k as the budget for the promotional campaign. Though Kempe et al. consider

only the maximum coverage version of the viral marketing problem, their result in conjunction with

that of Wolsey (1982) also implies that the greedy algorithm will obtain a quota Q of value at a cost

of at most ln(Q) + 1 times the cost of the optimal set argminS {c(S) : f(S) ≥ Q} if f takes on

only integral values.

8.1 Adaptive Viral Marketing

The viral marketing problem has a very natural adaptive analog. Instead of selecting a fixed set of

people in advance, we may select a person to offer the promotion to, make some observations about

449

GOLOVIN & KRAUSE

the resulting spread of demand for our product, and repeat. See Fig. 3 for an illustration. In §8.2, we

use the idea of adaptive submodularity to obtain results analogous to those of Kempe et al. (2003)

in the adaptive setting. Specifically, we show that the greedy policy obtains at least
(

1− 1
e

)

of the

value of the best policy. Moreover, we extend this result by achieving that guarantee not only for

the case where our reward is simply the number of influenced people, but also for any (nonnegative)

monotone submodular function of the set of people influenced. In §8.3 we consider the minimum

cost cover objective, and show that the greedy policy obtains a logarithmic approximation for it. To

our knowledge, no approximation results for this adaptive variant of the viral marketing problem

have been known.

8.1.1 INDEPENDENT CASCADE MODEL

In this model, the social network is a directed graph G = (V,A) where each vertex in V is a

person, and each edge (u, v) ∈ A has an associated binary random variable Xuv indicating if u
will influence v. That is, Xuv = 1 if u will influence v once it has been influenced, and Xuv = 0
otherwise. The random variables Xuv are independent, and have known means puv := E [Xuv]. We

will call an edge (u, v) with Xuv = 1 a live edge and an edge with Xuv = 0 a dead edge. When a

node u is activated, the edges Xuv to each neighbor v of u are sampled, and v is activated if (u, v)
is live. Influence can then spread from u’s neighbors to their neighbors, and so on, according to

the same process. Once active, nodes remain active throughout the process, however Kempe et al.

(2003) show that this assumption is without loss of generality, and can be removed.

8.1.2 THE FEEDBACK MODEL

In the Adaptive Viral Marketing problem under the independent cascades model, the items corre-

spond to people we can activate by offering them the promotional deal. How we define the states

φ(u) depends on what information we obtain as a result of activating u. Given the nature of the

diffusion process, activating u can have wide-ranging effects, so the state φ(u) has more to do

with the state of the social network on the whole than with u in particular. Specifically, we model

φ(u) as a function φu : A → {0, 1, ?}, where φu((u, v)) = 0 means that activating u has re-

vealed that (u, v) is dead, φu((u, v)) = 1 means that activating u has revealed that (u, v) is live,

and φu((u, v)) = ? means that activating u has not revealed the status of (u, v) (i.e., the value of

Xuv). We require each realization to be consistent and complete. Consistency means that no edge

should be declared both live and dead by any two states. That is, for all u, v ∈ V and a ∈ A,

(φu(a), φv(a)) /∈ {(0, 1), (1, 0)}. Completeness means that the status of each edge is revealed by

some activation. That is, for all a ∈ A there exists u ∈ V such that φu(a) ∈ {0, 1}. A consistent

and complete realization thus encodes Xuv for each edge (u, v). Let A(φ) denote the live edges as

encoded by φ. There are several candidates for which edge sets we are allowed to observe when

activating a node u. Here we consider what we call the Full-Adoption Feedback Model: After acti-

vating u we get to see the status (live or dead) of all edges exiting v, for all nodes v reachable from

u via live edges (i.e., reachable from u in (V,A(φ)), where φ is the true realization. We illustrate

the full-adoption feedback model in Fig. 3.

8.1.3 THE OBJECTIVE FUNCTION

In the simplest case, the reward for influencing a set U ⊆ V of nodes is f̂(U) := |U |. Kempe et al.

(2003) obtain an
(

1− 1
e

)

-approximation for the slightly more general case in which each node u

450

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

has a weight wu indicating its importance, and the reward is f̂(U) :=
∑

u∈U wu. We generalize

this result further, to include arbitrary nonnegative monotone submodular reward functions f̂ . This

allows us, for example, to encode a value associated with the diversity of the set of nodes influ-

enced, such as the notion that it is better to achieve 20% market penetration in five different (equally

important) demographic segments than 100% market penetration in one and 0% in the others.

8.2 Guarantees for the Maximum Coverage Objective

We are now ready to formally state our result for the maximum coverage objective.

Theorem 8.1. The greedy policy πgreedy obtains at least
(

1− 1
e

)

of the value of the best policy

for the Adaptive Viral Marketing problem with arbitrary monotone submodular reward functions,

in the independent cascade and full-adoption feedback models discussed above. That is, if σ(S, φ)
is the set of all activated nodes when S is the seed set of activated nodes and φ is the realization,

f̂ : 2V → R≥0 is an arbitrary monotone submodular function indicating the reward for influencing

a set, and the objective function is f(S, φ) := f̂(σ(S, φ)), then for all policies π and all k ∈ N we

have

favg(π
greedy

[k]) ≥

(

1−
1

e

)

favg(π[k]).

More generally, if π is an α-approximate greedy policy then ∀ℓ ∈ N, favg(π[ℓ]) ≥
(

1− e−ℓ/αk
)

favg(π
∗
[k]).

Proof. Adaptive monotonicity follows immediately from the fact that f(·, φ) is monotonic for each

φ. It thus suffices to prove that f is adaptive submodular with respect to the probability distribution

on realizations p (φ), because then we can invoke Theorem 5.2 to complete the proof.

We will say we have observed an edge (u, v) if we know its status, i.e., if it is live or dead.

Fix any ψ, ψ′ such that ψ ⊆ ψ′ and any v /∈ dom(ψ′). We must show ∆(v |ψ′) ≤ ∆(v |ψ).
To prove this rigorously, we define a coupled distribution μ over pairs of realizations φ ∼ ψ and

φ′ ∼ ψ′. Note that given the feedback model, the realization φ is a function of the random vari-

ables {Xuw : (u,w) ∈ A} indicating the status of each edge. For conciseness we use the notation

X = {Xuw : (u,w) ∈ A}. We define μ implicitly in terms of a joint distribution μ̂ on X × X′,

where φ = φ(X) and φ′ = φ′(X′) are the realizations induced by the two distinct sets of random

edge statuses, respectively. Hence μ(φ(X), φ(X′)) = μ̂(X,X′). Next, let us say a partial realiza-

tion ψ observes an edge e if some w ∈ dom(ψ) has revealed its status as being live or dead. For

edges (u,w) observed by ψ, the random variable Xuw is deterministically set to the status observed

by ψ. Similarly, for edges (u,w) observed by ψ′, the random variable X ′
uw is deterministically set

to the status observed by ψ′. Note that since ψ ⊆ ψ′, the state of all edges which are observed by

ψ are the same in φ and φ′. All (X,X′) ∈ support(μ̂) have these properties. Additionally, we will

construct μ̂ so that the status of all edges which are unobserved by both ψ′ and ψ are the same in X

and X′, meaning Xuw = X ′
uw for all such edges (u,w), or else μ̂(X,X′) = 0.

The above constraints leave us with the following degrees of freedom: we may select Xuw for

all (u,w) ∈ A which are unobserved by ψ. We select them independently, such that E [Xuw] = puw
as with the prior p (φ). Hence for all (X,X′) satisfying the above constraints,

μ̂(X,X′) =
∏

(u,w) unobserved by ψ

pXuw

uw (1− puw)
1−Xuw ,

451

GOLOVIN & KRAUSE

and otherwise μ̂(X,X′) = 0. Note that p (φ | ψ) =
∑

φ′ μ(φ, φ′) and p (φ′ | ψ′) =
∑

φ μ(φ, φ
′).

We next claim that for all (φ, φ′) ∈ support(μ)

f(dom(ψ′) ∪ {v} , φ′)− f(dom(ψ′), φ′) ≤ f(dom(ψ) ∪ {v} , φ)− f(dom(ψ), φ). (8.1)

Recall f(S, φ) := f̂(σ(S, φ)), where σ(S, φ) is the set of all activated nodes when S is the seed set

of activated nodes and φ is the realization. Let B = σ(dom(ψ), φ) and C = σ(dom(ψ) ∪ {v} , φ)
denote the active nodes before and after selecting v after dom(ψ) under realizations φ, and similarly

define B′ and C ′ with respect to ψ′ and φ′. Let D := C \ B, D′ := C ′ \ B′. Then Eq. (8.1) is

equivalent to f̂(B′ ∪D′) − f̂(B′) ≤ f̂(B ∪D) − f̂(B). By the submodularity of f̂ , it suffices to

show that B ⊆ B′ and D′ ⊆ D to prove the above inequality, which we will now do.

We start by proving B ⊆ B′. Fix w ∈ B. Then there exists a path from some u ∈ dom(ψ)
to w in (V,A(φ)). Moreover, every edge in this path is not only live but also observed to be live,

by definition of the feedback model. Since (φ, φ′) ∈ support(μ), this implies that every edge in

this path is also live under φ′, as edges observed by ψ must have the same status under both φ and

φ′. It follows that there is a path from u to w in (V,A(φ′)). Since u is clearly also in dom(ψ′), we

conclude w ∈ B′, hence B ⊆ B′.

Next we show D′ ⊆ D. Fix some w ∈ D′ and suppose by way of contradiction that w /∈ D.

Hence there exists a path P from v to w in (V,A(φ′)) but no such path exists in (V,A(φ)). The

edges of P are all live under φ′, and at least one must be dead under φ. Let (u, u′) be such an edge

in P . Because the status of this edge differs in φ and φ′, and (φ, φ′) ∈ support(μ), it must be

that (u, u′) is observed by ψ′ but not observed by ψ. Because it is observed by ψ′, in our feedback

model it must be that u is active after dom(ψ′) is selected, i.e., u ∈ B′. However, this implies that

all nodes reachable from u via edges in P are also active after dom(ψ′) is selected, since all the

edges in P are live. Hence all such nodes, including w, are in B′. Since D′ and B′ are disjoint, this

implies w /∈ D′, a contradiction.

Having proved Eq. (8.1), we now proceed to use it to show ∆(v |ψ′) ≤ ∆(v |ψ) as in §6.

∆(v |ψ′) =
∑

(φ,φ′) μ(φ, φ
′) (f(dom(ψ′) ∪ {v} , φ′)− f(dom(ψ′), φ′))

≤
∑

(φ,φ′) μ(φ, φ
′) (f(dom(ψ) ∪ {v} , φ)− f(dom(ψ), φ)) = ∆(v |ψ)

which completes the proof.

8.2.1 COMPARISON WITH STOCHASTIC SUBMODULAR MAXIMIZATION

It is worth contrasting the Adaptive Viral Marketing problem with the Stochastic Submodular Max-

imization problem of §6. In the latter problem, we can think of the items as being random in-

dependently distributed sets. In Adaptive Viral Marketing by contrast, the random sets (of nodes

influenced when a fixed node is selected) depend on the random status of the edges, and hence may

be correlated through them. Nevertheless, we can obtain the same
(

1− 1
e

)

approximation factor for

both problems.

8.3 The Minimum Cost Cover Objective

We may also wish to adaptively run our campaign until a certain level of market penetration has

been achieved, e.g., a certain number of people have adopted the product. We can formalize this

452

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

goal using the minimum cost cover objective. For this objective, we have an instance of Adaptive

Stochastic Minimum Cost Cover, in which we are given a quota Q ≤ f̂(V) (quantifying the desired

level of market penetration) and we must adaptively select nodes to activate until the set of all active

nodes S satisfies f̂(S) ≥ Q. We obtain the following result.

Theorem 8.2. Fix a monotone submodular function f̂ : 2V → R≥0 indicating the reward for influ-

encing a set, and a quota Q ≤ f̂(V). Suppose the objective is f(S, φ) := min
{

Q, f̂(σ(S, φ))
}

,

where σ(S, φ) is the set of all activated nodes when S is the seed set of activated nodes and

φ is the realization. Let η be any value such that f̂(S) > Q − η implies f̂(S) ≥ Q for all

S. Then any α-approximate greedy policy π on average costs at most α
(

ln
(

Q
η

)

+ 1
)

times

the average cost of the best policy obtaining Q reward for the Adaptive Viral Marketing prob-

lem in the independent cascade model with full-adoption feedback as described above. That is,

cavg(π) ≤ α
(

ln
(

Q
η

)

+ 1
)

cavg(π
∗) for any π∗ that covers every realization.

Proof. We prove Theorem 8.2 by recourse to Theorem 5.8. We have already established that f is

adaptive submodular, in the proof of Theorem 8.1. It remains to show that f is strongly adaptive

monotone, that these instances are self–certifying, and that Q and η equal the corresponding terms

in the statement of Theorem 5.8.

We start with strong adaptive monotonicity. Fix ψ, e /∈ dom(ψ), and o ∈ O. We must show

E [f(dom(ψ),Φ) | Φ ∼ ψ] ≤ E [f(dom(ψ) ∪ {e} ,Φ) | Φ ∼ ψ,Φ(e) = o] . (8.2)

Let V +(ψ) denote the active nodes after selecting dom(ψ) and observing ψ. By definition of

the full adoption feedback model, V +(ψ) consists of precisely those nodes v for which there ex-

ists a path Puv from some u ∈ dom(ψ) to v via exclusively live edges. The edges whose sta-

tus we observe consist of all edges exiting nodes in V +(ψ). It follows that every path from any

u ∈ V +(ψ) to any v ∈ V \ V +(ψ) contains at least one edge which is observed by ψ to be

dead. Hence, in every φ ∼ ψ, the set of nodes activated by selecting dom(ψ) is the same. There-

fore E [f(dom(ψ),Φ) | Φ ∼ ψ] = f̂(V +(ψ)). Similarly, if we define ψ′ := ψ ∪ {(e, o)}, then

E [f(dom(ψ) ∪ {e} ,Φ) | Φ ∼ ψ,Φ(e) = o] = f̂(V +(ψ′)). Note that once activated, nodes never

become inactive. Hence, ψ ⊆ ψ′ implies V +(ψ) ⊆ V +(ψ′). Since f̂ is monotone by assumption,

this means f̂(V +(ψ)) ≤ f̂(V +(ψ′)) which implies Eq. (8.2) and strong adaptive monotonicity.

Next we establish that these instances are self–certifying. Note that for every φ we have

f(V, φ) = min
{

Q, f̂(V)
}

= Q. From our earlier remarks, we know that f(dom(ψ), φ) =

f̂(V +(ψ)) for every φ ∼ ψ. Hence for all ψ and φ, φ′ consistent with ψ, we have f(dom(ψ), φ) =
f(dom(ψ), φ′) and so f(dom(ψ), φ) = Q if and only if f(dom(ψ), φ′) = Q, which proves that the

instance is self–certifying.

Finally we show that Q and η equal the corresponding terms in the statement of Theorem 5.8.

As noted earlier, f(V, φ) = Q for all φ. We defined η as some value such that f̂(S) > Q−η implies

f̂(S) ≥ Q for all S. Since range(f) =
{

min
{

Q, f̂(S)
}

: S ⊆ V
}

, it follows that we cannot have

f(S, φ) ∈ (Q−η,Q) for any S and φ, so that η satisfies the requirements of the corresponding term

in Theorem 5.8. Hence we may apply Theorem 5.8 on this self–certifying instance with Q and η to

obtain the claimed result.

453

GOLOVIN & KRAUSE

9. Application: Automated Diagnosis and Active Learning

An important problem in AI is automated diagnosis. For example, suppose we have different hy-

potheses about the state of a patient, and can run medical tests to rule out inconsistent hypotheses.

The goal is to adaptively choose tests to infer the state of the patient as quickly as possible.

A similar problem arises in active learning. Obtaining labeled data to train a classifier is typically

expensive, as it often involves asking an expert. In active learning (c.f., Cohn, Gharamani, & Jordan,

1996; McCallum & Nigam, 1998), the key idea is that some labels are more informative than others:

labeling a few unlabeled examples can imply the labels of many other unlabeled examples, and thus

the cost of obtaining the labels from an expert can be avoided. As is standard, we assume that

we are given a set of hypotheses H , and a set of unlabeled data points X where each x ∈ X
is independently drawn from some distribution D. Let L be the set of possible labels. Classical

learning theory yields probably approximately correct (PAC) bounds, bounding the number n of

examples drawn i.i.d. from D needed to output a hypothesis h that will have expected error at most

ε with probability at least 1− δ, for some fixed ε, δ > 0. That is, if h∗ is the target hypothesis (with

zero error), and error(h) := Px∼D [h(x) �= h∗(x)] is the error of h, we require P [error(h) ≤ ε] ≥
1 − δ. The latter probability is taken with respect to D(X); the learned hypothesis h and thus

error(h) depend on it. A key challenge in active learning is to avoid bias: actively selected examples

are no longer i.i.d., and thus sample complexity bounds for passive learning no longer apply. If one

is not careful, active learning may require more samples than passive learning to achieve the same

generalization error. One natural approach to active learning that is guaranteed to perform at least

as well as passive learning is pool-based active learning (McCallum & Nigam, 1998): The idea is

to draw n unlabeled examples i.i.d. However, instead of obtaining all labels, labels are adaptively

requested until the labels of all unlabeled examples are implied by the obtained labels. Now we have

obtained n labeled examples drawn i.i.d., and classical PAC bounds still apply. The key question is

how to request the labels for the pool to infer the remaining labels as quickly as possible.

In the case of binary labels (or test outcomes) L = {−1, 1}, various authors have considered

greedy policies which generalize binary search (Garey & Graham, 1974; Loveland, 1985; Arkin,

Meijer, Mitchell, Rappaport, & Skiena, 1993; Kosaraju et al., 1999; Dasgupta, 2004; Guillory &

Bilmes, 2009; Nowak, 2009). The simplest of these, called generalized binary search (GBS) or the

splitting algorithm, works as follows. Define the version space V to be the set of hypotheses consis-

tent with the observed labels (here we assume that there is no label noise). In the worst-case setting,

GBS selects a query x ∈ X that minimizes
∣

∣

∑

h∈V h(x)
∣

∣. In the Bayesian setting we assume we

are given a prior pH over hypotheses; in this case GBS selects a query x ∈ X that minimizes
∣

∣

∑

h∈V pH(h) · h(x)
∣

∣. Intuitively these policies myopically attempt to shrink a measure of the ver-

sion space (i.e., the cardinality or the probability mass) as quickly as possible. The former provides

an O(log |H|)-approximation for the worst-case number of queries (Arkin et al., 1993), and the

latter provides an O(log 1
minh pH(h))-approximation for the expected number of queries (Kosaraju

et al., 1999; Dasgupta, 2004) and a natural generalization of GBS obtains the same guarantees

with a larger set of labels (Guillory & Bilmes, 2009). Kosaraju et al. also prove that running GBS

on a modified prior p′H(h) ∝ max
{

pH(h), 1/|H|2 log |H|
}

is sufficient to obtain an O(log |H|)-
approximation.

Viewed from this perspective of the previous sections, shrinking the version space amounts to

“covering” all false hypotheses with stochastic sets (i.e., queries), where query x covers all hypothe-

ses that disagree with the target hypothesis h∗ at x. That is, x covers {h : h(x) �= h∗(x)}. As in §8,

454

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

Figure 4: Illustration of the Active Learning problem, in the simple special case of one-dimensional

data and binary threshold hypotheses H = {hτ : τ ∈ R}, where hτ (x) = 1 if x ≥ τ and

0 otherwise.

these sets may be correlated in complex ways determined by the set of possible hypotheses. As we

will show, the reduction in version space mass is adaptive submodular, and this allows us to obtain a

new analysis of GBS using adaptive submodularity, which is arguably more amenable to extensions

and generalizations than previous analyses. Our new analysis further allows us to improve on the

previous best bound on the approximation factor of GBS (Dasgupta, 2004) from 4 ln
(

1
minh pH(h)

)

to ln
(

1
minh pH(h)

)

+ 1. We also show that when we apply GBS to a modified prior distribution, the

approximation factor is improved to O(ln |H|). This result matches a lower bound of Ω(ln |H|) of

Chakaravarthy, Pandit, Roy, Awasthi, and Mohania (2007) up to constant factors.

Theorem 9.1. In the Bayesian setting in which there is a prior pH on a finite set of hypotheses H ,

the generalized binary search algorithm makes OPT ·
(

ln
(

1
minh pH(h)

)

+ 1
)

queries in expectation

to identify a hypothesis drawn from pH , where OPT is the minimum expected number of queries

made by any policy. If minh pH(h) is sufficiently small, running the algorithm on a modified prior

p′H(h) ∝ max
{

pH(h), 1/|H|2
}

improves the approximation factor to O(ln |H|).

We devote the better part of the remainder of this section to the proof of Theorem 9.1, which has

several components. We first address the important special case of a uniform prior over hypotheses,

i.e., pH(h) = 1/|H| for all h ∈ H , and then we reduce the case with a general prior to a uniform

prior. We wish to appeal to Theorem 5.8, so we convert the problem into an Adaptive Stochastic

Min Cost Cover problem.

9.1 The Reduction to Adaptive Stochastic Min Cost Cover

Define a realization φh for each hypothesis h ∈ H . The ground set is E = X , and the outcomes are

binary; we define O = {−1, 1} instead of using {0, 1} to be consistent with our earlier exposition.

For all h ∈ H we set φh ≡ h, meaning φh(x) = h(x) for all x ∈ X . To define the objective

function, we first need some notation. Given observed labels ψ ⊂ X × O, let V (ψ) denote the

version space, i.e., the set of hypotheses for which h(x) = ψ(x) for all x ∈ dom(ψ). See Fig. 4

for an illustration of an active learning problem in the case of indicator hypotheses. For a set of

hypotheses V , let pH(V) :=
∑

h∈V pH(h) denote their total prior probability. Finally, let ψ(S, h) =
{(x, h(x)) : x ∈ S} be the function with domain S that agrees with h on S. We define the objective

455

GOLOVIN & KRAUSE

function by

f(S, φh) := 1− pH(V (ψ(S, h))) = pH
({

h′ : ∃x ∈ S, h′(x) �= h(x)
})

and use p (φh) = pH(h) = 1/|H| for all h. Let π∗ be an optimal policy for this Adaptive Stochastic

Min Cost Cover instance. Note that there is an exact correspondence between policies for the

original problem of finding the target hypothesis and our problem of covering the true realization;

h∗ is identified as the target hypothesis if and only if the version space is reduced to {h∗} which

occurs if and only if φh∗ is covered. Hence cavg(π
∗) = OPT. Note that because we have assumed a

uniform prior over hypotheses, we have f(X,φh) = 1−1/|H| for all h. Furthermore, the instances

are self–certifying.

Lemma 9.2. The instances described above are self–certifying for arbitrary priors pH .

Proof. Intuitively, theses instances are self–certifying because to cover φh∗ a policy must identify

φh∗ . More formally, these instances are self–certifying because for any φh and ψ such that φh ∼ ψ,

we have that f(dom(ψ), φh) = f(X,φh) implies V (ψ) = {h}. This in turn means that φh is

the only realization consistent with ψ, which trivially implies that any realization φ′ ∼ ψ also has

f(dom(ψ), φ′) = f(X,φ′); hence the instance is self–certifying.

9.2 The Uniform Prior

We next prove that the instances generated are adaptive submodular and strongly adaptive monotone

under a uniform prior.

Lemma 9.3. In the instances described above, f is strongly adaptive monotone and adaptive sub-

modular and with respect to a uniform prior pH .

Proof. Demonstrating strong adaptive monotonicity under a uniform prior amounts to proving that

adding labels cannot grow the version space, which is clear in our model. That is, each query x
eliminates some subset of hypotheses, and as more queries are performed, the subset of hypotheses

eliminated by x cannot grow. Moving on to adaptive submodularity, consider the expected marginal

contribution of x under two partial realizations ψ,ψ′ where ψ is a subrealization of ψ′ (i.e., ψ ⊂
ψ′), and x /∈ dom(ψ′). Let ψ[x/o] be the partial realization with domain dom(ψ) ∪ {x} that

agrees with ψ on its domain, and maps x to o. For each o ∈ O, let ao := pH(V (ψ[x/o])), bo :=
pH(V (ψ′[x/o])). Since a hypothesis eliminated from the version space cannot later appear in the

version space, we have ao ≥ bo for all o. Next, note the expected reduction in version space mass

(and hence the expected marginal contribution) due to selecting x given partial realization ψ is

∆(x |ψ) =
∑

o∈O

ao · P [Φ(x) �= o | Φ ∼ ψ] =
∑

o

ao

(

∑

o′ �=o ao′
∑

o′ ao′

)

=

∑

o �=o′ aoao′
∑

o′ ao′
. (9.1)

The corresponding quantity for ψ′ has bo substituted for ao in Eq. (9.1), for each o ∈ O. To prove

adaptive submodularity we must show ∆(x |ψ) ≥ ∆(x |ψ′) and to do so it suffices to show that

∂φ/∂zo ≥ 0 for each o and �z ∈
{

�c ∈ [0, 1]O :
∑

o co > 0
}

, where φ(�z) :=
(

∑

o �=o′ zozo′
)

/ (
∑

o′ zo′)

has the same functional form as the expression for ∆(x |ψ) in Eq. (9.1). This is because ∂φ/∂zo ≥ 0
for each o implies that growing the version space in any manner cannot decrease the expected

456

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

marginal benefit of query x, and hence shrinking it in any manner cannot increase the expected

marginal benefit of x. It is indeed the case that ∂φ/∂zo ≥ 0 for each o. More specifically, it holds

that
∂φ

∂za
=

∑

b�=a z
2
b +

∑

(b,c):b �=c,b �=a,c �=a zbzc

(
∑

b zb)
2 ≥ 0,

which can be derived through elementary calculus.

Hence we can apply Theorem 5.8 to this self–certifying instance with maximum reward thresh-

old Q = 1−1/|H|, and minimum gap η = 1/|H|, to obtain an upper bound of OPT (ln (|H| − 1) + 1)
on the number of queries made by the generalized binary search algorithm (which corresponds ex-

actly to the greedy policy for Adaptive Stochastic Min Cost Cover) under the assumption of a

uniform prior over H .

9.3 Arbitrary Priors

Now consider general priors over H . We construct the Adaptive Stochastic Min Cost Cover instance

as before, only we change the objective function to

f(S, φh) := 1− pH(V (ψ(S, h))) + pH(h). (9.2)

First note that the instances remain self–certifying. The proof of Lemma 9.2 goes through com-

pletely unchanged by the modification of f . We proceed to show adaptive submodularity and strong

adaptive monotonicity.

Lemma 9.4. The objective function f as described in Eq. (9.2) is strongly adaptive monotone and

adaptive submodular and with respect to arbitrary priors pH .

Proof. The modified objective is still adaptive submodular, because (S, φh) �→ pH(h) is clearly so,

and because adaptive submodularity is defined via linear inequalities it is preserved under taking

nonnegative linear combinations. Note that f(X,φh) = 1 for all φh.

Showing f is strongly adaptive monotone requires slightly more work than before. Fix ψ, x /∈
dom(ψ), and o ∈ O. We must show

E [f(dom(ψ),Φ) | Φ ∼ ψ] ≤ E [f(dom(ψ) ∪ {x} ,Φ) | Φ ∼ ψ,Φ(x) = o] . (9.3)

Plugging in the definition of f , the inequality we wish to prove may be simplified to

E [pH(Φ) | Φ ∼ ψ]− E [pH(Φ) | Φ ∼ ψ[x/o]] ≤ pH(V (ψ))− pH(V (ψ[x/o])). (9.4)

where Φ is the random realization of the hypothesis, and pH(φh) = pH(h) for all h. Let Velim :=
V (ψ) − V (ψ[x/o]) be the set of hypotheses eliminated from the version space by the observation

h(x) = o. Rewriting Eq. (9.4), we get

∑

h∈V (ψ)

pH(h)2

pH(V (ψ))
−

∑

h∈V (ψ[x/o])

pH(h)2

pH(V (ψ[x/o]))
≤ pH(Velim). (9.5)

457

GOLOVIN & KRAUSE

Let LHS9.5 denote the left hand side of Eq. (9.5). We prove Eq. (9.5) as follows.

LHS9.5 ≤
∑

h∈Velim
pH(h)2/pH(V (ψ)) [since pH(V (ψ[x/o])) ≤ pH(V (ψ))]

≤
∑

h∈Velim
pH(h) · pH(V (ψ))/pH(V (ψ)) [since h ∈ V (ψ) ⇒ pH(h) ≤ pH(V (ψ))]

= pH(Velim)

We conclude that f is adaptive submodular and strongly adaptive monotone.

Hence we can apply Theorem 5.8 to this self–certifying instance with maximum reward thresh-

old Q = 1, and minimum gap η = 1/minh pH(h). As a result we obtain an upper bound of

OPT (ln (1/minh pH(h)) + 1) on the number of queries made by generalized binary search for

arbitrary priors, completing the proof of Theorem 9.1.

9.4 Improving the Approximation Factor for Highly Nonuniform Priors

To improve this to an O(log |H|)-approximation in the event that minh pH(h) is extremely small

using the observation of Kosaraju et al. (1999), call a policy π progressive if it eliminates at least

one hypothesis from its version space in each query. Let p′H(h) = max
{

pH(h), 1/|H|2
}

/Z
be the modified prior, where Z :=

∑

h′ max
{

pH(h′), 1/|H|2
}

is the normalizing constant. Let

c(π, h) be the cost (i.e., # of queries) of π under target h. Then cavg(π, p) :=
∑

h c(π, h)p(h)
is the expected cost of π under prior p. We will show that cavg(π, p

′
H) is a good approxima-

tion to cavg(π, pH). Call h rare if pH(h) < 1/|H|2, and common otherwise. First, note that
∑

h′ max
{

pH(h′), 1/|H|2
}

≤ 1 + 1/|H|, and so p′H(h) ≥ |H|
|H|+1pH(h), for all h. Hence for all π,

we have cavg(π, p
′
H) ≥ |H|

|H|+1cavg(π, pH). Next, we show cavg(π, p
′
H) ≤ cavg(π, pH) + 1. Consider

the quantity cavg(π, p
′
H)− cavg(π, pH) =

∑

h c(π, h) (p
′
H(h)− pH(h)). The positive contributions

must come from rare hypotheses. However, the total probability mass of these under p′H is at most

1/|H|, and since π is progressive c(π, h) ≤ |H| for all h, hence the difference in costs is at most

one. Let α := ln
(

1
minh p′

H
(h)

)

+ 1 ≤ ln
(

|H|2 + |H|
)

+ 1 be the approximation factor for general-

ized binary search when run on p′H . Let π be the policy of generalized binary search, and let π∗ be

an optimal policy under prior pH . Then

cavg(π, pH) ≤
|H|+ 1

|H|
cavg(π, p

′
H) ≤

|H|+ 1

|H|
α cavg(π

∗, p′H) ≤
|H|+ 1

|H|
α
(

cavg(π
∗, pH) + 1

)

.

With some further algebra, we can derive cavg(π, pH) ≤
(

cavg(π
∗, pH) + 1

) (

ln
(

2e|H|2
))

. Thus

for a general prior a simple modification of GBS yields an O(log |H|)-approximation.

9.5 Extensions to Arbitrary Costs, Multiple Classes, and Approximate Greedy Policies

This result easily generalizes to handle the setting of multiple classes / test outcomes (i.e., |O| ≥ 2),

and α-approximate greedy policies, where we lose a factor of α in the approximation factor. As we

describe in the Appendix, we can generalize adaptive submodularity to incorporate costs on items,

which allows us to extend this result to handle query costs as well. We can therefore recover these

extensions of Guillory and Bilmes (2009), while improving the approximation factor for GBS with

item costs to ln
(

1
minh pH(h)

)

+ 1. Guillory and Bilmes also showed how to extend the technique

458

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

of Kosaraju et al. (1999) to obtain an O
(

log
(

|H|maxx c(x)
minx c(x)

))

-approximation with costs using a

greedy policy, which may be combined with our tighter analysis as well to give a similar result

with an improved leading constant. Recently, Gupta, Krishnaswamy, Nagarajan, and Ravi (2010)

showed how to simultaneously remove the dependence on both costs and probabilities from the

approximation ratio. Specifically, within the context of studying an adaptive travelling salesman

problem they investigated the Optimal Decision Tree problem, which is equivalent to the active

learning problem we consider here. Using a clever, more complex algorithm than adaptive greedy,

they achieve an O (log |H|)-approximation in the case of non-uniform costs and general priors.

9.6 Extensions to Active Learning with Noisy Observations

Theorem 9.1 and the extensions mentioned so far are in the noise free case, i.e., the result of query x
and observes h∗(x), where h∗ is the target hypothesis. Many practical problems may have noisy ob-

servations. Nowak (2009) considered the case in which the outcomes are binary, i.e., O = {−1, 1},

the same query may be asked multiple times, and for each instance of each query the noise is in-

dependent. In this case he gives performance guarantees for generalized binary search. While this

setting may be appropriate if the noise is due to measurement error, in some applications the noise

is persistent, i.e., if query x is asked several times, the observation is always the same. Recently,

Golovin et al. (2010) and Bellala and Scott (2010) have used the adaptive submodularity frame-

work to obtain the first algorithms with provable (logarithmic) approximation guarantees for active

learning with persistent noise.

10. Experiments

Greedy algorithms are often straightforward to develop and implement, which explains their pop-

ular use in practical applications, such as Bayesian experimental design and Active Learning, as

discussed in §9 (also see the excellent introduction of Nowak, 2009) and Adaptive Stochastic Set

Cover, e.g., for filter design in streaming databases as discussed in §7. Besides allowing us to prove

approximation guarantees for such algorithms, adaptive submodularity provides the following im-

mediate practical benefits:

1. The ability to use lazy evaluations to speed up its execution.

2. The ability to generate data-dependent bounds on the optimal value.

In this section, we empirically evaluate their benefits within a sensor selection application, in a

setting similar to the one described by Deshpande, Guestrin, Madden, Hellerstein, and Hong (2004).

In this application, we have deployed a network V of wireless sensors, e.g., to monitor temperature

in a building or traffic in a road network. Since sensors are battery constrained, we must adaptively

select k sensors, and then, given those sensor readings, predict, e.g., the temperature at all remaining

locations. This prediction is possible since temperature measurements will typically be correlated

across space. Here, we will consider the case where sensors can fail to report measurements due to

hardware failures, environmental conditions or interference.

10.1 The Sensor Selection Problem with Unreliable Sensors

More formally, we imagine every location v ∈ V is associated with a random variable Xv describing

the temperature at that location, and there is a joint probability distribution p (xV) := P [XV = xV]
that models the correlation between temperature values. Here, XV = [X1, . . . ,Xn] is the random

459

GOLOVIN & KRAUSE

vector over all temperature values. We follow Deshpande et al. (2004) and assume that the joint

distribution of the sensors is multivariate Gaussian. A sensor v can make a noisy observation Yv =
Xv + εv, where εv is zero mean Gaussian noise with known variance σ2. If some measurements

YA = yA are obtained at a subset of locations, then the conditional distribution p (xV | yA) :=
P [XV = xV | YA = yA] allows predictions at the unobserved locations, e.g., by predicting E[XV |
YA = yA] (which minimizes the mean squared error). Furthermore, this conditional distribution

quantifies the uncertainty in the prediction: Intuitively, we would like to select sensors that minimize

the predictive uncertainty. One way to quantify the predictive uncertainty is to use the remaining

Shannon entropy

H (XV | YA = yA) := E [− log2 (p (XV | yA))] .

We would like to adaptively select k sensors, to maximize the expected reduction in Shannon en-

tropy (c.f., Sebastiani & Wynn, 2000; Krause & Guestrin, 2009b). However, in practice, sensors are

often unreliable, and might fail to report their measurements. We assume that after selecting a sen-

sor, we find out whether it has failed or not before deciding which sensor to select next. We suppose

that each sensor has an associated probability pfail(v) of failure, in which case no reading is reported,

and that sensor failures are independent of each other and of the ambient temperature at v. Thus we

have an instance of the Stochastic Maximization problem with E := V , O := {working, failed},

and

f(A, φ) := H (XV)−H
(

XV | y{v : φ(v)=working}

)

. (10.1)

For multivariate normal distributions, the entropy is given as

H (XV | YA = yA) =
1

2
ln(2πe)n

∣

∣

∣
ΣV A

(

ΣAA + σ2I
)−1

ΣAV

∣

∣

∣
,

where for sets A and B, ΣAB denotes the covariance (matrix) between random vectors XA and XB .

Note that the predictive covariance does not depend on the actual observations yA, only on the set

A of chosen locations. Thus,

H (XV | YA = yA) = H (XV | YA) ,

where as usual, H (XV | YA) = E [H (XV | YA = yA)]. As Krause and Guestrin (2005) show,

the function

g(A) := I (XV ;YA) = H (XV)−H (XV | YA) (10.2)

is monotone submodular, whenever the observations YV are conditionally independent given XV .

This insight allows us to apply the result of §6 to show that the objective f defined in Eq. (10.1)

is adaptive monotone submodular, using f̂(S) := g({v : (v,working) ∈ S}) for any S ⊆ E ×O.

10.1.1 DATA AND EXPERIMENTAL SETUP

Our first data set consists of temperature measurements from the network of 46 sensors deployed at

Intel Research Berkeley, which were sampled at 30 second intervals for 5 consecutive days (starting

Feb. 28th, 2004). We define our objective function with respect to the empirical covariance estimated

from the data.

We also use data from traffic sensors deployed along the highway I-880 South in California.

We use traffic speed data for all working days from 6 AM to 11 AM for one month, from 357
sensors. The goal is to predict the speed on all 357 road segments. We again estimate the empirical

covariance matrix.

460

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

10.1.2 THE BENEFITS OF LAZY EVALUATION

For both data sets, we run the adaptive greedy algorithm, using both the naive implementation (Al-

gorithm 1) and the accelerated version using lazy evaluations (Algorithm 2). We vary the probability

of sensor failure, and evaluate the execution time and the number of evaluations of the function g
(defined in Eq. (10.2)) each algorithm makes. Figures 5(a) and 5(b) plot execution time given a

50% sensor failure rate, on a computer with a 2.26 GHz dual core processor and 4 GB RAM. In

these applications, function evaluations are the bottleneck in the computation, so the number of

them serves as a machine-independent proxy for the running time. Figures 5(c) and 5(d) show the

performance ratio in terms of this proxy. On the temperature data set, lazy evaluations speed up the

computation by a factor of between roughly 3.5 and 7, depending on the failure probability. On the

larger traffic data set, we obtain speedup factors between 30 and 38. We find that the benefit of the

lazy evaluations increases with the problem size and with the failure probability. The dependence on

problem size must ultimately be explained in terms of structural properties of the instances, which

also benefit the nonadaptive accelerated greedy algorithm. The dependence on failure probability

has a simpler explanation. Note that in these applications, if the accelerated greedy algorithm se-

lects v, which then fails, then it does not need to make any additional function evaluations to select

the next sensor. Contrast this with the naive greedy algorithm, which makes a function evaluation

for each sensor that has not been selected so far.

10.1.3 THE BENEFITS OF THE DATA DEPENDENT BOUND

While adaptive submodularity allows us to prove worst-case performance guarantees for the adap-

tive greedy algorithm, in many practical applications it can be expected that these bounds are quite

loose. For our sensor selection application, we use the data dependent bounds of Lemma 5.3 to

compute an upper bound βavg on maxπ favg(π[k]) as described below, and compare it with the per-

formance guarantee of Theorem 5.2. For the accelerated greedy algorithm, we use the upper bounds

on the marginal benefits stored in the priority queue instead of recomputing the marginal benefits,

and thus expect somewhat looser bounds. We find that for our application, the bounds are tighter

than the worst case bounds. We also find that the “lazy” data dependent bounds are almost as tight as

the “eager” bounds using the eagerly recomputed marginal benefits ∆(e |ψ) for the latest and great-

est ψ, though the former have slightly higher variance. Figures 5(e) and 5(f) show the performance

of the greedy algorithm as well as the three bounds on the optimal value.

Two subtleties arise when using the data-dependent bounds to bound maxπ favg(π[k]). The

first is that Lemma 5.3 tells us that ∆
(

π∗
[k] |ψ

)

≤ maxA⊆E,|A|≤k

∑

e∈A∆(e |ψ), whereas we

would like to bound the difference between the optimal reward and the algorithm’s current expected

reward, conditioned on seeing ψ, i.e., E
[

f(E(π∗
[k],Φ),Φ)− f(dom(ψ),Φ) | Φ ∼ ψ

]

. However,

in our applications f is strongly adaptive monotone, and strong adaptive monotonicity implies that

for any π∗ we have

E
[

f(E(π∗
[k],Φ),Φ)− f(dom(ψ),Φ) | Φ ∼ ψ

]

≤ ∆
(

π∗
[k] |ψ

)

. (10.3)

Hence, if we let OPT(ψ) := maxπ E
[

f(E(π[k],Φ),Φ) | Φ ∼ ψ
]

, Lemma 5.3 implies that

OPT(ψ) ≤ E [f(dom(ψ),Φ) | Φ ∼ ψ] + max
A⊆E,|A|≤k

∑

e∈A

∆(e |ψ) . (10.4)

461

GOLOVIN & KRAUSE

The second subtlety is that we obtain a sequence of bounds from Eq. (10.4). If we consider the

(random) sequence of partial realizations observed by the adaptive greedy algorithm, ∅ = ψ0 ⊂
ψ1 ⊂ · · · ⊂ ψk, we obtain k + 1 bounds β0, . . . , βk, where βi := E [f(dom(ψi),Φ) | Φ ∼ ψi] +
maxA⊆E,|A|≤k

∑

e∈A∆(e |ψi). Taking the expectation over Φ, note that for any π, and any i,

favg(π[k]) ≤ E [OPT(ψi)] ≤ E [βi] .

Therefore for any 0 ≤ i ≤ k , βi is a random variable whose expectation is an upper bound on

the optimal expected reward of any policy. At this point we may be tempted to use the minimum

of these, i.e., βmin := mini {βi} as our ultimate bound. However, a collection of random variables

X0, . . . , Xk with E [Xi] ≥ τ for all i does not, in general, satisfy mini {Xi} ≥ τ . While it is

possible in our case, with its independent sensor failures, to use concentration inequalities to bound

mini {βi} −mini {E [βi]} with high probability, and thus add an appropriate term to obtain a true

upper bound from βmin, we take a different approach; we simply use the average bound βavg :=
1

k+1

∑k
i=0 βi. Of course, depending on the application, a particular bound βi (chosen independently

of the sequence ψ0, ψ1, . . . , ψk) may be superior. For example, if g is modular, then β0 is best,

whereas if g exhibits strong diminishing returns, then bounds βi with larger values of i may be

significantly tighter.

11. Adaptivity Gap

An important question in adaptive optimization is how much better adaptive policies can perform

when compared to non-adaptive policies. This is quantified by the adaptivity gap, which is the

worst-case ratio, over problem instances, of the performance of the optimal adaptive policy to the

optimal non-adaptive solution. Asadpour et al. (2008) show that in the Stochastic Submodular

Maximization problem with independent failures (as considered in §6), the expected value of the

optimal non-adaptive policy is at most a constant factor 1 − 1/e worse than the expected value

of the optimal adaptive policy. While we currently do not have lower bounds for the adaptivity

gap of the general Adaptive Stochastic Maximization problem (2.1), we can show that even in the

case of adaptive submodular functions, the min-cost cover and min-sum cover versions have large

adaptivity gaps, and thus there is a large benefit of using adaptive algorithms. In these cases, the

adaptivity gap is defined as the worst-case ratio of the expected cost of the optimal non-adaptive

policy divided by the expected cost of the optimal adaptive policy. For the Adaptive Stochastic

Minimum Cost Coverage problem (2.2), Goemans and Vondrák (2006) show the special case of

Stochastic Set Coverage without multiplicities has an adaptivity gap of Ω(|E|). Below we exhibit

an adaptive stochastic optimization instance with adaptivity gap of Ω(|E|/ log |E|) for the Adaptive

Stochastic Min-Sum Cover problem (2.3), which also happens to have the same adaptivity gap for

Adaptive Stochastic Minimum Cost Coverage.

Theorem 11.1. Even for adaptive submodular functions, the adaptivity gap of Adaptive Stochastic

Min-Sum Cover is Ω(n/ log n), where n = |E|.

Proof. Suppose E = {1, . . . , n}. Consider the active learning problem where our hypotheses

h : E → {−1, 1} are threshold functions, i.e., h(e) = 1 if e ≥ ℓ and h(e) = −1 if e < ℓ
for some threshold ℓ. There is a uniform distribution over thresholds ℓ ∈ {1, . . . , n + 1}. In

order to identify the correct hypothesis with threshold ℓ, our policy must observe at least one of

ℓ − 1 or ℓ (and both of them if 1 < ℓ ≤ n). Let π̂ be an optimal non-adaptive policy for this

462

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Time for Standard and Accelerated Adaptive Greedy

Accelerated Adaptive Greedy

Adaptive Greedy

(a) Temperature Data: Execution time (sec) for

the naive vs accelerated implementations of adap-

tive greedy vs. the budget k on number of sensors

selected, when pfail(v) = 0.5 for all v, plotted

with standard errors.

0 50 100 150 200 250 300 350
0

5

10

15

20

25

30

35

40
Time for Standard and Accelerated Adaptive Greedy

Adaptive Greedy

Accelerated Adaptive Greedy

(b) Traffic Data: Execution time (sec) for the

naive vs accelerated implementations of adap-

tive greedy vs. the budget k on number of sen-

sors selected, when pfail(v) = 0.5 for all v,

plotted with standard errors.

0 10 20 30 40 50
1

2

3

4

5

6

7

8
Reduction in Function Evaluations vs. Pr[failure]

90%
80%
70%
60%
50%
40%
30%
20%
10%

(c) Temperature Data: The ratio of function eval-

uations made by the naive vs accelerated imple-

mentations of adaptive greedy vs. the budget k

on number of sensors selected, for various failure

rates. Averaged over 100 runs.

0 100 200 300 400
0

5

10

15

20

25

30

35

40

45

50%
25%

75%

Reduction in Function Evaluations vs. Pr[failure]

(d) Traffic Data: The ratio of function evaluations

made by the naive vs accelerated implementations

of adaptive greedy vs. the budget k on number of

sensors selected, for various failure rates. Aver-

aged over 10 runs.

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Reward for Adaptive Greedy, with Data−Dependent Bounds

Adaptive Greedy

Standard Bound
Lazy Adaptive Bound
Adaptive Bound

(e) Temperature Data: Rewards & bounds on the

optimal value when pfail(v) = 0.5 for all v vs. the

budget k on number of sensors selected, plotted

with standard errors.

0 50 100 150 200 250 300 350 400
0

50

100

150

Reward for Adaptive Greedy, with Data−Dependent Bounds

Adaptive Greedy

Standard Bound
Lazy Adaptive Bound
Adaptive Bound

(f) Traffic Data: Rewards & bounds on the op-

timal value when pfail(v) = 0.5 for all v vs. the

budget k on number of sensors selected, plotted

with standard errors.

Figure 5: Experimental results.

463

GOLOVIN & KRAUSE

problem. Note that π̂ can be represented as a permutation of E, because observing an element

multiple times can only increase the cost while providing no benefit over observing it once, and

each element must eventually be selected to guarantee coverage. For the min-sum cover objective,

consider playing π̂ for n/4 time steps. Then P [ℓ observed in n/4 steps] = n/4(n + 1). Likewise

P [ℓ− 1 observed in n/4 steps] = n/4(n + 1). Since at least one of these events must occur to

identify the correct hypothesis, by a union bound

P [π̂ identifies the correct hypothesis in n/4 steps] ≤
n

2(n+ 1)
≤ 1/2.

Thus a lower bound on the expected cost of π̂ is n/8, since for n/4 time steps a cost of at least

1/2 is incurred. Thus, for both the min-cost and min-sum cover objectives the cost of the optimal

non-adaptive policy is Ω(n).
As an example adaptive policy, we can implement a natural binary search strategy, which is

guaranteed to identify the correct hypothesis after O(log n) steps, thus incurring cost O(log n),
proving an adaptivity gap of Ω(n/ log n).

12. Hardness of Approximation

In this paper, we have developed the notion of adaptive submodularity, which characterizes when

certain adaptive stochastic optimization problems are well-behaved in the sense that a simple greedy

policy obtains a constant factor or logarithmic factor approximation to the best policy.

In contrast, we can also show that without adaptive submodularity, the adaptive stochastic op-

timization problems (2.1), (2.2), and (2.3) are extremely inapproximable, even with (pointwise)

modular objective functions (i.e., those where for each φ, f : 2E × OE → R is modular/linear in

the first argument): We cannot hope to achieve an O(|E|1−ε) approximation ratio for these prob-

lems, unless the polynomial hierarchy collapses down to ΣP
2 .

Theorem 12.1. For all (possibly non-constant) β ≥ 1, no polynomial time algorithm for Adaptive

Stochastic Maximization with a budget of βk items can approximate the reward of an optimal policy

with a budget of only k items to within a multiplicative factor of O(|E|1−ε/β) for any ε > 0, unless

PH = ΣP
2 . This holds even for pointwise modular f .

We provide the proof of Theorem 12.1 in Appendix A.7. Note that by setting β = 1, we

obtain O(|E|1−ε) hardness for Adaptive Stochastic Maximization. It turns out that in the instance

distribution we construct in the proof of Theorem 12.1 the optimal policy covers every realization

(i.e., always finds the treasure) using a budget of k = O(|E|ε/2) items. Hence if PH �= ΣP
2

then any randomized polynomial time algorithm wishing to cover this instance must have a budget

β = Ω(|E|1−ε) times larger than the optimal policy, in order to ensure the ratio of rewards, which

is Ω(|E|1−ε/β), equals one. This yields the following corollary.

Corollary 12.2. No polynomial time algorithm for Adaptive Stochastic Min Cost Coverage can

approximate the cost of an optimal policy to within a multiplicative factor of O(|E|1−ε) for any

ε > 0, unless PH = ΣP
2 . This holds even for pointwise modular f .

Furthermore, since in the instance distribution we construct the optimal policy π∗ covers every

realization using a budget of k, it has cΣ(π
∗) ≤ k. Moreover, since we have shown that under

our complexity theoretic assumptions, any polynomial time randomized policy π with budget βk

464

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

achieves at most o(β/|E|1−ε) of the (unit) value obtained by the optimal policy with budget k, it

follows that cΣ(π) = Ω(βk). Since we require β = Ω(|E|1−ε) to cover any set of realizations

constituting, e.g., half of the probability mass, we obtain the following corollary.

Corollary 12.3. No polynomial time algorithm for Adaptive Stochastic Min-Sum Cover can ap-

proximate the cost of an optimal policy to within a multiplicative factor of O(|E|1−ε) for any ε > 0,

unless PH = ΣP
2 . This holds even for pointwise modular f .

13. Related Work

There is a large literature on adaptive optimization under partial observability which relates to adap-

tive submodularity, which can be broadly organized into several different categories. Here, we only

review relevant related work that is not already discussed elsewhere in the manuscript.

13.1 Adaptive Versions of Classic Non-adaptive Optimization Problems

Many approaches consider stochastic generalizations of specific classic non-adaptive optimization

problems, such as Set Cover (Goemans & Vondrák, 2006; Liu et al., 2008), Knapsack (Dean, Goe-

mans, & Vondrák, 2008, 2005) and Traveling Salesman (Gupta et al., 2010). In contrast, in this

paper our goal is to introduce a general problem structure – adaptive submodularity – that unifies

a number of adaptive optimization problems. This is similar to how the classic notion of submod-

ularity unifies various optimization problems such as Set Cover, Facility Location, nonadaptive

Bayesian Experimental Design, etc.

13.2 Competitive Online Optimization

Another active area of research in sequential optimization is the study of competitive online algo-

rithms. A particularly relevant example is Online Set Cover (Alon, Awerbuch, Azar, Buchbinder,

& Naor, 2009), where there is a known set system, an arbitrary sequence of elements is presented

to the algorithm, and the algorithm must irrevocably select sets to purchase such that at all times

the purchased sets cover all elements which have appeared so far. Alon et al. (2009) obtain a

polylogarithmic approximation to this problem, via an online primal–dual framework which has

been profitably applied to many other problems. Buchbinder and Naor (2009) provide a detailed

treatment of this framework. Note that competitive analysis focuses on worst–case scenarios. In

contrast, we assume probabilistic information about the world and optimize for the average case.

13.3 (Noisy) Interactive Submodular Set Cover

Recent work by Guillory and Bilmes (2010, 2011) considers a class of adaptive optimization prob-

lems over a family of monotone submodular objectives {fh : h ∈ H}. In their problem, one must

cover a monotone submodular objective fh∗ which depends on the (initially unknown) target hy-

pothesis h∗ ∈ H , by adaptively issuing queries and getting responses. Unlike traditional pool-based

active learning, each query may generate a response from a set of valid responses depending on the

target hypothesis. The reward is calculated by evaluating fh∗ on the set of (query, response) pairs

observed, and the goal is to obtain some threshold Q of objective value at minimum total query cost,

where queries may have nonuniform costs. In the noisy variant of the problem (Guillory & Bilmes,

2011), the set of (query, response) pairs observed need not be consistent with any hypothesis in H ,

465

GOLOVIN & KRAUSE

and the goal is to obtain Q of value for all hypotheses that are “close” to being consistent with the

observations. For both variants, Guillory and Bilmes consider the worst-case policy cost, and pro-

vide greedy algorithms optimizing clever hybrid objective functions. They prove an approximation

guarantee of ln(Q|H|) + 1 for integer valued objective functions {fh}h∈H in the noise–free case,

and similar logarithmic approximation guarantees for the noisy case.

While similar in spirit to this work, there are several significant differences between the two.

Guillory and Bilmes focus on worst-case policy cost, while we focus mainly on average-case policy

cost. The structure of adaptive submodularity depends on the prior p (φ), whereas there is no such

dependence in Interactive Submodular Set Cover. This dependence in turn allows us to obtain

results, such as Theorem 5.8 for self–certifying instances, whose approximation guarantee does not

depend on the number of realizations in the way that the guarantees for Interactive Submodular Set

Cover depend on |H|. As Guillory and Bilmes prove, the latter dependence is fundamental under

reasonable complexity-theoretic assumptions6. An interesting open problem within the adaptive

submodularity framework that is highlighted by the work on Interactive Submodular Set Cover is

to identify useful instance-specific properties that are sufficient to improve upon the worst-case

approximation guarantee of Theorem 5.9.

13.4 Greedy Frameworks for Adaptive Optimization

The paper that is perhaps closest in spirit to this work is the one on Stochastic Depletion problems

by Chan and Farias (2009), who also identify a general class of adaptive optimization problems

than can be near-optimally solved using greedy algorithms (which in their setting give a factor

2 approximation). However, the similarity is mainly on a conceptual level: The problems and

approaches, as well as example applications considered, are quite different.

13.5 Stochastic Optimization with Recourse

A class of adaptive optimization problems studied extensively in operations research (since Dantzig,

1955) is the area of stochastic optimization with recourse. Here, an optimization problem, such as

Set Cover, Steiner Tree or Facility Location, is presented in multiple stages. At each stage, more

information is revealed, but costs of actions increase. A key difference to the problems studied in

this paper is that in these problems, information gets revealed independently of the actions taken by

the algorithm. There are general efficient, sampling based (approximate) reductions of multi-stage

optimization to the deterministic setting (see, e.g., Gupta, Pál, Ravi, & Sinha, 2005).

13.6 Bayesian Global Optimization

Adaptive Stochastic Optimization is also related to the problem of Bayesian Global Optimization

(c.f., Brochu, Cora, & de Freitas, 2009, for a recent survey of the area). In Bayesian Global Opti-

mization, the goal is to adaptively select inputs in order to maximize an unknown function that is

expensive to evaluate (and can possibly only be evaluated using noisy observations). A common ap-

proach that has been successful in many applications (c.f., Lizotte, Wang, Bowling, & Schuurmans,

2007, for a recent application in machine learning), is to assume a prior distribution, such as a Gaus-

6. They reduce to Set Cover and use the result of Feige (1998), which requires the assumption NP �
DTIME(nO(log logn)), but it suffices to assume only P �= NP using the Set Cover approximation hardness result

of Raz and Safra (1997) instead.

466

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

sian process, over the unknown objective function. Several criteria for selecting inputs have been

developed, such as the Expected Improvement (Jones, Schonlau, & Welch, 1998) criterion. How-

ever, while recently performance guarantees where obtained in the no-regret setting (Grünewälder,

Audibert, Opper, & Shawe-Taylor, 2010; Srinivas, Krause, Kakade, & Seeger, 2010), we are not

aware of any approximation guarantees for Bayesian Global Optimization.

13.7 Probabilistic Planning

The problem of decision making under partial observability has also been extensively studied in

stochastic optimal control. In particular, Partially Observable Markov Decision Processes (POMDPs,

Smallwood & Sondik, 1973) are a general framework that captures many adaptive optimization

problems under partial observability. Unfortunately, solving POMDPs is PSPACE hard (Papadim-

itriou & Tsitsiklis, 1987), thus typically heuristic algorithms with no approximation guarantees are

applied (Pineau, Gordon, & Thrun, 2006; Ross, Pineau, Paquet, & Chaib-draa, 2008). For some

special instances of POMDPs related to Multi-armed Bandit problems, (near-)optimal policies can

be found. These include the (optimal) Gittins-index policy for the classic Multi-armed Bandit prob-

lem (Gittins & Jones, 1979) and approximate policies for the Multi-armed Bandit problem with

metric switching costs (Guha & Munagala, 2009) and special cases of the Restless Bandit prob-

lem (Guha, Munagala, & Shi, 2009). The problems considered in this paper can be formalized as

POMDPs, albeit with exponentially large state space (where the world state represents the selected

items and state/outcome of each item). Thus our results can be interpreted as widening the class of

partially observable planning problems that can be efficiently approximately solved.

13.8 Previous Work by the Authors & Subsequent Developments

This manuscript is an extended version of a paper that appeared in the Conference on Learning

Theory (COLT; Golovin & Krause, 2010). More recently, Golovin and Krause (2011) proved per-

formance guarantees for the greedy policy for the problem of maximizing the expected value of a

policy under constraints more complex than simply selecting at most k items. These include ma-

troid constraints, where a policy can only select independent sets of items and the greedy policy

obtains a 1/2–approximation for adaptive monotone submodular objectives, and more generally

p-independence system constraints, where the greedy policy obtains a 1/(p + 1)–approximation.

Golovin et al. (2010) and, shortly thereafter, Bellala and Scott (2010), used the adaptive submodu-

larity framework to obtain the first algorithms with provable (logarithmic) approximation guarantees

for the difficult and fundamental problem of active learning with persistent noise. Finally, Golovin,

Krause, Gardner, Converse, and Morey (2011) used adaptive submodularity in the context of a

dynamic conservation planning, and obtain competitiveness guarantees for an ecological reserve

design problem.

14. Conclusions

Planning under partial observability is a central but notoriously difficult problem in artificial intel-

ligence. In this paper, we identified a novel, general class of adaptive optimization problems under

uncertainty that are amenable to efficient, greedy (approximate) solution. In particular, we intro-

duced the concept of adaptive submodularity, generalizing submodular set functions to adaptive

policies. Our generalization is based on a natural adaptive analog of the diminishing returns prop-

467

GOLOVIN & KRAUSE

erty well understood for set functions. In the special case of deterministic distributions, adaptive

submodularity reduces to the classical notion of submodular set functions. We proved that several

guarantees carried by the non-adaptive greedy algorithm for submodular set functions generalize to

a natural adaptive greedy algorithm in the case of adaptive submodular functions, for constrained

maximization and certain natural coverage problems with both minimum cost and minimum sum

objectives. We also showed how the adaptive greedy algorithm can be accelerated using lazy eval-

uations, and how one can compute data-dependent bounds on the optimal solution. We illustrated

the usefulness of the concept by giving several examples of adaptive submodular objectives arising

in diverse AI applications including sensor placement, viral marketing, automated diagnosis and

pool-based active learning. Proving adaptive submodularity for these problems allowed us to re-

cover existing results in these applications as special cases and lead to natural generalizations. Our

experiments on real data indicate that adaptive submodularity can provide practical benefits, such

as significant speed ups and tighter data-dependent bounds. We believe that our results provide an

interesting step in the direction of exploiting structure to solve complex stochastic optimization and

planning problems under partial observability.

Acknowledgments

An extended abstract of this work appeared in COLT 2010 (Golovin & Krause, 2010). We wish to

thank the anonymous referees for their helpful suggestions. This research was partially supported by

ONR grant N00014-09-1-1044, NSF grant CNS-0932392, NSF grant IIS-0953413, DARPA MSEE

grant FA8650-11-1-7156, a gift by Microsoft Corporation, an Okawa Foundation Research Grant,

and by the Caltech Center for the Mathematics of Information.

Appendix A. Additional Proofs and Incorporating Item Costs

In this appendix we provide all of the proofs omitted from the main text. For the results of §5, we

do so by first explaining how our results generalize to the case where items have costs, and then

proving generalizations which incorporate item costs.

A.1 Incorporating Costs: Preliminaries

In this section we provide the preliminaries required to define and analyze the versions of our prob-

lems with non-uniform item costs. We suppose each item e ∈ E has a cost c(e), and the cost of a

set S ⊆ E is given by the modular function c(S) =
∑

e∈S c(e). We define the generalizations of

problems (2.1), (2.2), and (2.3) in §A.3, §A.4, and §A.5, respectively.

Our results are with respect to the greedy policy πgreedy and α-approximate greedy policies.

With costs, the greedy policy selects an item maximizing Δ(e |ψ) /c(e), where ψ is the current

partial realization.

Definition A.1 (Approximate Greedy Policy with Costs). A policy π is an α-approximate greedy

policy if for all ψ such that there exists e ∈ E with Δ(e |ψ) > 0,

π(ψ) ∈

{

e :
Δ(e |ψ)

c(e)
≥

1

α
max
e′

(

Δ(e′ |ψ)

c(e′)

)}

,

and π terminates upon observing any ψ such that Δ(e |ψ) ≤ 0 for all e ∈ E. That is, an α-

approximate greedy policy always obtains at least (1/α) of the maximum possible ratio of condi-

468

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

tional expected marginal benefit to cost, and terminates when no more benefit can be obtained in

expectation. A greedy policy is any 1-approximate greedy policy.

It will be convenient to imagine the policy executing over time, such that when a policy π selects

an item e, it starts to run e, and finishes running e after c(e) units of time. We next generalize

the definition of policy truncation. Actually we require three such generalizations, which are all

equivalent in the unit cost case.

Definition A.2 (Strict Policy Truncation). The strict level t truncation of a policy π, denoted by

π[←t], is obtained by running π for t time units, and unselecting items whose runs have not fin-

ished by time t. Formally, π[←t] has domain
{

ψ ∈ dom(π) : c(π(ψ)) +
∑

e∈dom(ψ) c(e) ≤ t
}

,

and agrees with π everywhere in its domain.

Definition A.3 (Lax Policy Truncation). The lax level t truncation of a policy π, denoted by π[t→],

is obtained by running π for t time units, and selecting the items running at time t. Formally, π[t→]

has domain
{

ψ ∈ dom(π) :
∑

e∈dom(ψ) c(e) < t
}

, and agrees with π everywhere in its domain.

Definition A.4 (Policy Truncation with Costs). The level-t-truncation of a policy π, denoted by

π[t], is a randomized policy obtained by running π for t time units, and if some item e has been

running for 0 ≤ τ < c(e) time at time t, selecting e independently with probability τ/c(e). For-

mally, π[t] is a randomized policy that agrees with π everywhere in its domain, has dom(π[←t]) ⊆
dom(π[t]) ⊆ dom(π[t→]) with certainty, and includes each ψ ∈ dom(π[t→]) \ dom(π[←t]) in its

domain independently with probability
(

t−
∑

e∈dom(ψ) c(e)
)

/c(π(ψ)).

In the proofs that follow, we will need a notion of the conditional expected cost of a policy, as

well as an alternate characterization of adaptive monotonicity, based on a notion of policy concate-

nation. We prove the equivalence of our two adaptive monotonicity conditions in Lemma A.8.

Definition A.5 (Conditional Policy Cost). The conditional policy cost of π conditioned on ψ, de-

noted c (π |ψ), is the expected cost of the items π selects under p (φ | ψ). That is, c (π |ψ) :=
E [c(E(π,Φ)) | Φ ∼ ψ].

Definition A.6 (Policy Concatenation). Given two policies π1 and π2 define π1@π2 as the policy

obtained by running π1 to completion, and then running policy π2 as if from a fresh start, ignoring

the information gathered7 during the running of π1.

Definition A.7 (Adaptive Monotonicity (Alternate Version)). A function f : 2E × OE → R≥0

is adaptive monotone with respect to distribution p (φ) if for all policies π and π′, it holds that

favg(π) ≤ favg(π
′@π), where favg(π) := E [f(E(π,Φ),Φ)] is defined w.r.t. p (φ).

Lemma A.8 (Adaptive Monotonicity Equivalence). Fix a function f : 2E × OE → R≥0. Then

Δ(e |ψ) ≥ 0 for all ψ with P [Φ ∼ ψ] > 0 and all e ∈ E if and only if for all policies π and π′,

favg(π) ≤ favg(π
′@π).

7. Technically, if under any realization φ policy π2 selects an item that π1 previously selected, then π1@π2 cannot be

written as a function from a set of partial realizations to E, i.e., it is not a policy. This can be amended by allowing

partial realizations to be multisets over elements of E × O, so that, e.g., if e is played twice then (e, ψ(e)) appears

twice in ψ. However, in the interest of readability we will avoid this more cumbersome multiset formalism, and abuse

notation slightly by calling π1@π2 a policy. This issue arises whenever we run some policy and then run another

from a fresh start.

469

GOLOVIN & KRAUSE

Proof. Fix policies π and π′. We begin by proving favg(π
′@π) = favg(π@π′). Fix any φ and note

that E(π′@π, φ) = E(π′, φ) ∪ E(π, φ) = E(π@π′, φ). Hence

favg(π
′@π) = E

[

f(E(π′@π,Φ),Φ)
]

= E
[

f(E(π@π′,Φ),Φ)
]

= favg(π@π′).

Therefore favg(π) ≤ favg(π
′@π) holds if and only if favg(π) ≤ favg(π@π′).

We first prove the forward direction. Suppose Δ(e |ψ) ≥ 0 for all ψ and all e ∈ E. Note the

expression favg(π@π′)− favg(π) can be written as a conical combination of (nonnegative) Δ(e |ψ)
terms, i.e., for some α ≥ 0, favg(π@π′) − favg(π) =

∑

ψ,e α(ψ,e)Δ(e |ψ). Hence favg(π@π′) −
favg(π) ≥ 0 and so favg(π) ≤ favg(π@π′) = favg(π

′@π).
We next prove the backward direction, in contrapositive form. Suppose Δ(e |ψ) < 0 for some

ψ with P [Φ ∼ ψ] > 0 and e ∈ E. Let e1, . . . , er be the items in dom(ψ) and define policies π
and π′ as follows. For i = 1, 2, . . . , r, both π and π′ select ei and observe Φ(ei). If either policy

observes Φ(ei) �= ψ(ei) it immediately terminates, otherwise it continues. If π succeeds in selecting

all of dom(ψ) then it terminates. If π′ succeeds in selecting all of dom(ψ) then it selects e and then

terminates. We claim favg(π@π′) − favg(π) < 0. Note that E(π@π′, φ) = E(π, φ) unless φ ∼ ψ,

and if φ ∼ ψ then E(π@π′, φ) = E(π, φ) ∪ {e} and also E(π, φ) = dom(ψ). Hence

favg(π@π′)− favg(π) = E
[

f(E(π@π′,Φ),Φ)− f(E(π,Φ),Φ)
]

= E
[

f(E(π@π′,Φ),Φ)− f(E(π,Φ),Φ) | Φ ∼ ψ
]

· P [Φ ∼ ψ]

= E [f(dom(ψ) ∪ {e} ,Φ)− f(dom(ψ),Φ) | Φ ∼ ψ] · P [Φ ∼ ψ]

= Δ(e |ψ) · P [Φ ∼ ψ]

The last term is negative, as P [Φ ∼ ψ] > 0 and Δ(e |ψ) < 0 by assumption. Therefore favg(π) >
favg(π@π′) = favg(π

′@π), which completes the proof.

A.2 Adaptive Data Dependent Bounds with Costs

The adaptive data dependent bound has the following generalization with costs.

Lemma A.9 (The Adaptive Data Dependent Bound with Costs). Suppose we have made observa-

tions ψ after selecting dom(ψ). Let π∗ be any policy. Then for adaptive monotone submodular

f : 2E ×OE → R≥0

Δ(π∗ |ψ) ≤ Z ≤ c (π∗ |ψ)max
e

(

Δ(e |ψ)

c(e)

)

(A.1)

where Z = maxw
{
∑

e∈E weΔ(e |ψ) :
∑

e c(e)we ≤ c (π∗ |ψ) and ∀e ∈ E, 0 ≤ we ≤ 1
}

.

Proof. Order the items in dom(ψ) arbitrarily, and consider the policy π that for each e ∈ dom(ψ)
in order selects e, terminating if Φ(e) �= ψ(e) and proceeding otherwise, and, should it succeed

in selecting all of dom(ψ) without terminating (which occurs iff Φ ∼ ψ), then proceeds to run π∗

as if from a fresh start, forgetting the observations in ψ. By construction the expected marginal

benefit of running the π∗ portion of π conditioned on Φ ∼ ψ equals Δ(π∗ |ψ). For all e ∈ E, let

w(e) = P [e ∈ E(π,Φ) | Φ ∼ ψ] be the probability that e is selected when running π, conditioned

on Φ ∼ ψ. Whenever some e ∈ E \ dom(ψ) is selected by π, the current partial realization

ψ′ contains ψ as a subrealization; hence adaptive submodularity implies Δ(e |ψ′) ≤ Δ(e |ψ). It

470

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

follows that the total contribution of e to Δ(π∗ |ψ) is upper bounded by w(e) ·Δ(e |ψ). Summing

over e ∈ E \ dom(ψ), we get a bound of Δ(π∗ |ψ) ≤
∑

e∈E\dom(ψ)w(e)Δ(e |ψ). Next, note

that each e ∈ E \ dom(ψ) contributes w(e)c(e) cost to c (π∗ |ψ). Hence it must be the case that
∑

e∈E\dom(ψ)w(e)c(e) ≤ c (π∗ |ψ). Obviously, w(e) ∈ [0, 1] for all e, since w(e) is a probability.

Hence Δ(π∗ |ψ) ≤
∑

e∈E\dom(ψ)w(e)Δ(e |ψ) ≤ Z because setting we = w(e) is feasible for the

the linear program for which Z is the optimal value.

To show Z ≤ c (π∗ |ψ)maxe (Δ(e |ψ) /c(e)), consider any feasible solution w to the linear

program defining Z. It attains objective value

∑

e∈E

weΔ(e |ψ) ≤
∑

e∈E

wec(e)
Δ(e |ψ)

c(e)
≤
∑

e∈E

wec(e)max
e∈E

(

Δ(e |ψ)

c(e)

)

≤ c (π∗ |ψ)max
e∈E

(

Δ(e |ψ)

c(e)

)

since
∑

e∈E wec(e) ≤ c (π∗ |ψ) by the feasibility of w.

A simple greedy algorithm can be used to compute Z; we provide pseudocode for it in Al-

gorithm 3. The correctness of this algorithm is more readily discerned upon rewriting the linear

program using variables xe = c(e)we to obtain

Z = max
x

{

∑

e∈E

xe (Δ(e |ψ) /c(e)) :
∑

e

xe ≤ c (π∗ |ψ) and ∀e ∈ E, 0 ≤ xe ≤ c(e)

}

.

Intuitively, it is clear that to optimize x we should shift mass towards variables with the highest

Δ(e |ψ) /c(e) ratio. Clearly, any optimal solution has
∑

e xe = c (π∗ |ψ). Moreover, in any op-

timal solution, Δ(e |ψ) /c(e) > Δ(e′ |ψ) /c(e′) implies xe = c(e) or xe′ = 0, since otherwise

it would be possible to shift mass from xe′ to xe and obtain an increase in objective value. If the

Δ(e |ψ) /c(e) values are distinct for distinct items, there will be a unique solution satisfying these

constraints, which Algorithm 3 will compute. Otherwise, we imagine perturbing each Δ(e |ψ) by

independent random quantities ǫe drawn uniformly from [0, ǫ] to make them distinct. This changes

the optimum value by at most |E|ǫ, which vanishes as we let ǫ tend towards zero. Hence any so-

lution satisfying
∑

e xe = c (π∗ |ψ) and Δ(e |ψ) /c(e) > Δ(e′ |ψ) /c(e′) implies xe = c(e) or

xe′ = 0 is optimal. Since Algorithm 3 outputs the value of such a solution, it is correct.

A.3 The Max-Cover Objective

With item costs, the Adaptive Stochastic Maximization problem becomes one of finding some

π∗ ∈ argmax
π

favg(π[k]) (A.2)

where k is a budget on the cost of selected items, and we define favg(π) for a randomized policy π to

be favg(π) := E [f(E(π,Φ),Φ)] as before, where the expectation is now over both Φ and the inter-

nal randomness of π which determines E(π, φ) for each φ. We prove the following generalization

of Theorem 5.2.

Theorem A.10. Fix any α ≥ 1 and item costs c : E → N. If f is adaptive monotone and adaptive

submodular with respect to the distribution p (φ), and π is an α-approximate greedy policy, then for

all policies π∗ and positive integers ℓ and k

favg(π[ℓ]) >
(

1− e−ℓ/αk
)

favg(π
∗
[k]).

471

GOLOVIN & KRAUSE

Input: Groundset E; Partial realization ψ; Costs c : E → N; Budget C = c (π∗ |ψ);
Conditional expected marginal benefits Δ(e |ψ) for all e ∈ E.

Output: Z =
maxw

{
∑

e∈E weΔ(e |ψ) :
∑

e c(e)we ≤ c (π∗ |ψ) and ∀e ∈ E, 0 ≤ we ≤ 1
}

begin

Sort E by Δ(e |ψ) /c(e), so that
Δ(e1 |ψ)
c(e1)

≥ Δ(e2 |ψ)
c(e2)

≥ . . . ≥ Δ(en |ψ)
c(en)

;

Set w ← 0; i ← 0; a ← 0; z ← 0; e ← NULL;

while a < C do
i ← i+ 1; e ← ei;
we ← min {1, C − a};

a ← a+ c(e)we; z ← z + weΔ(e |ψ);
Output z;

end
Algorithm 3: Algorithm to compute the data dependent bound Z of Lemma A.9.

Proof. The proof goes along the lines of the performance analysis of the greedy algorithm for

maximizing a submodular function subject to a cardinality constraint of Nemhauser et al. (1978).

An extension of that analysis to α-approximate greedy algorithms, which is analogous to ours but

for the nonadaptive case, is shown by Goundan and Schulz (2007). For brevity, we will assume

without loss of generality that π = π[ℓ] and π∗ = π∗
[k]. Then for all i, 0 ≤ i < ℓ

favg(π
∗) ≤ favg(π[i]@π∗) ≤ favg(π[i]) + αk

(

favg(π[i+1])− favg(π[i])
)

. (A.3)

The first inequality is due to the adaptive monotonicity of f and Lemma A.8, from which we may

infer favg(π2) ≤ favg(π1@π2) for any π1 and π2. The second inequality may be obtained as a corol-

lary of Lemma A.9 as follows. Fix any partial realization ψ of the form
{

(e, φ(e)) : e ∈ E(π[i], φ)
}

for some φ. Consider Δ(π∗ |ψ), which equals the expected marginal benefit of the π∗ portion of

π[i]@π∗ conditioned on Φ ∼ ψ. Lemma A.9 allows us to bound it as

E [Δ(π∗ |ψ)] ≤ E [c (π∗ |ψ)] ·max
e

(Δ(e |ψ) /c(e)) ,

where the expectations are taken over the internal randomness of π∗, if there is any. Note that since

π∗ has the form π′
[k] for some π′ we know that for all φ, E [c(E(π∗, φ))] ≤ k, where the expectation

is again taken over the internal randomness of π∗. Hence E [c (π∗ |ψ)] ≤ k for all ψ. It follows

that E [Δ(π∗ |ψ)] ≤ k · maxe (Δ(e |ψ) /c(e)). By definition of an α-approximate greedy policy,

π obtains at least (1/α)maxe (Δ(e |ψ) /c(e)) ≥ E [Δ(π∗ |ψ)] /αk expected marginal benefit per

unit cost in a step immediately following its observation of ψ. Next we take an appropriate con-

vex combination of the previous inequality with different values of ψ. Let Ψ be a random partial

realization distributed as pΨ(ψ) := P
[

Ψ = ψ | ∃φ. ψ =
{

(e, φ(e)) : e ∈ E(π[i], φ)
}]

Then

favg(π[i+1])− favg(π[i]) ≥ E

[

1

α
max

e

(

Δ(e |Ψ)

c(e)

)]

≥ E

[

E [Δ(π∗ |Ψ)]

αk

]

=
favg(π[i]@π∗)− favg(π[i])

αk

472

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

A simple rearrangement of terms then yields the second inequality in (A.3).

Now define Δi := favg(π
∗) − favg(π[i]), so that (A.3) implies Δi ≤ αk(Δi − Δi+1), from

which we infer Δi+1 ≤
(

1− 1
αk

)

Δi and hence Δℓ ≤
(

1− 1
αk

)ℓ
Δ0 < e−ℓ/αkΔ0, where for this

last inequality we have used the fact that 1 − x < e−x for all x > 0. Thus favg(π
∗) − favg(π[ℓ]) <

e−ℓ/αk
(

favg(π
∗)− favg(π[0])

)

≤ e−ℓ/αkfavg(π
∗) so favg(π) > (1− e−ℓ/αk)favg(π

∗).

A.4 The Min-Cost-Cover Objective

In this section, we provide arbitrary item cost generalizations of Theorem 5.8 and Theorem 5.9.

With item costs the Adaptive Stochastic Minimum Cost Cover problem becomes one of finding, for

some quota on utility Q,

π∗ ∈ argmin
π

cavg(π) such that f(E(π, φ), φ) ≥ Q for all φ, (A.4)

where cavg(π) := E [c(E(π,Φ))]. Without loss of generality, we may take a truncated version of f ,

namely (A, φ) �→ min {Q, f(A, φ)}, and rephrase Problem (A.4) as finding

π∗ ∈ argmin
π

cavg(π) such that π covers φ for all φ. (A.5)

Hereby, recall that π covers φ if E [f(E(π, φ), φ)] = f(E, φ), where the expectation is over any

internal randomness of π. We will consider only Problem (A.5) for the remainder. We also consider

the worst-case variant of this problem, where we replace the expected cost cavg(π) objective with

the worst-case cost cwc(π) := maxφ c(E(π, φ)).
The definition of coverage (Definition 5.4 in §5.2 on page 441) requires no modification to han-

dle item costs. Note, however, that coverage is all-or-nothing in the sense that covering a realization

φ with probability less than one does not count as covering it. A corollary of this is that only items

whose runs have finished help with coverage, whereas currently running items do not. For a simple

example, consider the case where E = {e}, c(e) = 2, f(A, φ) = |A|, and policy π that selects

e and then terminates. Then π[1] is a randomized policy which is π with probability 1
2 , and is the

empty policy with probability 1
2 , so E [f(E(π, φ), φ)] = 1

2 < 1 = f(E, φ) for each φ. Hence, even

though half the time π[1] covers all realizations, it is counted as not covering any.

We begin with the approximation guarantee for the average-case policy cost with arbitrary item

costs.

Theorem A.11. Suppose f : 2E × OE → R≥0 is adaptive submodular and strongly adaptive

monotone with respect to p (φ) and there exists Q such that f(E, φ) = Q for all φ. Let η be any

value such that f(S, φ) > Q − η implies f(S, φ) = Q for all S and φ. Let δ = minφ p (φ) be

the minimum probability of any realization. Let π∗
avg be an optimal policy minimizing the expected

number of items selected to guarantee every realization is covered. Let π be an α-approximate

greedy policy with respect to the item costs. Then in general

cavg(π) ≤ α cavg(π
∗
avg)

(

ln

(

Q

δη

)

+ 1

)

473

GOLOVIN & KRAUSE

and for self–certifying instances

cavg(π) ≤ α cavg(π
∗
avg)

(

ln

(

Q

η

)

+ 1

)

.

Note that if range(f) ⊂ Z, then η = 1 is a valid choice, so for general and self–certifying in-

stances we have cavg(π) ≤ α cavg(π
∗
avg) (ln(Q/δ) + 1) and cavg(π) ≤ α cavg(π

∗
avg) (ln(Q) + 1),

respectively.

Proof. Consider running α-approximate greedy policy π to completion, i.e., until it covers the true

realization. It starts off with v0 := E [f(∅,Φ)] ≥ 0 reward in expectation, and terminates with Q
reward. Along the way it will go through some sequence of partial realizations specifying its current

observations, ψ0 ⊂ ψ1 ⊂ · · · ⊂ ψℓ, such that dom(ψi) \ dom(ψi−1) consists precisely of the ith

item selected by π. We call this sequence the trace τ = τ(φ) of π. For a realization φ and x ∈ R≥0,

we define ψ (φ, x) as the partial realization seen by π just before it achieved x reward in expectation

under φ. Formally,

ψ (φ, x) ∈ argmax {| dom(ψ)| : ψ ∈ τ(φ), E [f(dom(ψ),Φ) | Φ ∼ ψ] < x} . (A.6)

Note that ψ (φ, x) exists for all x ∈ (v0, Q], and when it exists it is unique since no two elements of

the trace have equally large domains. Also note that by the strong adaptive monotonicity of f , the

function i �→ E [f(dom(ψi),Φ) | Φ ∼ ψi] must be nondecreasing for any trace ψ0, ψ1, . . . , ψℓ.

Our overall strategy will be to bound the expected cost cavg(π) of π by bounding the price it pays

per unit of expected reward gained as it runs, and then integrating over the run. Note that Lemma A.9

tells us that maxe (Δ(e |ψ) /c(e)) ≥ Δ
(

π∗
avg |ψ

)

/c
(

π∗
avg |ψ

)

for all ψ. An α-approximate greedy

policy obtains at least 1/α of this rate. Hence we may bound its price, which we denote by θ, as

θ(ψ) ≤ α c
(

π∗
avg |ψ

)

/Δ
(

π∗
avg |ψ

)

. (A.7)

Rather than try to bound the expected price as π progresses in time, we will bound the expected

price as it progresses in the expected reward it obtains, measured as E [f(dom(ψ),Φ) | Φ ∼ ψ]
where ψ is the current partial realization. We next claim that Δ

(

π∗
avg |ψ (φ, x)

)

≥ Q − x for

all φ and x. Note that E [f(dom(ψ (φ, x)),Φ) | Φ ∼ ψ (φ, x)] < x by definition of ψ (φ, x), and

f(E(π∗
avg, φ), φ) = Q for all φ since π∗

avg covers every realization. Since Q is the maximum possible

reward, if Δ
(

π∗
avg |ψ (φ, x)

)

< Q − x then we can generate a violation of strong adaptive mono-

tonicity by fixing some φ′ ∼ ψ (φ, x), selecting E(π∗
avg, φ

′), and then selecting dom(ψ (φ, x)) to

reduce the expected reward. Thus Δ
(

π∗
avg |ψ (φ, x)

)

≥ Q− x, and we infer

θ(ψ (φ, x)) ≤
α c
(

π∗
avg |ψ (φ, x)

)

Δ
(

π∗
avg |ψ (φ, x)

) ≤
α c
(

π∗
avg |ψ (φ, x)

)

Q− x
. (A.8)

Next, we take an expectation over φ. Let θ(x) := E [θ(ψ (Φ, x))]. Let ψx
1 , . . . , ψ

x
r be the possible

values of ψ (Φ, x). Then because {{φ : φ ∼ ψx
i } : i = 1, 2, . . . , r} partitions the set of realizations,

E
[

c
(

π∗
avg |ψ (Φ, x)

)]

=
r
∑

i=1

P [Φ ∼ ψx
i]
∑

φ

p (φ | ψx
i) · c

(

π∗
avg |φ

)

(A.9)

=
∑

φ

p (φ) · c
(

π∗
avg |φ

)

(A.10)

= cavg(π
∗
avg) (A.11)

474

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

It follows that

θ(x) ≤
α cavg(π

∗
avg)

Q− x
. (A.12)

Let cavg(π,Q
′) denote the expected cost to obtain expected reward Q′. Then we can bound cavg(π,Q

′)
as

cavg(π,Q
′) =

∫ Q′

x=0
θ(x)dx ≤

∫ Q′

x=0

α cavg(π
∗)

Q− x
dx = α cavg(π

∗) ln

(

Q

Q−Q′

)

. (A.13)

We now use slightly different analyses for general instances and for self–certifying instances.

We begin with general instances. For these, we set Q′ = Q − δη and use a more refined argument

to bound the cost of getting the remaining expected reward. Fix ψ ∈ dom(π) and any φ′ ∼ ψ. We

say ψ covers φ′ if π covers φ′ by the time it observes ψ. By definition of δ and η, if some φ′ is not

covered by ψ then Q − E [f(dom(ψ),Φ) | Φ ∼ ψ] ≥ δη. Hence the last item that π selects, say

upon observing ψ, must increase its conditional expected value from E [f(dom(ψ),Φ) | Φ ∼ ψ] ≤
Q− δη to Q. By Eq. (A.8), it follows that for x ∈ [Q− δη,Q],

θ(ψ (φ, x)) ≤
α c
(

π∗
avg |ψ (φ, x)

)

Δ
(

π∗
avg |ψ (φ, x)

) ≤
α c
(

π∗
avg |ψ (φ, x)

)

δη
.

As before, we may take the expectation over φ to obtain θ(x) ≤ α cavg(π
∗
avg)/δη for all x ∈ [Q −

δη,Q]. This fact together with Eq. (A.13) yield

cavg(π) ≡ cavg(π,Q) = cavg(π,Q− δη) +
∫ Q
x=Q−δη E [θ(x)] dx

≤ α cavg(π
∗) ln (Q/δη) +

∫ Q
x=Q−δη

αcavg(π∗)
δη dx

= α cavg(π
∗) (ln (Q/δη) + 1)

which completes the proof for general instances.

For self–certifying instances we use a similar argument. For these instances we set Q′ = Q−η,

and argue that the last item that π selects must increase its conditional expected value from at

most Q − η to Q. For suppose π currently observes ψ, and has not achieved conditional value Q,

i.e., E [f(dom(ψ),Φ) | Φ ∼ ψ] < Q. Then some φ ∼ ψ is uncovered. Since the instance is self–

certifying, every φ with φ ∼ ψ then has f(dom(ψ), φ) < f(E, φ) = Q. By definition of η, for each

φ with φ ∼ ψ we then have f(dom(ψ), φ) ≤ Q − η, which implies E [f(dom(ψ),Φ) | Φ ∼ ψ] ≤
Q − η. Reasoning analogously as with general instances, we may derive from this that θ(x) ≤

α cavg(π
∗
avg)/η for all x ∈ [Q − η,Q]. Computing cavg(π) = cavg(π,Q

′) +
∫ Q
x=Q′ E [θ(x)] dx as

before gives us the claimed approximation ratio for self–certifying instances, and completes the

proof.

Next we consider the worst-case cost. We generalize Theorem 5.9 by incorporating arbitrary item

costs.

Theorem A.12. Suppose f : 2E×OE → R≥0 is adaptive monotone and adaptive submodular with

respect to p (φ), and let η be any value such that f(S, φ) > f(E, φ)− η implies f(S, φ) = f(E, φ)
for all S and φ. Let δ = minφ p (φ) be the minimum probability of any realization. Let π∗

wc be

the optimal policy minimizing the worst-case cost cwc(·) while guaranteeing that every realization

475

GOLOVIN & KRAUSE

is covered. Let π be an α-approximate greedy policy with respect to the item costs. Finally, let

Q := E [f(E,Φ)] be the maximum possible expected reward. Then

cwc(π) ≤ α cwc(π
∗
wc)

(

ln

(

Q

δη

)

+ 1

)

.

Proof. Let π be an α-approximate greedy policy. Let k = cwc(π
∗
wc), let ℓ = αk ln (Q/δη), and

apply Theorem A.10 with these parameters to yield

favg(π[ℓ]) >
(

1− e−ℓ/αk
)

favg(π
∗
wc) =

(

1−
δη

Q

)

favg(π
∗
wc). (A.14)

Since π∗
wc covers every realization by assumption, favg(π

∗
wc) = E [f(E,Φ)] = Q, so rearranging

terms of Eq. (A.14) yields Q − favg(π[ℓ]) < δη. Since favg(π[ℓ]) ≤ favg(π[ℓ→]) by the adaptive

monotonicity of f , it follows that Q− favg(π[ℓ→]) < δη. By definition of δ and η, if some φ is not

covered by π[ℓ→] then Q−favg(π[ℓ→]) ≥ δη. Thus Q−favg(π[ℓ→]) < δη implies Q−favg(π[ℓ→]) =
0, meaning π[ℓ→] covers every realization.

We next claim that π[ℓ→] has worst-case cost at most ℓ + αk. It is sufficient to show that the

final item executed by π[ℓ→] has cost at most αk for any realization. As we will prove, this follows

from the facts that π is an α-approximate greedy policy and π∗
wc covers every realization at cost at

most k. The data dependent bound, Lemma A.9 on page 470, guarantees that

max
e

(

Δ(e |ψ)

c(e)

)

≥
Δ(π∗

wc |ψ)

c (π∗
wc |ψ)

≥
Δ(π∗

wc |ψ)

k
. (A.15)

Suppose ψ ∈ dom(π). We would like to say that maxeΔ(e |ψ) ≤ Δ(π∗
wc |ψ). Supposing this

is true, any item e with cost c(e) > αk must have Δ(e |ψ) /c(e) < Δ(π∗
wc |ψ) /αk, and hence

cannot be selected by any α-approximate greedy policy upon observing ψ by Eq. (A.15), and thus

the final item executed by π[ℓ→] has cost at most αk for any realization. So we next show that

maxeΔ(e |ψ) ≤ Δ(π∗
wc |ψ). Towards this end, note that Lemma A.13 implies

max
e

Δ(e |ψ) ≤ E [f(E,Φ) | Φ ∼ ψ]− E [f(dom(ψ),Φ) | Φ ∼ ψ] . (A.16)

and to prove maxeΔ(e |ψ) ≤ Δ(π∗
wc |ψ) it suffices to show

E [f(E,Φ) | Φ ∼ ψ] ≤ E [f(E(π∗
wc,Φ) ∪ dom(ψ),Φ) | Φ ∼ ψ] . (A.17)

Proving Eq. (A.17) is quite straightforward if f is strongly adaptive monotone. Given that f
is only adaptive monotone, it requires some additional effort. So fix A ⊂ E and let πA be a non-

adaptive policy that selects all items in A in some arbitrary order. Let P := {ψ : dom(ψ) = A}.

Apply Lemma A.13 with π′ = πA@π∗
wc and any ψ ∈ P to obtain

E [f(E(π∗
wc,Φ) ∪A,Φ) | Φ ∼ ψ] ≤ E [f(E,Φ) | Φ ∼ ψ] . (A.18)

Note that
∑

ψ∈P P [Φ ∼ ψ] · E [f(E(π∗
wc,Φ) ∪A,Φ) | Φ ∼ ψ] = favg(πA@π∗

wc) ≥ favg(π
∗
wc) =

E [f(E,Φ)]. Since we know E [f(E,Φ)] =
∑

ψ∈P P [Φ ∼ ψ] · E [f(E,Φ) | Φ ∼ ψ], an averaging

argument together with Eq. (A.18) then implies that for all ψ ∈ P

E [f(E(π∗
wc,Φ) ∪A,Φ) | Φ ∼ ψ] = E [f(E,Φ) | Φ ∼ ψ] . (A.19)

476

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

Since ψ was an arbitrary partial realization with dom(ψ) = A, and A ⊆ E was arbitrary,

fix ψ ∈ dom(π) and let A = dom(ψ). With these settings, Eq. (A.19) implies Eq. (A.17), and

thus maxeΔ(e |ψ) ≤ Δ(π∗
wc |ψ), and thus an α-approximate greedy policy can never select an

item with cost exceeding αk, where k = cwc(π
∗
wc). Hence cwc(π[ℓ→]) − cwc(π[ℓ]) ≤ αk, and so

cwc(π[ℓ→]) ≤ ℓ+ αk. This completes the proof.

Lemma A.13. Fix adaptive monotone submodular objective f . For any policy π and any ψ ∈
dom(π) we have

E [f(E(π,Φ),Φ) | Φ ∼ ψ] ≤ E [f(E,Φ) | Φ ∼ ψ] .

Proof. Augment π to a new policy π′ as follows. Run π to completion, and let ψ′ be the partial

realization consisting of all of the states it has observed. If ψ ⊆ ψ′, then proceed to select all the

remaining items in E in any order. Otherwise, if ψ � ψ′ then terminate. Then

E [f(E(π,Φ),Φ) | Φ ∼ ψ] ≤ E
[

f(E(π′,Φ),Φ) | Φ ∼ ψ
]

= E [f(E,Φ) | Φ ∼ ψ] (A.20)

where the inequality is by repeated application of the adaptive monotonicity of f , and the equality

is by construction.

In §5.2 we described how the result of Feige (1998) implies that there is no polynomial time

(1− ǫ) ln (Q/η) approximation algorithm for self–certifying instances of Adaptive Stochastic Min

Cost Cover, unless NP ⊆ DTIME(nO(log logn)). Here we show a related result for general instances.

Lemma A.14. For every constant ǫ > 0, there is no (1− ǫ) ln (Q/δη) polynomial time approxima-

tion algorithm for general instances of Adaptive Stochastic Min Cost Cover, for either the average

case objective cavg(·) or the worst-case objective cwc(·), unless NP ⊆ DTIME(nO(log logn)).

Proof. We offer a reduction from the Set Cover problem. Fix a Set Cover instance with ground

set U and sets {S1, S2, . . . , Sm} ⊆ 2U with unit-cost sets. Fix Q, η and δ such that 1/δ and

Q/η are positive integers, and Q
δη = |U |. Let E := {S1, S2, . . . , Sm}, and set the cost of each

item to one. Partition U into 1/δ disjoint, equally sized subsets U1, U2, . . . , U1/δ. Construct a

realization φi for each Ui. Let the set of states be O = {NULL}. Hence φi(e) = NULL for all

i and e, so that no knowledge of the true realization is revealed by selecting items. We use a

uniform distribution over realizations, i.e., p (φi) = δ for all i. Finally, our objective is f(C, φi) :=
| ∪S∈C (S ∩ Ui)|, i.e., the number of elements in Ui that we cover with sets in C. Since |O| = 1,

every realization is consistent with every possible partial realization ψ. Hence for any ψ, we have

E [f(dom(ψ),Φ) | Φ ∼ ψ] = δf̂(dom(ψ)), where f̂(C) = | ∪S∈C S| is the objective function of

the original set cover instance. Since f̂ is submodular, f is adaptive submodular. Likewise, since

f̂ is monotone, and |O| = 1, f is strongly adaptive monotone. Now, to cover any realization, we

must obtain the maximum possible value for all realizations, which means selecting a collection

of sets C such that ∪S∈CS = U . Conversely, any C such that ∪S∈CS = U clearly covers f .

Hence this instance of Adaptive Stochastic Min Cost Cover, with either the average case objective

cavg(·) or the worst-case objective cwc(·), is equivalent to the original Set Cover instance. Therefore,

the result from Feige (1998) implies that there is no polynomial time algorithm for obtaining a

(1 − ǫ) ln |U | = (1 − ǫ) ln (Q/δη) approximation for Adaptive Stochastic Min Cost Cover unless

NP ⊆ DTIME(nO(log logn)).

477

GOLOVIN & KRAUSE

A.5 The Min-Sum Objective

In this section we prove Theorem 5.10, which appears on page 445, in the case where the items have

arbitrary costs. Our proof resembles the analogous proof of Streeter and Golovin (2007) for the

non-adaptive min-sum submodular cover problem, and, like that proof, ultimately derives from an

extremely elegant performance analysis of the greedy algorithm for min-sum set cover due to Feige

et al. (2004).

The objective function cΣ(·) generalized to arbitrary cost items uses the strict truncation8 π[←t] in

place of π[t] in the unit-cost definition:

cΣ(π) :=

∞
∑

t=0

(

E [f(E,Φ)]− favg(π[←t])
)

=
∑

φ

p (φ)

∞
∑

t=0

(

f(E, φ)− f(E(π[←t], φ), φ)
)

.

(A.21)

We will prove that any α-approximate greedy policy π achieves a 4α-approximation for the min-

sum objective, i.e., cΣ(π) ≤ 4α cΣ(π
∗) for all policies π∗. To do so, we require the following

lemma.

Lemma A.15. Fix an α-approximate greedy policy π for some adaptive monotone submodular

function f and let si := α
(

favg(π[i+1])− favg(π[i])
)

. For any policy π∗ and nonnegative integers i
and k, we have favg(π

∗
[k]) ≤ favg(π[←i]) + k · si.

Proof. Fix π, π∗, i, and k. By adaptive monotonicity favg(π
∗
[k]) ≤ favg(π[←i]@π∗

[k]). We next aim

to prove

favg(π[←i]@π∗
[k]) ≤ favg(π[←i]) + k · si (A.22)

which is sufficient to complete the proof. Towards this end, fix a partial realization ψ of the

form
{

(e, φ(e)) : e ∈ E(π[←i], φ)
}

for some φ. Consider Δ
(

π∗
[k] |ψ

)

, which equals the expected

marginal benefit of the π∗
[k] portion of π[←i]@π∗

[k] conditioned on Φ ∼ ψ. Lemma A.9 allows us to

bound it as

E
[

Δ
(

π∗
[k] |ψ

)]

≤ E
[

c
(

π∗
[k] |ψ

)]

·max
e

(

Δ(e |ψ)

c(e)

)

,

where the expectations are taken over the internal randomness of π∗, if there is any. Note that

for all φ, we have E
[

c(E(π∗
[k], φ))

]

≤ k, where the expectation is again taken over the internal

randomness of π∗
[k]. Hence E

[

c
(

π∗
[k] |ψ

)]

≤ k for all ψ. It follows that E
[

Δ
(

π∗
[k] |ψ

)]

≤

k ·maxe (Δ(e |ψ) /c(e)). By definition of an α-approximate greedy policy, π obtains at least

(1/α)max
e

(Δ(e |ψ) /c(e)) ≥ E
[

Δ
(

π∗
[k] |ψ

)]

/αk (A.23)

expected marginal benefit per unit cost in a step immediately following its observation of ψ. Next

we take an appropriate convex combination of the previous inequality with different values of ψ.

Let Ψ be a random partial realization distributed as
{

(e,Φ(e)) : e ∈ E(π[←i],Φ)
}

. Then taking the

8. See Definition A.2 on page 469.

478

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

Figure 6: An illustration of the inequality
∫∞
x=0 h(x)dx ≥

∑

i≥0 xi (yi − yi+1).

expectation of Eq. (A.23) over Ψ yields

favg(π[i+1])− favg(π[i]) ≥ Eψ

⎡

⎣

E
[

Δ
(

π∗
[k] |Ψ

)]

αk

⎤

⎦ =
favg(π[←i]@π∗

[k])− favg(π[←i])

αk
. (A.24)

Multiplying Eq. (A.24) by αk, and substituting in si = α
(

favg(π[i+1])− favg(π[i])
)

, we conclude

ksi ≥ favg(π[←i]@π∗
[k])−favg(π[←i]) which immediately yields Eq. (A.22) and concludes the proof.

Using Lemma A.15, together with a geometric argument developed by Feige et al. (2004), we now

prove Theorem 5.10.

Proof of Theorem 5.10: Let Q := E [f(E,Φ)] be the maximum possible expected reward, where

the expectation is taken w.r.t. p (φ). Let π be an α-approximate greedy policy. Define Ri :=
Q − favg

(

π[i]
)

and define Pi := Q − favg

(

π[←i]

)

. Let xi :=
Pi

2si
, let yi :=

Ri

2 , and let h(x) :=

Q − favg(π
∗
[x]). We claim favg

(

π[←i]

)

≤ favg

(

π[i]
)

and so Pi ≥ Ri. This clearly holds if π[←i] is

the empty policy, and otherwise π can always select an item that contributes zero marginal benefit,

namely an item it has already played previously. Hence an α-approximate greedy policy π can

never select items with negative expected marginal benefit, and so favg

(

π[←i]

)

≤ favg

(

π[i]
)

. By

Lemma A.15, favg

(

π∗
[xi]

)

≤ favg

(

π[←i]

)

+ xisi. Therefore

h(xi) ≥ Q− favg(π[←i])− xi · si = Pi −
Pi

2
≥

Ri

2
= yi (A.25)

For similar reasons that favg

(

π[←i]

)

≤ favg

(

π[i]
)

, we have favg

(

π[i−1]

)

≤ favg

(

π[i]
)

, and so

the sequence 〈y1, y2, . . .〉 is non-increasing. The adaptive monotonicity and adaptive submodular-

ity of f imply that h(x) is non-increasing. Informally, this is because otherwise, if favg(π
∗
[x]) >

favg(π
∗
[x+1]) for some x, then the optimal policy must be sacrificing immediate rewards at time x

in exchange for greater returns later, and it can be shown that if such a strategy is optimal, then

adaptive submodularity cannot hold. Eq. (A.25) and the monotonicity of h and i �→ yi imply that
∫∞
x=0 h(x)dx ≥

∑

i≥0 xi (yi − yi+1) (see Figure 6). The left hand side is a lower bound for cΣ(π
∗),

and because si = α (Ri −Ri+1) the right hand side simplifies to 1
4α

∑

i≥0 Pi =
1
4αcΣ(π), proving

cΣ(π) ≤ 4α · cΣ(π
∗).

479

GOLOVIN & KRAUSE

A.6 A Symbol Table

E, e ∈ E Ground set of items, and an individual item.

O, o ∈ O States an item may be in, or outcomes of selecting an item, and an individual

state/outcome.

φ A realization, i.e., a function from items to states.

ψ A partial realization, typically encoding the current set of observations;

each ψ ⊂ E ×O is a partial mapping from items to states.

Φ,Ψ A random realization and a random partial realization, respectively.

∼ The consistency relation: φ ∼ ψ means ψ(e) = φ(e) for all e ∈ dom(ψ).

p The probability distribution on realizations.

p(φ | ψ) The conditional distribution on realizations: p(φ | ψ) := P [Φ = φ | Φ ∼ ψ].

π A policy, which maps partial realizations to items.

E(π, φ) The set of all items selected by π when run under realization φ.

Δ(e |ψ) The conditional expected marginal benefit of e conditioned on ψ:

Δ(e |ψ) := E [f(dom(ψ) ∪ {e} ,Φ)− f(dom(ψ),Φ) | Φ ∼ ψ].

Δ(π |ψ) The conditional expected marginal benefit of policy π conditioned on ψ:

Δ(π |ψ) := E [f(dom(ψ) ∪ E(π,Φ),Φ)− f(dom(ψ),Φ) | Φ ∼ ψ].

ψ[e/o] Shorthand for ψ ∪ {(e, o)}.

k Budget on the cost of selected item sets.

π[k] A truncated policy. See Definition 5.1 on page 439 (unit costs) and Definition A.4

on page 469.

π[←k] A strictly truncated policy. See Definition A.2 on page 469.

π[k→] A laxly truncated policy. See Definition A.3 on page 469.

π@π′ Policies π and π′ concatenated together. See Definition A.6 on page 469.

f An objective function, of type f : 2E ×OE → R≥0 unless stated otherwise.

favg Average benefit: favg(π) := E [f(E(π,Φ),Φ)].

c Item costs c : E → N. Extended to sets via c(S) :=
∑

e∈S c(e).

cavg Average cost of a policy: cavg(π) := E [c(E(π,Φ))].

cwc Worst-case cost of a policy: cwc(π) := maxφ c(E(π, φ)).

cΣ Min-sum cost of a policy: cΣ(π) :=
∑∞

t=0

(

E [f(E,Φ)]− favg(π[←t])
)

.

c (π |ψ) Conditional average policy cost: c (π |ψ) := E [c(E(π,Φ)) | Φ ∼ ψ].

α Approximation factor for greedy optimization in an α-approximate greedy policy.

Q Benefit quota. Often Q = E [f(E,Φ)].

η Coverage gap: η = sup {η′ : f(S, φ) > Q− η′ implies f(S, φ) ≥ Q for all S, φ}.

1P The indicator for proposition P , which equals one if P is true and zero if P is false.

Table 2: Important symbols and notations used in this article

480

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

A.7 Proof of Approximation Hardness in the Absence of Adaptive Submodularity

We now provide the proof of Theorem 12.1 whose statement appears on page 464 in §12.

Proof of Theorem 12.1: We construct a hard instance based on the following intuition. We make the

algorithm go “treasure hunting”. There is a set of t locations {0, 1, , . . . , t− 1}, there is a treasure

at one of these locations, and the algorithm gets unit reward if it finds it, and zero reward otherwise.

There are m “maps,” each consisting of a cluster of s bits, and each purporting to indicate where

the treasure is, and each map is stored in a (weak) secret-sharing way, so that querying few bits of

a map reveals nothing about where it says the treasure is. Moreover, all but one of the maps are

fake, and there is a puzzle indicating which map is the correct one indicating the treasure’s location.

Formally, a fake map is one which is probabilistically independent of the location of the treasure,

conditioned on the puzzle.

Our instance will have three types of items, E = ET � EM � EP , where |ET | = t encodes

where the treasure is, |EM | = ms encodes the maps, and |EP | = n3 encodes the puzzle, where

m, t, s and n are specified below. All outcomes are binary, so that O = {0, 1}, and we identify

items with bit indices. Accordingly we say that φ(e) is the value of bit e. For all e ∈ EM ∪ EP ,

P [Φ(e) = 1] = .5 independently. The conditional distribution of Φ(ET) given Φ(EM ∪ EP) will

be deterministic as specified below. Our objective function f is linear, and defined as follows:

f(A, φ) = |{e ∈ A ∩ ET : φ(e) = 1}|.

We now describe the puzzle, which is to compute i(P) := (perm(P) mod p) mod 2ℓ for a suit-

able random matrix P , and suitable prime p and integer ℓ, where perm(P) =
∑

σ∈Sn

∏n
i=1 Piσ(i)

is the permanent of P . We exploit Theorem 1.9 of Feige and Lund (1997) in which they show that

if there exist constants η, δ > 0 such that a randomized polynomial time algorithm can compute

(perm(P) mod p) mod 2ℓ correctly with probability 2−ℓ(1+1/nη), where P is drawn uniformly

at random from {0, 1, 2, . . . , p− 1}n×n
, p is any prime superpolynomial in n, and ℓ ≤ p

(

1
2 − δ

)

,

then PH = AM = ΣP
2 . To encode the puzzle, we fix a prime p ∈ [2n−2, 2n−1] and use the n3 bits of

φ(EP) to sample P = P (φ) (nearly) uniformly at random from {0, 1, 2, . . . , p− 1}n×n
as follows.

For a matrix P ∈ Zn×n, we let rep(P) :=
∑

ij Pij · p
(i−1)n+(j−1) define a base p representation

of P . Note rep(·) is one-to-one for n × n matrices with entries in Zp, so we can define its inverse

rep−1(·). The encoding P (φ) interprets the bits φ(EP) as an integer x in [2n
3
], and computes y = x

mod (pn
2
). If x ≤

⌊

2n
3
/pn

2
⌋

pn
2
, then P = rep−1(y). Otherwise, P is the all zero matrix. This

latter event occurs with probability at most pn
2
/2n

3
≤ 2−n2

, and in this case we simply suppose

the algorithm under consideration finds the treasure and so gets unit reward. This adds 2−n2
to its

expected reward. So let us assume from now on that P is drawn uniformly at random.

Next we consider the maps. Partition EM =
⊎m

i=1Mi into m maps Mi, each consisting of s
items. For each map Mi, partition its items into s/ log2 t groups of log2 t bits each, so that the bits

of each group encode a log2 t bit binary string. Let vi ∈ {0, 1, . . . , t− 1} be the XOR of these

s/ log2 t binary strings, interpreted as an integer (using any fixed encoding). We say Mi points to

vi as the location of the treasure. A priori, each vi is uniformly distributed in {0, ..., t − 1}. For

a particular realization of φ(EP ∪ EM), define v(φ) := vi(P (φ)). We set v(φ) to be the location

of the treasure under realization φ, i.e., we label ET = {e0, e1, . . . , et−1} and ensure φ(ej) = 1 if

j = vi(P (φ)), and φ(e) = 0 for all other e ∈ ET . Note the random variable v = v(φ) is distributed

uniformly at random in {0, 1, . . . , t−1}. Note that this still holds if we condition on the realizations

481

GOLOVIN & KRAUSE

of any set of s/ log2 t− 1 items in a map, because in this case there is still at least one group whose

bits remain completely unobserved.

Now consider the optimal policy with a budget of k = n3 + s + 1 items to pick. Clearly, its

reward can be at most 1. However, given a budget of k, a computationally unconstrained policy can

exhaustively sample EP , solve the puzzle (i.e., compute i(P)), read the correct map (i.e., exhaus-

tively sample Mi(P)), decode the map (i.e., compute v = vi(P)), and get the treasure (i.e., pick ev)

thereby obtaining a reward of one.

Now we give an upper bound on the expected reward R of any randomized polynomial time

algorithm A with a budget of βk items, assuming ΣP
2 �= PH. Fix a small constant γ > 0, and set

s = n3 and m = t = n1/γ . We suppose we give A the realizations φ(EM) for free. We also replace

its budget of βk items with a budget of βk specifically for map items in EM and an additional

budget of βk specifically for the treasure locations in ET . Obviously, this can only help it. As

noted, if it selects less than s/ log2 t bits from the map Mi(P) indicated by P , the distribution over

vi(P) conditioned on those realizations is still uniform. Of course, knowledge of vi for i �= i(P)
is useless for getting reward. Hence A can try at most βk log2(t)/s = o(βk) maps in an attempt

to find Mi(P). Note that if we have a randomized algorithm which given a random P drawn from

{0, 1, 2, . . . , p− 1}n×n
always outputs a set S of integers of size α such that P [i(P) ∈ S] ≥ q,

then we can use it to construct a randomized algorithm that, given P , outputs an integer x such that

P [i(P) = x] ≥ q/α, simply by running the first algorithm and then selecting a random item of S.

If A does not find Mi(P), the distribution on the treasure’s location is uniform given its knowledge.

Hence it’s budget of βk treasure locations can only earn it expected reward at most βk/t. Armed

with these observations and Theorem 1.9 in the work of Feige and Lund (1997) and our complexity

theoretic assumptions, we infer E [R] ≤ o(βk) · 2−ℓ(1 + 1/nη) + βk/t+ 2−n2
. Since s = n3 and

m = t = n1/γ and γ = Θ(1) and η = 1 and ℓ = log2m and k = n3 + s+ 1 = 2n3 + 1, we have

E [R] ≤
βk

t
(1 + o(1)) = 2βn3−1/γ(1 + o(1)).

Next note that |E| = t + ms + n3 = n3+1/γ(1 + o(1)). Straightforward algebra shows that in

order to ensure E [R] = o(β/|E|1−ε), it suffices to choose γ ≤ ε/6. Thus, under our complexity

theoretic assumptions, any polynomial time randomized algorithm A with budget βk achieves at

most o(β/|E|1−ε) of the value obtained by the optimal policy with budget k, so the approximation

ratio is ω(|E|1−ε/β).

References

Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., & Naor, J. S. (2009). The online set cover

problem. SIAM Journal on Computing, 39, 361–370.

Arkin, E. M., Meijer, H., Mitchell, J. S. B., Rappaport, D., & Skiena, S. S. (1993). Decision trees for

geometric models. In Proceedings of Symposium on Computational Geometry, pp. 369–378,

New York, NY, USA. ACM.

Asadpour, A., Nazerzadeh, H., & Saberi, A. (2008). Stochastic submodular maximization. In WINE

’08: Proceedings of the 4th International Workshop on Internet and Network Economics, pp.

477–489, Berlin, Heidelberg. Springer-Verlag.

Bellala, G., & Scott, C. (2010). Modified group generalized binary search with near-optimal per-

formance guarantees. Tech. rep., University of Michigan.

482

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

Brochu, E., Cora, M., & de Freitas, N. (2009). A tutorial on Bayesian optimization of expensive cost

functions, with application to active user modeling and hierarchical reinforcement learning.

Tech. rep. TR-2009-23, Department of Computer Science, University of British Columbia.

Buchbinder, N., & Naor, J. S. (2009). The design of competitive online algorithms via a primal–dual

approach. Foundations and Trends in Theoretical Computer Science, 3, 93–263.

Chakaravarthy, V. T., Pandit, V., Roy, S., Awasthi, P., & Mohania, M. (2007). Decision trees for

entity identification: Approximation algorithms and hardness results. In Proceedings of the

ACM-SIGMOD Symposium on Principles of Database Systems.

Chan, C. W., & Farias, V. F. (2009). Stochastic depletion problems: Effective myopic policies for a

class of dynamic optimization problems. Mathematics of Operations Research, 34(2), 333–

350.

Cohn, D. A., Gharamani, Z., & Jordan, M. I. (1996). Active learning with statistical models. Journal

of Artificial Intelligence Research (JAIR), 4, 129–145.

Dantzig, G. B. (1955). Linear programming under uncertainty. Management Science, 1, 197–206.

Dasgupta, S. (2004). Analysis of a greedy active learning strategy. In NIPS: Advances in Neural

Information Processing Systems 17, pp. 337–344. MIT Press.

Dean, B., Goemans, M., & Vondrák, J. (2005). Adaptivity and approximation for stochastic packing

problems. In Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms,, pp.

395–404.

Dean, B., Goemans, M., & Vondrák, J. (2008). Approximating the stochastic knapsack problem:

The benefit of adaptivity. Mathematics of Operations Research, 33, 945–964.

Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J., & Hong, W. (2004). Model-driven data

acquisition in sensor networks. In Proceedings of the International Conference on Very Large

Data Bases (VLDB), pp. 588–599.

Feige, U. (1998). A threshold of ln n for approximating set cover. Journal of the ACM, 45(4), 634

– 652.

Feige, U., Lovász, L., & Tetali, P. (2004). Approximating min sum set cover. Algorithmica, 40(4),

219–234.

Feige, U., & Lund, C. (1997). On the hardness of computing the permanent of random matrices.

Computational Complexity, 6(2), 101–132.

Fujishige, S. (2005). Submodular functions and optimization (2nd edition)., Vol. 58. Annals of

Discrete Mathematics, North Holland, Amsterdam.

Garey, M. R., & Graham, R. L. (1974). Performance bounds on the splitting algorithm for binary

testing. Acta Informatica, 3, 347–355.

Gittins, J. C., & Jones, D. M. (1979). A dynamic allocation index for the discounted multiarmed

bandit problem. Biometrika, 66(3), 561–565.

Goemans, M. X., & Vondrák, J. (2006). Stochastic covering and adaptivity. In Proceedings of 7th

International Latin American Symposium on Theoretical Informatics, pp. 532–543.

483

GOLOVIN & KRAUSE

Golovin, D., Gupta, A., Kumar, A., & Tangwongsan, K. (2008). All-norms and all-Lp-norms

approximation algorithms. In Hariharan, R., Mukund, M., & Vinay, V. (Eds.), IARCS An-

nual Conference on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS 2008), Dagstuhl, Germany. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

Germany.

Golovin, D., & Krause, A. (2010). Adaptive submodularity: A new approach to active learning and

stochastic optimization. In 23rd Annual Conference on Learning Theory, pp. 333–345.

Golovin, D., & Krause, A. (2011). Adaptive submodular optimization under matroid constraints.

CoRR, abs/1101.4450.

Golovin, D., Krause, A., Gardner, B., Converse, S. J., & Morey, S. (2011). Dynamic resource

allocation in conservation planning. In AAAI ’11: Proceedings of the Twenty–Fifth AAAI

Conference on Artificial Intelligence, pp. 1331–1336. AAAI Press.

Golovin, D., Krause, A., & Ray, D. (2010). Near-optimal Bayesian active learning with noisy

observations. In NIPS: Advances in Neural Information Processing Systems 23, pp. 766–774.

Goundan, P. R., & Schulz, A. S. (2007). Revisiting the greedy approach to submodular set function

maximization. Tech. rep., Massachusetts Institute of Technology.

Grünewälder, S., Audibert, J.-Y., Opper, M., & Shawe-Taylor, J. (2010). Regret bounds for Gaussian

process bandit problems. In Proceedings of the 13th International Conference on Artificial

Intelligence and Statistics.

Guha, S., & Munagala, K. (2009). Multi-armed bandits with metric switching costs. In Proceedings

of the International Colloquium on Automata, Languages and Programming (ICALP).

Guha, S., Munagala, K., & Shi, P. (2009). Approximation algorithms for restless bandit problems.

Tech. rep. 0711.3861v5, arXiv.

Guillory, A., & Bilmes, J. (2009). Average-case active learning with costs. In The 20th International

Conference on Algorithmic Learning Theory, University of Porto, Portugal.

Guillory, A., & Bilmes, J. (2010). Interactive submodular set cover. In Proceedings of the Interna-

tional Conference on Machine Learning (ICML), No. UWEETR-2010-0001, Haifa, Israel.

Guillory, A., & Bilmes, J. A. (2011). Simultaneous learning and covering with adversarial noise. In

International Conference on Machine Learning (ICML), Bellevue, Washington.

Gupta, A., Krishnaswamy, R., Nagarajan, V., & Ravi, R. (2010). Approximation algorithms for

optimal decision trees and adaptive TSP problems. In Proceedings of the International Col-

loquium on Automata, Languages and Programming (ICALP), Vol. 6198 of Lecture Notes in

Computer Science, pp. 690–701. Springer.

Gupta, A., Pál, M., Ravi, R., & Sinha, A. (2005). What about Wednesday? Approximation algo-

rithms for multistage stochastic optimization. In Proceedings of the 8th International Work-

shop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX).

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive

black-box functions. Journal of Global Optimization, 13, 455–492.

Kaplan, H., Kushilevitz, E., & Mansour, Y. (2005). Learning with attribute costs. In Proceedings of

the 37th ACM Symposium on Theory of Computing, pp. 356–365.

484

ADAPTIVE SUBMODULARITY: THEORY AND APPLICATIONS

Kempe, D., Kleinberg, J., & Tardos, E. (2003). Maximizing the spread of influence through a social

network. In KDD ’03: Proceedings of the ninth ACM SIGKDD international conference on

Knowledge discovery and data mining, pp. 137–146, New York, NY, USA. ACM.

Kosaraju, S. R., Przytycka, T. M., & Borgstrom, R. S. (1999). On an optimal split tree problem.

In Proceedings of the 6th International Workshop on Algorithms and Data Structures, pp.

157–168, London, UK. Springer-Verlag.

Krause, A., & Guestrin, C. (2005). Near-optimal nonmyopic value of information in graphical

models. In Proceedings of Uncertainty in Artificial Intelligence (UAI).

Krause, A., & Guestrin, C. (2007). Near-optimal observation selection using submodular functions.

In Conference on Artificial Intelligence (AAAI) Nectar track, pp. 1650–1654.

Krause, A., & Guestrin, C. (2009a). Intelligent information gathering and submodular function

optimization. Tutorial at the International Joint Conference in Artificial Intelligence.

Krause, A., & Guestrin, C. (2009b). Optimal value of information in graphical models. Journal of

Artificial Intelligence Research (JAIR), 35, 557–591.

Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., & Glance, N. (2007). Cost-

effective outbreak detection in networks. In KDD ’07: Proceedings of the 13th ACM SIGKDD

international conference on Knowledge discovery and data mining, pp. 420–429, New York,

NY, USA. ACM.

Littman, M., Goldsmith, J., & Mundhenk, M. (1998). The computational complexity of probabilistic

planning. Journal of Artificial Intelligence Research, 9, 1–36.

Liu, Z., Parthasarathy, S., Ranganathan, A., & Yang, H. (2008). Near-optimal algorithms for shared

filter evaluation in data stream systems. In SIGMOD ’08: Proceedings of the 2008 ACM

SIGMOD international conference on Management of data, pp. 133–146, New York, NY,

USA. ACM.

Lizotte, D., Wang, T., Bowling, M., & Schuurmans, D. (2007). Automatic gait optimization with

Gaussian process regression. In Proceedings of the Twentieth International Joint Conference

on Artificial Intelligence (IJCAI), pp. 944–949.

Loveland, D. W. (1985). Performance bounds for binary testing with arbitrary weights. Acta Infor-

matica, 22(1), 101–114.

McCallum, A., & Nigam, K. (1998). Employing EM and pool-based active learning for text clas-

sification. In Proceedings of the International Conference on Machine Learning (ICML), pp.

350–358.

Minoux, M. (1978). Accelerated greedy algorithms for maximizing submodular set functions. In

Proceedings of the 8th IFIP Conference on Optimization Techniques, pp. 234–243. Springer.

Munagala, K., Babu, S., Motwani, R., Widom, J., & Thomas, E. (2005). The pipelined set cover

problem. In Proceedings of the Intl. Conf. on Database Theory, pp. 83–98.

Nemhauser, G. L., Wolsey, L. A., & Fisher, M. L. (1978). An analysis of approximations for maxi-

mizing submodular set functions - I. Mathematical Programming, 14(1), 265–294.

Nowak, R. (2009). Noisy generalized binary search. In NIPS: Advances in Neural Information

Processing Systems 22, pp. 1366–1374.

485

GOLOVIN & KRAUSE

Papadimitriou, C. H., & Tsitsiklis, J. N. (1987). The complexity of Markov decision processses.

Mathematics of Operations Research, 12(3), 441–450.

Pineau, J., Gordon, G., & Thrun, S. (2006). Anytime point-based approximations for large

POMDPs. Journal of Artificial Intelligence Research (JAIR), 27, 335–380.

Raz, R., & Safra, S. (1997). A sub-constant error–probability low–degree test, and a sub–constant

error-probability PCP characterization of NP. In STOC ’97: Proceedings of the twenty-ninth

annual ACM Symposium on Theory of Computing, pp. 475–484, New York, NY, USA. ACM.

Ross, S., Pineau, J., Paquet, S., & Chaib-draa, B. (2008). Online planning algorithms for POMDPs.

Journal of Artificial Intelligence Research, 32, 663–704.

Schrijver, A. (2003). Combinatorial optimization : polyhedra and efficiency. Volume B, Part IV,

Chapters 39-49. Springer.

Sebastiani, P., & Wynn, H. P. (2000). Maximum entropy sampling and optimal Bayesian experi-

mental design. Journal of the Royal Statistical Society, Series B, 62(1), 145–157.

Smallwood, R., & Sondik, E. (1973). The optimal control of partially observable Markov decision

processes over a finite horizon. Operations Research, 21, 1071–1088.

Srinivas, N., Krause, A., Kakade, S., & Seeger, M. (2010). Gaussian process optimization in the

bandit setting: No regret and experimental design. In Proceedings of the International Con-

ference on Machine Learning (ICML).

Streeter, M., & Golovin, D. (2007). An online algorithm for maximizing submodular functions.

Tech. rep. CMU-CS-07-171, Carnegie Mellon University.

Streeter, M., & Golovin, D. (2008). An online algorithm for maximizing submodular functions. In

NIPS: Advances in Neural Information Processing Systems 21, pp. 1577–1584.

Wolsey, L. A. (1982). An analysis of the greedy algorithm for the submodular set covering problem.

Combinatorica, 2(4), 385–393.

486

