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Abstract—We present a new window-based method for correspondence search

using varying support-weights. We adjust the support-weights of the pixels in a

given support window based on color similarity and geometric proximity to reduce

the image ambiguity. Our method outperforms other local methods on standard

stereo benchmarks.

Index Terms—Stereo, 3D/stereo scene analysis.
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1 INTRODUCTION

THE crux of correspondence search is image ambiguity, which

results from the ambiguous local appearances of image pixels due

to image noise and insufficient (or repetitive) texture. When the

local structures of image pixels are similar, it may be very difficult

to find their correspondences in other images without global

reasoning. However, most global correspondence methods are

computationally expensive and sometimes need many parameters

that are hard to determine. To properly deal with the image

ambiguity problem, area-based local methods generally use some

kind of statistical correlation between color or intensity patterns in

local support windows. By using the local support windows, the

image ambiguity is reduced efficiently while the discriminative

power of the similarity measure is increased. In this approach, it is

implicitly assumed that all pixels in a support window are from

similar depth in a scene and, therefore, that they have similar

disparities. Accordingly, pixels in homogeneous regions get

assigned the disparities inferred from the disparities of neighbor-

ing pixels. However, the support windows located on depth

discontinuities represent pixels from different depths, and this

results in the “foreground-fattening” phenomenon. Therefore, to

obtain accurate results not only at depth discontinuities but also in

homogeneous regions, an appropriate support window should be

selected for each pixel adaptively. To this end, many methods have

been proposed. They can be roughly divided into several

categories according to their techniques.

Adaptive-window methods [1], [2], [3], [4] try to find an

optimal support window for each pixel. Kanade and Okutomi [1]

presented a method to select an appropriate window by evaluating

the local variation of intensity and disparity. This method is,

however, highly dependent on the initial disparity estimation and

is computationally expensive. Moreover, the shape of a support

window is constrained to a rectangle, which is not appropriate for

pixels near arbitrarily shaped depth discontinuities. On the other

hand, Boykov et al. [2] tried to choose an arbitrarily shaped

connected window. They performed plausibility hypothesis testing

and computed a correct window for each pixel. Veksler [3], [4]

found a useful range of window sizes and shapes to explore while

evaluating the window cost, which works well for comparing

windows of different sizes. However, the shapes of support

windows used are not general and this method needs many user-

specified parameters for the window cost computation.

Multiple-window methods [5], [6], [7] select an optimal support

window among predefined multiple windows, which are located

at different positions with the same shape. Fusiello et al. [5]

performed the correlation with nine different windows for each

pixel and retained the disparity with the smallest matching cost.

Kang et al. [7] also presented a multiple-window method that

examines all windows containing the pixel of interest.

Although the methods mentioned above improve the perfor-

mance of correspondence search, they have a limitation in

common: The shape of a local support window is not general. In

fact, finding the optimal support window with an arbitrary shape

and size is very difficult. For this reason, the methods limit their

search space by constraining the shape of a support window.

Rectangular and constrained-shaped windows, however, may be

inappropriate for pixels near arbitrarily shaped depth disconti-

nuities. To resolve this problem, segmentation-based methods [8],

[9] use segmented regions with arbitrary sizes and shapes as

support windows. In this approach, it is also implicitly assumed

that the disparity varies smoothly in each region. However, these

methods require precise color segmentation that is very difficult

when dealing with highly textured images.

Some methods [10], [11], [12] try to assign appropriate support-

weights to the pixels in a support window while fixing the shape

and size of a local support window. Prazdny [10] proposed a new

function to assign support-weights to neighboring pixels itera-

tively. In this method, it is assumed that neighboring disparities, if

corresponding to the same object in a scene, are similar and that

two neighboring pixels with similar disparities support each other.

Xu et al. [12] also presented an algorithm that determines adaptive

support-weights by radial computations. They used the certainties

of the initial disparity distribution to determine support-weights.

These methods, however, are dependent on the initial disparity

estimation, which may be erroneous.

In this paper, we propose a new correspondence search method

to get accurate results at depth discontinuities as well as in

homogeneous regions. We compute the support-weights of the

pixels in a given support window using color similarity and

geometric proximity. The proposed method is composed of three

parts: adaptive support-weight computation, dissimilarity compu-

tation based on the support-weights, and disparity selection. We

give a detailed explanation for each part in Sections 2, 3, and 4

show some experimental results in Section 5. We then discuss the

proposed method in Section 6 and conclude the paper in Section 7.

2 SUPPORT AGGREGATION IN THE HUMAN VISUAL

SYSTEM

When aggregating support to measure the similarity between

image pixels, the support from a neighboring pixel is valid only

when the neighboring pixel is from the same depth—it has the

same disparity—with the pixel under consideration. However, we

do not know the disparities of the pixels beforehand because the

disparities are what we want to compute. For this reason, some
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methods [1], [10], [12] iteratively update support windows or

support-weights. The iterative methods, however, are very

sensitive to the initial disparity estimation and are computationally

expensive. To resolve this dilemma, we observed the mechanism

performed in the human visual system for correspondence search.

In fact, the proposed method originated from the observation that

the pixels in a support window are not equally important in the

support aggregation step in the human visual system.

2.1 Gestalt Grouping

Visual grouping is very important to form a support window

and to compute support-weights and, therefore, the gestalt

principles can be used to compute support-weights. There are

many visual cues used for perceptual grouping [13], [14]. Among

them, similarity and proximity are the two main grouping

concepts in classic gestalt theory. The gestalt rule of organization

based on similarity (or smoothness) and proximity is one of the

most important ones and has been widely used in vision

research [15], [16], [17].

The gestalt principles of similarity and proximity are also used

to compute support-weights. We compute the support-weight of

a pixel based on the strength of grouping by similarity and

proximity—the support-weight is in proportion to the strength of

grouping. The more similar the color of a pixel, the larger its

support-weight. In addition, the closer the pixel is, the larger the

support-weight is. The former is related to the grouping by

similarity and the latter is related to the grouping by proximity.

Although these two rules are usually stated separately, they must

be treated as a single rule in an integrated manner to get

reasonable grouping.

2.2 Support-Weight Based on the Gestalt Grouping

Based on the gestalt principles, the support-weight of a pixel can

be written as

wðp; qÞ ¼ fð�cpq;�gpqÞ; ð1Þ

where �cpq and �gpq represent the color difference and the spatial

distance between pixel p and q, respectively. fð�cpq;�gpqÞ

represents the strength of grouping by similarity and proximity

when �cpq and �gpq are given. Here, �cpq and �gpq can be

regarded as independent events and the strength of grouping by

similarity and proximity can be measured separately. Then,

fð�cpq;�gpqÞ can be expressed as

fð�cpq;�gpqÞ ¼ fsð�cpqÞ � fpð�gpqÞ; ð2Þ

where fsð�cpqÞ and fpð�gpqÞ represent the strength of grouping by

similarity and proximity, respectively.

As shown in (2), the core of the support-weight computation is

how to model the strength of grouping by color similarity,

fsð�cpqÞ, and the strength of grouping by proximity, fpð�gpqÞ.

These should be modeled based on the perceptual difference

measures.

3 LOCALLY ADAPTIVE SUPPORT-WEIGHT

COMPUTATION

3.1 Strength of Grouping by Similarity

The difference between pixel colors is measured in the CIELab

color space because it provides three-dimensional representation

for the perception of color stimuli. As the distance between two

points in the CIELab color space increases, it is reasonable to

assume that the perceived color difference between the stimuli

that the points represent increases accordingly. Especially, short

Euclidean distances correlate strongly with human color dis-

crimination performance. When �cpq represents the Euclidean

distance between two colors, cp ¼ ½Lp; ap; bp� and cq ¼ ½Lq; aq; bq�,

in the CIELab color space, the perceptual difference between two

colors is expressed as

Dðcp; cqÞ ¼ 1� exp �
�cpq

�

� �

; ð3Þ

where � is 14. Based on (3), the strength of grouping by color

similarity is defined as

fsð�cpqÞ ¼ exp �
�cpq

�c

� �

: ð4Þ

3.2 Strength of Grouping by Proximity

The strength of grouping by proximity is defined in the same

manner. According to the gestalt principle of proximity, the

support-weight of a pixel decreases as the spatial distance to the

reference pixel increases. Here, as in the color difference, only

small spatial distances strongly correlate with the human

discrimination performance. Therefore, the strength of grouping

by proximity is defined using the Laplacian kernel as

fpð�gpqÞ ¼ exp �
�gpq

�p

� �

; ð5Þ

where �gpq is the Euclidean distance between p and q in the image

domain and �p is determined according to the size of the support-

window as �p / (window size). In fact, �p is related to the field-of-

view of the human visual system.

3.3 Support-Weight Based on the Strength of Grouping

According to (4) and (5), (1) can be rewritten as

wðp; qÞ ¼ exp �
�cpq

�c
þ
�gpq

�p

� �� �

: ð6Þ

Here, it is worthy of notice that the proposed method does not

depend on the initial disparity estimation at all because the

adaptive support-weight computation is entirely based on the

contextual information within a given support window.

4 DISSIMILARITY COMPUTATION AND DISPARITY

SELECTION

The dissimilarity (i.e., the matching cost) between pixels is

measured by aggregating raw matching costs with the support-

weights in both support windows. In this step, unlike existing

methods, we take into account the support-weights in both

reference and target support windows. When considering only

the reference support window, the computed dissimilarity can be

erroneous when the target support window has pixels from

different depths. To minimize the effect of such pixels, we

compute the dissimilarity between pixels by combining the

support-weights in both support windows. The combined

support-weights favor the points likely to have similar disparities

with the centered pixels in both images. The dissimilarity

between pixel p and �ppd, Eðp; �ppdÞ, can be expressed as
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Eðp; �ppdÞ ¼

P

q2Np ;�qqd2N�ppd
wðp; qÞwð�ppd; �qqdÞeðq; �qqdÞ

P

q2Np ;�qqd2N�ppd
wðp; qÞwð�ppd; �qqdÞ

; ð7Þ

where �ppd and �qqd are the corresponding pixels in the target image

when the pixel p and q in the reference image have a disparity

value d. eðq; �qqdÞ represents the pixel-based raw matching cost

computed by using the colors of q and �qqd. When using the

truncated AD (absolute difference), it can be expressed as

eðq; �qqdÞ ¼ min
X

c2fr;g;bg

jIcðqÞ � Icð�qqdÞj; T

8

<

:

9

=

;

; ð8Þ

where Ic is the intensity of the color band c and T is the truncation

value that controls the limit of the matching cost.

After the dissimilarity computation, the disparity of each pixel

is simply selected by the WTA (Winner-Takes-All) method without

any global reasoning as

dp ¼ argmin
d2Sd

Eðp; �ppdÞ; ð9Þ

where Sd ¼ fdmin; � � � ; dmaxg is the set of all possible disparities.

5 EXPERIMENTS

5.1 Support-Weight Computation

Fig. 1 and Fig. 2 show the results of support-weight computation

for the reference and target support windows. The small rectangles

indicate the pixels under consideration. The support-weights in

each support window are computed independently and combined

as shown in Fig. 3. We can see that the local structures of support

windows are reflected in the combined support-weights. The

similarity between pixels is then computed by (7) using the

combined support-weights.

5.2 Correspondence Search for Synthetic and Real
Images

We evaluated the performance of the proposed method using the

images with ground truth. We then compared the performance of

the proposed method with those of other area-based local methods

[3], [4], [7], [19], [20] that perform well.

Fig. 4 shows the result for a synthetic image. The proposed

method produces an accurate disparity map, as shown in Fig. 4f. In

particular, depth discontinuities are preserved very well. On the

other hand, other methods fail to preserve depth discontinuities.

More matching results for real images, which are often used for

the performance comparison of various methods [18], are shown in

Fig. 5. The proposed method is run with a constant parameter

setting across all four images: T ¼ 40, the size of a support window

= (35� 35), �c ¼ 5, and �p ¼ 17:5 (radius of the support window).

As shown in Fig. 5, the proposed method yields accurate results at

the depth discontinuities as well as in the homogeneous regions for

the testbed images.

The performance of the proposed method for the testbed

images is summarized in Table 1 to compare the performance with

others. The numbers in Table 1 represent the percentage of bad

pixels (i.e., a pixel whose absolute disparity error is greater than 1)

for all pixels, pixels in untextured areas (except for the “Map”

image), and pixels near depth discontinuities. Only nonoccluded
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Fig. 1. Support-weight computation (1). The center pixels marked by rectangles are the pixels under consideration. The brighter pixels have larger support-weights in (b)

and (d). (a) Reference window. (b) Weights of (a). (c) Target window. (d) Weights of (c).

Fig. 2. Support-weight computation (2). The center pixels marked by rectangles are the pixels under consideration. The brighter pixels have larger support-weights in (b)

and (d). (a) Reference window. (b) Weights of (a). (c) Target window. (d) Weights of (c).

Fig. 3. Combined support-weights used for the similarity computation. (a) Weights

for Fig. 1. (b) Weights for Fig. 2.



pixels are considered in all three cases and we ignore a border of 10

(18 for the “Tsukuba” image) pixels when computing statistics. As

shown in Table 1, the proposed method is generally the best

among the state-of-the-art area-based local methods. Particularly,

the performance near depth discontinuities is much better than the

others because the proposed method can preserve arbitrarily

shaped depth discontinuities well, while the methods using

rectangular or constrained-shaped windows cannot.

However, the result on the “Map” data set is worse than other

local methods. This is because the images are highly textured and

there is repetitive texture. When the images are highly textured,

the amount of aggregated support for each pixel may be

insufficient. In that case, the discriminative power of the proposed

similarity measure is reduced, which results in false matches.

Moreover, the proposed method may produce inaccurate results

for the regions with repetitive textures because the proposed

method simply selects disparities using the WTA method locally.

More results for the synthetic and real images are shown in Fig. 6,

Fig. 7, and Fig. 8. For these images, we performed the left-right

consistency check to correct the disparities in the half-occluded

regions and the borders of images. Because the proposed method

uses theWTAalgorithm in thedisparity selection stage, the left-right

consistency check can be simply achieved.We can see that, although

there are someerrorsdue specularhighlights in thedisparitymap for
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Fig. 4. Dense disparity map for a synthetic image. (a) Left image. (b) Ground truth. (c) SAD. (d) Shiftable window [7]. (e) Bay. Diff. [19]. (f) Proposed.

Fig. 5. Dense disparity maps for the “Tsukuba,” “Sawtooth,” “Venus,” and “Map” images. (a) Left image. (b) Ground truth. (c) Our result. (d) Bad pixels (error >1).
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TABLE 1
Performance Comparison of the Proposed Method

Fig. 6. Dense disparity map for the “CD-Book” image. (a) Left image. (b) Shiftable window [7]. (c) Our result. (d) Novel view synthesized by using (c).

Fig. 7. Dense disparity map for the “Weed” image. (a) Left image. (b) Shiftable window [7]. (c) Our result. (d) Novel view synthesized by using (c).

Fig. 8. Dense disparity maps for the “Teddy” and “Cone” images. (a) Left image. (b) Ground truth. (c) Our result. (c) Bad pixels (error > 1).



the “Weed” image, the proposed method produces very accurate

disparitymapsandpreserves arbitrary shapeddepthdiscontinuities

well. Table 2 shows the performance of the proposed method with

the consistency check for the new testbed images that can be found at

http://www.middlebury.edu/stereo.1 The performance of the

proposed method is comparable to the global methods.

6 DISCUSSION

6.1 Sensitivity to the Size of a Support Window and
Parameter Values

Fig. 9 shows the performance of the proposed method, the SAD

(sum of absolute difference), and the shiftable window method [7]

for the “Map” image, which is textured almost everywhere,

according to the size of a support window. In this case, we

increased �p in (6) according to the size of the support window for

fair comparison. We can see that the proposed method is fairly

robust against different sizes of a support window, whereas the

others are not. This is because the effect of outliers (i.e., pixels from

different depths) does not increase in the proposed method even

though the size of a support window increases.

Fig. 10 shows the performance of the proposed method for the

“Sawtooth” and “Venus” images according to �c. In this case, we

kept the size of the support window and �p constant. Our method

also appears to be fairly robust against different values of �c—the

accuracy is almost constant for �c between 4.0 and 7.0. Although

the determination of parameter values seems to be difficult, the

parameter values are not so critical in the proposed method

because the effect of outliers is suppressed by using the combined

form of support-weights.

6.2 Connection with Structure-Preserving Noise Filters

Equation (6) used for support-weight computation is very similar

to the functions used for computing adaptive weights in structure-

preserving noise filters such as those in [24], [25. This is because

the structure-preserving filters also use the adaptive weights based

on the intensity similarity and distance between pixels to remove

image noise. As a result of using adaptive support-weights, the

structure-preserving filters produce noise-removed smooth images

while preserving the image structures (i.e., the intensity edges)

well; the proposed method produces smooth disparity maps while

preserving depth discontinuities well. In fact, the adaptive

support-weight approach is applicable to any applications aimed

at getting discontinuity-preserving smooth results.

7 CONCLUSIONS

In this paper, we have proposed a new area-based local method for

correspondence search that focuses on the dissimilarity computa-

tion. Instead of finding an optimal support window, we adjusted
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TABLE 2
Performance of the Proposed Method for the New Testbed Images

Fig. 9. Performance according to the window size for the “Map” image. Note that �p in (6) is increased according to the size of the support window for fair comparison.

(a) Nonoccluded. (b) Depth discontinuities.

Fig. 10. Performance according to the �c for the “Sawtooth” and “Venus” images

while the sizes of the support window and �p are kept constant.
1. Results for the “Tsukuba” and “Venus” images with the consistency

check also can be found at http://www.middlebury.edu/stereo.



the support-weight of the pixel in a given support window based

on the color similarity and geometric distance to the reference

pixel. We then computed the dissimilarity between pixels using the

support-weights in both support windows. Experimental results

show that the proposed method produces accurate piecewise

smooth disparity maps. Particularly, the performance near the

depth discontinuities is much better than that of other methods

because the proposed method can preserve arbitrarily shaped

depth discontinuities well, whereas the methods using rectangular

or constrained-shaped windows cannot.

The proposed method has some advantages. First, the proposed

method does not depend on the initial disparity estimation because

the adaptive support-weight is noniteratively computed based on

the contextual information within a given support window. Second,

the proposedmethod is fairly robust against different sized support

windows. The proposed method, however, is computationally a

littlemore expensive than other area-based localmethods because of

the pixel-wise adaptive support-weight computation. For instance,

the running time for the “Tsukuba” image with a (35� 35) support

window is about one minute on the AMD 2700+ machine.

Fortunately, however, the runtime of the proposed method can be

reduced by using parallel processors because the support-weights

can be computed in parallel.
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