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Abstract

In this paper, the adaptive synchronization and lag synchronization are considered for uncertain dynamical system with

time delay based on parameter identification and a novel control method is then further given using the Lyapunov

functional method. With this new and effective method, parameter identification and lag synchronization can be achieved

simultaneously. Simulation results are given to justify the theoretical analysis in this paper.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Synchronization; Lag synchronization; Parameter identification; Lyapunov functional; Chaos
1. Introduction

Dynamical behaviors [1–30] are interesting nonlinear phenomena and have been intensively investigated in
many years due to its potential applications in secure communications [6], chemical reactions, biological
systems and so on. Stability [1–5,33], bifurcation [13–19] and chaos synchronization [7–12,20–30,34] are
studied by many researchers.

It is known that chaotic systems exhibit sensitive dependence on initial conditions. Because of this property,
chaotic systems are difficult to be synchronized or controlled. However, important results have been reported
on the control and synchronization of chaotic systems [7–12,20–30,34] in recent years. Chaos dynamics have
shown interesting features that make it attractive especially for secure communication. However, a certain
number of drawbacks have been revealed in the practical implementation of most chaos-based secure
communications algorithms. In particular, one of the basic issues of interest is the effect of uncertainties and
parameters mismatch on the stability of the process of synchronization of the chaotic oscillators. To overcome
these difficulties, various adaptive synchronization schemes have been proposed and investigated [20–30].
e front matter r 2006 Elsevier B.V. All rights reserved.
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Among these strategies, those based on the identification of system parameters appear to be of great practical
interest, especially when the system state is available to external measurements. The main method is to use the
possible modulation of a system parameter based on the transmitted message.

In particular, a time delay will occur in the activation between the neurons in electronic implementation of
dynamical systems, which will affect the dynamical behaviors of the neuron system. In recent years, a lot of
efforts have been made to study the dynamical behaviors of the delayed systems [1–20]. On the other hand,
besides time-delayed features of such dynamical systems, there might also be some uncertainties such as
perturbations and component variations, which might lead to very complex dynamical behaviors. Therefore,
time delays should be considered into the synchronization of dynamical systems.

In this paper, we will study synchronization and lag synchronization of dynamical systems, which is
presented based on parameter identification and Lyapunov functional method. The obtained results improve
and extend the earlier works. In addition, we proposed a new concept: lag synchronization and considered lag
synchronization of dynamical systems with time delay.

The organization of this paper is as follows: In Section 2, preliminaries and main results are given. Several
sufficient conditions are presented for the synchronization and lag synchronization of dynamical systems. In
Section 3, some remarks and examples are constructed to show the effectiveness and feasibility of this paper.
The conclusions are finally drawn in Section 4.

2. Preliminaries and main results

In this section, the main results for adaptive synchronization and lag synchronization of uncertain
dynamical systems with time delay are proposed. As is known to all, most of the synchronization methods
belong to drive–response type, which means that two systems are coupled by one system driving another so
that the behavior of the second is dependent on the behavior of the first, but the first in not influenced by the
behavior of the second. The first system will be called the drive system and the second will the response system.

In practice, determining some system parameters in advance may be difficult. Furthermore, most
parametrical values are characterized by uncertainties related to experimental conditions (temperature,
external electric and magnetic field) that can destroy or even break the synchronization. These problems can
be tackled to a certain extent through adaptive synchronization.

The drive system considered in this paper is as follows:

_xðtÞ ¼ f ðxðtÞÞ þ F ðxðtÞÞy1 þ Gðxðt� tðtÞÞÞy2, (1)

where tðtÞ is a function of time delay, xðtÞ ¼ ðx1ðtÞ;x2ðtÞ; . . . ;xnðtÞÞ
T
2 Rn is the state vector associated with the

neurons, y1 ¼ ðy11; y12; . . . ; y1nÞ
T
2 Rn and y2 ¼ ðy21; y22; . . . ; y2nÞ

T
2 Rn are the constant vectors of the system

parameters, f : Rn�!Rn, F : Rn�!Rn�n, G : Rn�!Rn�n. The response system is

_yðtÞ ¼ f ðyðtÞÞ þ F ðyðtÞÞa1ðtÞ þ Gðyðt� tðtÞÞÞa2ðtÞ þ uðtÞ, (2)

where a1ðtÞ ¼ ða11ðtÞ; a12ðtÞ; . . . ; a1nðtÞÞ
T
2 Rn and a2ðtÞ ¼ ða21ðtÞ; a22ðtÞ; . . . ; a2nðtÞÞ

T
2 Rn are functions depend-

ing on the time t, u is the controller. It has the same structure as the drive system but the parameter vectors
a1ðtÞ and a2ðtÞ are unknown. In practical situation, the output signals (state vector) of the drive system (1) can
be received by the response system (2), but the parameter vectors y1 and y2 of the drive system (1) may not be
known a priori, which need to be identified.

The problem is to design an adaptive synchronization algorithm

u ¼ uðx; y; a1; a2; tÞ; _a1 ¼ a1ðx; y; a1; a2; tÞ; _a2 ¼ a2ðx; y; a1; a2; tÞ,

where, a1 and a2 are the vectors of parameter estimates of the unknown parameter vectors y1 and y2. The
object of this paper is to design u, a1 and a2 to force the state yðtÞ of the response system (2) to asymptotically
synchronize with the state xðtÞ of the drive system (1), i.e., to archive

yðtÞ � xðtÞ�!0; t�!1,

a1ðtÞ � y1�!0; t�!1,

a2ðtÞ � y2�!0; t�!1.
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Let

eðtÞ ¼ yðtÞ � xðtÞ,

then subtracting (1) from (2) yields the synchronization error dynamical system as follows:

_eðtÞ ¼ f ðyðtÞÞ þ F ðyðtÞÞa1ðtÞ þ Gðyðt� tðtÞÞÞa2ðtÞ � f ðxðtÞÞ � F ðxðtÞÞy1 � Gðxðt� tðtÞÞÞy2 þ uðtÞ. (3)

2.1. Adaptive synchronization
Theorem 1. The drive system (1) synchronizes with the response system (2) if we choose

u ¼ �eðtÞ þ f ðxðtÞÞ � f ðyðtÞÞ þ ½F ðxðtÞÞ � F ðyðtÞÞ�a1 þ ½Gðxðt� tðtÞÞÞ � Gðyðt� tðtÞÞÞ�a2, (4)

_a1ðtÞ ¼ �Q�1FTðxðtÞÞPeðtÞ, (5)

_a2ðtÞ ¼ �R�1GTðxðt� tðtÞÞÞPeðtÞ, (6)

where P, Q and R are the positive definite matrices, u, a1 and a2 are independent of y1 and y2.

Proof. According to (4), we rewrite the error system (3) as

_eðtÞ ¼ �eðtÞ þ F ðxðtÞÞða1ðtÞ � y1Þ þ Gðxðt� tðtÞÞÞða2ðtÞ � y2Þ. (7)

Choose the following Lyapunov functional candidate:

V ðeðtÞ; a1ðtÞ; a2ðtÞÞ ¼ 1
2 eTðtÞPeðtÞ þ 1

2 ða1ðtÞ � y1Þ
TQða1ðtÞ � y1Þ

þ 1
2 ða2ðtÞ � y2Þ

TRða2ðtÞ � y2Þ, ð8Þ

where P, Q and R are the positive definite matrices. Differentiating V with respect to time along the solution
of (7) yields

dV

dt
¼ eTðtÞP_eðtÞ þ _aT1 Qða1ðtÞ � y1Þ þ _aT2 Rða2ðtÞ � y2Þ

¼ eTðtÞP½�eðtÞ þ F ðxðtÞÞða1ðtÞ � y1Þ þ Gðxðt� tðtÞÞÞða2ðtÞ � y2Þ� þ _aT1 Qða1ðtÞ � y1Þ

þ _aT2 Rða2ðtÞ � y2Þ

¼ � eTðtÞPeðtÞ þ ½_a1ðtÞ þQ�1FTðxðtÞÞPeðtÞ�TQða1ðtÞ � y1Þ

þ ½_a2ðtÞ þ R�1GTðxðt� tðtÞÞÞPeðtÞ�TRða2ðtÞ � y2Þ

¼ � eTðtÞPeðtÞ. ð9Þ

We can therefore conclude that V is a Lyapunov functional of the error system (7) corresponding with (5) and
(6), i.e.,

yðtÞ � xðtÞ�!0; t�!1,

a1ðtÞ � y1�!0; t�!1,

a2ðtÞ � y2�!0; t�!1.

This completes the proof. &

Corollary 1. The drive system (1) synchronizes with the response system (2) if we choose

u ¼ �eðtÞ þ f ðxðtÞÞ � f ðyðtÞÞ þ ½F ðxðtÞÞ � F ðyðtÞÞ�a1 þ ½Gðxðt� tðtÞÞÞ � Gðyðt� tðtÞÞÞ�a2,

_a1ðtÞ ¼ �FTðxðtÞÞPeðtÞ,

_a2ðtÞ ¼ �GTðxðt� tðtÞÞÞPeðtÞ,

where P is a positive definite matrix, u, a1 and a2 are independent of y1 and y2.
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Proof. Let Q ¼ R ¼ I , where I is the identity matrix, we can get Corollary 1 directly from Theorem 1. &

Corollary 2. The drive system (1) synchronizes with the response system (2) if we choose

u ¼ �eðtÞ þ f ðxðtÞÞ � f ðyðtÞÞ þ ½F ðxðtÞÞ � F ðyðtÞÞ�a1 þ ½Gðxðt� tðtÞÞÞ � Gðyðt� tðtÞÞÞ�a2,

_a1ðtÞ ¼ �FTðxðtÞÞeðtÞ,

_a2ðtÞ ¼ �GTðxðt� tðtÞÞÞeðtÞ,

where u, a1 and a2 are independent of y1 and y2.

Proof. Let P ¼ Q ¼ R ¼ I , where I is the identity matrix, we can get Corollary 2 easily from Theorem 1.
Here, we omit it. &

2.2. Adaptive lag synchronization

In the real systems, there are also transmission delays in the drive system. So in this subsection, we consider
another subject: lag synchronization.

Definition 1. The drive system (1) is said to lag synchronize with the response system (2) at time r if

yðtÞ � xðt� rÞ�!0; t�!1, (10)

where r is a given positive time delay.

From (1), we have

_xðt� rÞ ¼ f ðxðt� rÞÞ þ F ðxðt� rÞÞy1 þ Gðxðt� r� tðtÞÞÞy2. (11)

Let

dðtÞ ¼ yðtÞ � xðt� rÞ,

subtracting (11) from (2) yields the lag synchronization error dynamical system as follows:

_dðtÞ ¼ f ðyðtÞÞ þ F ðyðtÞÞa1ðtÞ þ Gðyðt� tðtÞÞÞa2ðtÞ � f ðxðt� rÞÞ � F ðxðt� rÞÞy1
� Gðxðt� r� tðtÞÞÞy2 þ uðtÞ. ð12Þ

Theorem 2. The drive system (1) lag synchronizes with the response system (2) at time r if we choose

u ¼ � dðtÞ þ f ðxðt� rÞÞ � f ðyðtÞÞ þ ½F ðxðt� rÞÞ � F ðyðtÞÞ�a1
þ ½Gðxðt� r� tðtÞÞÞ � Gðyðt� tðtÞÞÞ�a2, ð13Þ

_a1ðtÞ ¼ �Q�1FTðxðt� rÞÞPdðtÞ, (14)

_a2ðtÞ ¼ �R�1GTðxðt� r� tðtÞÞÞPdðtÞ, (15)

where P, Q and R are the positive definite matrices, u, a1 and a2 are independent of y1 and y2.

Proof. According to (13), we write error system (12) as

_dðtÞ ¼ �dðtÞ þ F ðxðt� rÞÞða1ðtÞ � y1Þ þ Gðxðt� r� tðtÞÞÞða2ðtÞ � y2Þ. (16)

Choose the following Lyapunov functional:

V ðdðtÞ; a1ðtÞ; a2ðtÞÞ ¼ 1
2

dT
ðtÞPdðtÞ þ 1

2
ða1ðtÞ � y1Þ

TQða1ðtÞ � y1Þ þ 1
2
ða2ðtÞ � y2Þ

TRða2ðtÞ � y2Þ, (17)
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where P, Q and R are the positive definite matrices. Differentiating V with respect to time along the solution
of (16), we obtain

dV

dt
¼ dTP _dðtÞ þ _aT1 Qða1ðtÞ � y1Þ þ _aT2 Rða2ðtÞ � y2Þ

¼ dTP½�dðtÞ þ F ðxðt� rÞÞða1ðtÞ � y1Þ þ Gðxðt� r� tðtÞÞÞða2ðtÞ � y2Þ� þ _aT1 Qða1ðtÞ � y1Þ

þ _aT2 Rða2ðtÞ � y2Þ

¼ � dTPd þ ½_a1ðtÞ þQ�1FTðxðt� rÞÞPdðtÞ�TQða1ðtÞ � y1Þ

þ ½_a2ðtÞ þ R�1GTðxðt� r� tðtÞÞÞPdðtÞ�TRða2ðtÞ � y2Þ

¼ � dTPd. ð18Þ

We can therefore conclude that V is a Lyapunov functional of the error system (16) corresponding with (14)
and (15), i.e.,

yðtÞ � xðt� rÞ�!0; t�!1,

a1ðtÞ � y1�!0; t�!1,

a2ðtÞ � y2�!0; t�!1.

This completes the proof. &

Corollary 3. The drive system (1) lag synchronizes with the response system (2) at time r if we choose

u ¼ �dðtÞ þ f ðxðtÞÞ � f ðyðt� rÞÞ þ ½F ðxðt� rÞÞ � F ðyðtÞÞ�a1 þ ½Gðxðt� r� tðtÞÞÞ � Gðyðt� tðtÞÞÞ�a2,

_a1ðtÞ ¼ �FTPðxðt� rÞÞdðtÞ,

_a2ðtÞ ¼ �GTPðxðt� r� tðtÞÞÞdðtÞ,

where P is a positive definite matrix, u, a1 and a2 are independent of y1 and y2.

Proof. Let Q ¼ R ¼ I , where I is the identity matrix, we can obtain Corollary 3 from Theorem 2. &

Corollary 4. The drive system (1) lag synchronizes with the response system (2) at time r if we choose

u ¼ � dðtÞ þ f ðxðtÞÞ � f ðyðt� rÞÞ þ ½F ðxðt� rÞÞ � F ðyðtÞÞ�a1 þ ½Gðxðt� r� tðtÞÞÞ

� Gðyðt� tðtÞÞÞ�a2,

_a1ðtÞ ¼ �FTðxðt� rÞÞdðtÞ,

_a2ðtÞ ¼ �GTðxðt� r� tðtÞÞÞdðtÞ,

where u, a1 and a2 are independent of y1 and y2.

Proof. Let P ¼ Q ¼ R ¼ I , where I is the identity matrix, we can get Corollary 4 easily from Theorem 2. We
omit it. &

Definition 2. The drive system (1) is said to lag synchronize with the response system (2) at time r in time
interval ½T1;T2� if

yðtÞ � xðt� rÞ�!0; t 2 ½T1;T2�, (19)

where r is a given positive time delay.

LeteeðtÞ ¼ yðtÞ � xðt� erðtÞÞ,
where erðtÞ is a function of time t and erðtÞX0 for all time t.
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Combining Theorems 1 and 2, we have the following theorem:

Theorem 3. The drive system (1) synchronizes with the response system (2) in time interval ½0;T=2� and lag

synchronizes with the response system (2) at time r in time interval ½T=2;T � if we choose

u ¼ � eeðtÞ þ f ðxðt� erðtÞÞÞ � f ðyðtÞÞ þ ½F ðxðt� erðtÞÞÞ � F ðyðtÞÞ�a1
þ ½Gðxðt� erðtÞ � tðtÞÞÞ � Gðyðt� tðtÞÞÞ�a2, ð20Þ

_a1ðtÞ ¼ �Q�1FTðxðt� erðtÞÞÞPeeðtÞ, (21)

_a2ðtÞ ¼ �R�1GTðxðt� erðtÞ � tðtÞÞÞPeeðtÞ, (22)

erðtÞ ¼ 0; t 2 ½0;T=2�;

r; t 2 ½T=2;T �;

(
(23)

where P, Q and R are the positive definite matrices, u, a1 and a2 are independent of y1 and y2. T is a sufficient

large real value.

Proof. It can be directly obtained form Theorems 1 and 2. Here we omit it. &

Corollary 5. The drive system (1) synchronizes with the response system (2) in time interval ½0;T=2� and lag

synchronizes with the response system (2) at time r in time interval ½T=2;T � if we choose

u ¼ � eeðtÞ þ f ðxðt� erðtÞÞÞ � f ðyðtÞÞ þ ½F ðxðt� erðtÞÞÞ � F ðyðtÞÞ�a1
þ ½Gðxðt� erðtÞ � tðtÞÞÞ � Gðyðt� tðtÞÞÞ�a2,

_a1ðtÞ ¼ �FTðxðt� erðtÞÞÞPeeðtÞ,
_a2ðtÞ ¼ �GTðxðt� erðtÞ � tðtÞÞÞPeeðtÞ,
erðtÞ ¼ 0; t 2 ½0;T=2�;

r; t 2 ½T=2;T �;

(
where P is a positive definite matrix, u, a1 and a2 are independent of y1 and y2. T is a sufficient large real

value. &

Proof. Let Q ¼ R ¼ I in Theorem 3. &

Corollary 6. The drive system (1) synchronizes with the response system (2) in time interval ½0;T=2� and lag

synchronizes with the response system (2) at time r in time interval ½T=2;T � if we choose

u ¼ � eeðtÞ þ f ðxðt� erðtÞÞÞ � f ðyðtÞÞ þ ½F ðxðt� erðtÞÞÞ � F ðyðtÞÞ�a1
þ ½Gðxðt� erðtÞ � tðtÞÞÞ � Gðyðt� tðtÞÞÞ�a2,

_a1ðtÞ ¼ �FTðxðt� erðtÞÞÞeeðtÞ,
_a2ðtÞ ¼ �GTðxðt� erðtÞ � tðtÞÞÞeeðtÞ,
erðtÞ ¼ 0; t 2 ½0;T=2�;

r; t 2 ½T=2;T �;

(
where u, a1 and a2 are independent of y1 and y2. T is a sufficient large real value.

Proof. Let P ¼ Q ¼ R ¼ I in Theorem 3. &

Finally, we consider a general situation that the delay erðtÞ is a more general function.
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Definition 3. The drive system (1) is said to lag synchronize with the response system (2) at time erðtÞ if
yðtÞ � xðt� erðtÞÞ�!0; t�!1, (24)

where erðtÞ is a function of time t, erðtÞX0 for all time t.

From (1), we have

_xðt� erðtÞÞ ¼ ð1� _erðtÞÞ f ðxðt� erðtÞÞÞ þ F ðxðt� erðtÞÞÞy1 þ Gðxðt� erðtÞ � tðtÞÞÞy2½ �. (25)

Subtracting (25) from (2) yields the lag synchronization error dynamical system as follows:

_eeðtÞ ¼ f ðyðtÞÞ þ F ðyðtÞÞa1ðtÞ þ Gðyðt� tðtÞÞÞa2ðtÞ � ð1� _erðtÞÞ½f ðxðt� erðtÞÞÞ þ F ðxðt� erðtÞÞÞy1
þ Gðxðt� erðtÞ � tðtÞÞÞy2� þ uðtÞ. ð26Þ

Theorem 4. The drive system (1) lag synchronizes with the response system (2) at time erðtÞ if we choose

u ¼ � eeðtÞ þ ð1� _erðtÞÞf ðxðt� erðtÞÞÞ � f ðyðtÞÞ þ ½ð1� _erðtÞÞF ðxðt� erðtÞÞÞ � F ðyðtÞÞ�a1

þ ½ð1� _erðtÞÞGðxðt� erðtÞ � tðtÞÞÞ � Gðyðt� tðtÞÞÞ�a2, ð27Þ

_a1ðtÞ ¼ �ð1� _erðtÞÞQ�1FTðxðt� erðtÞÞÞPeeðtÞ, (28)

_a2ðtÞ ¼ �ð1� _erðtÞÞR�1GTðxðt� erðtÞ � tðtÞÞÞPeeðtÞ, (29)

where P, Q and R are the positive definite matrices, u, a1 and a2 are independent of y1 and y2, erðtÞ is a function of

time t, erðtÞX0 for all time t.

Proof. According to (27), we write error system (26) as

_eeðtÞ ¼ �eeðtÞ þ ð1� _erðtÞÞF ðxðt� erðtÞÞÞða1ðtÞ � y1Þ þ ð1� _erðtÞÞGðxðt� erðtÞ � tðtÞÞÞða2ðtÞ � y2Þ. (30)

Choose the following Lyapunov functional:

V ðeeðtÞ; a1ðtÞ; a2ðtÞÞ ¼ 1
2
eeTðtÞPeeðtÞ þ 1

2
ða1ðtÞ � y1Þ

TQða1ðtÞ � y1Þ þ 1
2
ða2ðtÞ � y2Þ

TRða2ðtÞ � y2Þ, (31)

where P, Q and R are the positive definite matrices. Differentiating V with respect to time along the solution
of (30), we obtain

dV

dt
¼ eeTP_eeðtÞ þ _aT1 Qða1ðtÞ � y1Þ þ _aT2 Rða2ðtÞ � y2Þ

¼ eeTP½�eeðtÞ þ ð1� _erðtÞÞF ðxðt� erðtÞÞÞða1ðtÞ � y1Þ þ ð1� _erðtÞÞGðxðt� erðtÞ � tðtÞÞÞða2ðtÞ � y2Þ�

þ _aT1 Qða1ðtÞ � y1Þ þ _aT2 Rða2ðtÞ � y2Þ

¼ � eeTPeeþ ½_a1ðtÞ þ ð1� _erðtÞÞQ�1FTðxðt� erðtÞÞÞPeeðtÞ�TQða1ðtÞ � y1Þ

þ ½_a2ðtÞ þ ð1� _erðtÞÞR�1GTðxðt� erðtÞ � tðtÞÞÞPeeðtÞ�TRða2ðtÞ � y2Þ

¼ � eeTPee. ð32Þ

We can therefore conclude that V is a Lyapunov functional of the error system (30) corresponding with (28)
and (29), i.e.,

yðtÞ � xðt� erðtÞÞ�!0; t�!1,

a1ðtÞ � y1�!0; t�!1,

a2ðtÞ � y2�!0; t�!1.

This completes the proof. &
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Corollary 7. The drive system (1) lag synchronizes with the response system (2) at time erðtÞ if we choose

u ¼ � eeðtÞ þ ð1� _erðtÞÞf ðxðt� erðtÞÞÞ � f ðyðtÞÞ þ ½ð1� _erðtÞÞF ðxðt� erðtÞÞÞ � F ðyðtÞÞ�a1

þ ½ð1� _erðtÞÞGðxðt� erðtÞ � tðtÞÞÞ � Gðyðt� tðtÞÞÞ�a2,

_a1ðtÞ ¼ �ð1� _erðtÞÞFTðxðt� erðtÞÞÞPeeðtÞ,
_a2ðtÞ ¼ �ð1� _erðtÞÞGTðxðt� erðtÞ � tðtÞÞÞPeeðtÞ,

where P is a positive definite matrix, u, a1 and a2 are independent of y1 and y2, erðtÞ is a function of time t, erðtÞX0
for all time t.

Proof. Let Q ¼ R ¼ I , where I is the identity matrix, we can obtain Corollary 7 from Theorem 4. &

Corollary 8. The drive system (1) lag synchronizes with the response system (2) at time erðtÞ if we choose

u ¼ � eeðtÞ þ ð1� _erðtÞÞf ðxðt� erðtÞÞÞ � f ðyðtÞÞ þ ½ð1� _erðtÞÞF ðxðt� erðtÞÞÞ � F ðyðtÞÞ�a1

þ ½ð1� _erðtÞÞGðxðt� erðtÞ � tðtÞÞÞ � Gðyðt� tðtÞÞÞ�a2,
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Fig. 1. State trajectories of drive, response and error systems: (a) x1ðtÞ; (b) x2ðtÞ; (c) y1ðtÞ; (d) y2ðtÞ; (e) e1ðtÞ; and (f) e2ðtÞ.
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_a1ðtÞ ¼ �ð1� _erðtÞÞFTðxðt� erðtÞÞÞeeðtÞ,
_a2ðtÞ ¼ �ð1� _erðtÞÞGTðxðt� erðtÞ � tðtÞÞÞeeðtÞ,

where u, a1 and a2 are independent of y1 and y2, erðtÞ is a function of time t, erðtÞX0 for all time t.

Proof. Let P ¼ Q ¼ R ¼ I , where I is the identity matrix, we can get Corollary 8 easily from Theorem 4.
We omit it. &

Remark 1. In Refs. [22,26], Park has studied the adaptive synchronization of hyperchaotic Chen system with
uncertain parameters and Chen et al. considered adaptive synchronization of uncertain Rössler hyperchaotic
system based on parameter identification. However, they both discussed a specially simple model and could
not be carried to a general model. In this paper, we discussed a general model.

Remark 2. In Ref. [24], Chen and L €u considered parameters identification and synchronization of chaotic
systems based upon adaptive control. The method is proposed for a class of chaotic systems dependent linearly
on unknown parameters based upon adaptive control, which just considered a class of chaotic systems and it is
also a special case in our paper.

Remark 3. In Refs. [21,23], the adaptive synchronization of uncertain chaotic systems based on parameter
identification has been considered by Fotsin, Woafo and Daafouz. However, in this paper we considered the
adaptive synchronization of uncertain dynamical systems with time delays. We have introduced time delays in
the dynamical systems, it is more common in a real system for time delays.

Remark 4. The value of this paper is that we introduce time delays in the adaptive synchronization and we
also proposed a new concept: lag synchronization. Since the drive system and the response system may not
synchronize, but with a time delay, they can synchronize. In addition, the time delay may be a constant or a
function of time t. Furthermore, the drive system may sometimes synchronize with the response system and
sometimes lag synchronizes with the response system.
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Fig. 2. Changing parameters of response system: (a) a11ðtÞ; (b) a12ðtÞ; (c) a21ðtÞ; and (d) a22ðtÞ.
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Remark 5. Recently, many researchers [7,21–24] studied adaptive synchronization and parameter identifica-
tion based on Lyapunov method. However, we can only obtain the stability of a1 and a2 in (5) and (6) from (9)
as the same in the papers [7,21–24]. Here, we just use asymptotical stability instead of stability for simplicity.
In [31], Li et al. found that this method was not effective for the stable system, and may be not good for
estimating parameters. However, in this paper, we mainly interested in chaotic systems since their wide
application in many research fields. In [32], Yu and Wu proposed that the demonstration of Li et al. is not
accurate, and this method can be used to identify the parameters of periodic or chaotic systems.
3. Numerical examples

In this section, some simulation examples are constructed to show the effectiveness of the proposed method
in this paper.

First, we consider the adaptive synchronization.

Example 1. Consider a typical delayed dynamical system [30] as follows:

_xðtÞ ¼ f ðxðtÞÞ þ F ðxðtÞÞy1 þ Gðxðt� tðtÞÞÞy2,
0 50 100 150 200

−1

−0.5

0

0.5

1

t

x1

0 50 100 150 200
−5

0

5

t

x2

0 50 100 150 200

−1

−0.5

0

0.5

1

t

y1

0 50 100 150 200
−5

0

5

t

y2

0 50 100 150 200

−1

0

1

t

d1

0 50 100 150 200

−5

0

5

t

d2

(a) (b)

(c) (d)

(e) (f)

Fig. 3. State trajectories of drive, response and error systems: (a) x1ðtÞ; (b) x2ðtÞ; (c) y1ðtÞ; (d) y2ðtÞ; (e) d1ðtÞ; and (f) d2ðtÞ.
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where

f ðxÞ ¼ �
x1

x2

 !
; y1 ¼

1

0:5

� �
; y2 ¼

0:75

0:25

� �
; F ðxÞ ¼

2 tanh x1 �0:2 tanh x2

�5 tanh x1 6 tanh x2

 !
,

Gðxðt� tðtÞÞÞ ¼
�2 tanh x1ðt� tðtÞÞ �0:4 tanh x2ðt� tðtÞÞ

�0:4 tanh x1ðt� tðtÞÞ �10 tanh x2ðt� tðtÞÞ

 !
; tðtÞ ¼ 1.

By Corollary 2, we obtain

_yðtÞ ¼ �ðy� xÞ þ f ðxðtÞÞ þ F ðxðtÞÞa1 þ Gðxðt� tðtÞÞÞa2;

_a1ðtÞ ¼ �FTðxðtÞÞðy� xÞ;

_a2ðtÞ ¼ �GTðxðt� tðtÞÞÞðy� xÞ:

8><>:
The above equations are independent of y1 and y2 which are unknown to us. The trajectories of the drive,
response and error systems are shown in Fig. 1. The parameter estimation trajectories of the response system
are shown in Fig. 2. From Figs. 1 and 2, we see that the drive system synchronizes with the response system
and the parameter estimation in response system tends to converge to the object we want. That is,

yðtÞ � xðtÞ�!0; t�!1,

a1ðtÞ � y1�!0; t�!1,

a2ðtÞ � y2�!0; t�!1.

Next, we consider the adaptive lag synchronization.
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Fig. 4. Changing parameters of response system: (a) a11ðtÞ; (b) a12ðtÞ; (c) a21ðtÞ; and (d) a22ðtÞ.
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Example 2. Consider a typical delayed dynamical system [30] the same as Example 1:

_xðtÞ ¼ f ðxðtÞÞ þ F ðxðtÞÞy1 þ Gðxðt� tðtÞÞÞy2,

where

f ðxÞ ¼ �
x1

x2

 !
; y1 ¼

1

0:5

� �
; y2 ¼

0:75

0:25

� �
; F ðxÞ ¼

2 tanh x1 �0:2 tanh x2

�5 tanh x1 6 tanh x2

 !
,

Gðxðt� tðtÞÞÞ ¼
�2 tanh x1ðt� tðtÞÞ �0:4 tanh x2ðt� tðtÞÞ

�0:4 tanh x1ðt� tðtÞÞ �10 tanh x2ðt� tðtÞÞ

 !
; tðtÞ ¼ 1,

but here we choose r ¼ 10.

By Corollary 4, we obtain

_yðtÞ ¼ �½yðtÞ � xðt� rÞ� þ f ðxðt� rÞÞ þ F ðxðt� rÞÞa1 þ Gðxðt� r� tðtÞÞÞa2;

_a1ðtÞ ¼ �FTðxðt� rÞÞ½yðtÞ � xðt� rÞ�;

_a2ðtÞ ¼ �GTðxðt� r� tðtÞÞÞ½yðtÞ � xðt� rÞ�:

8><>:
The above equations are independent of y1 and y2 which are unknown to us. The trajectories of the drive,

response and error systems are shown in Fig. 3. The parameter estimation trajectories of the response system
0 50 100 150 200

−1

−0.5

0

0.5

1

t

x1

0 50 100 150 200
−5

0

5

t

x2

0 50 100 150 200

−1

−0.5

0

0.5

1

t

y1

0 50 100 150 200
−5

0

5

t

y2

0 50 100 150 200

−1

0

1

t

e1

0 50 100 150 200

−5

0

5

t

e2

(a) (b)

(c) (d)

(e) (f)

Fig. 5. State trajectories of drive, response and error systems: (a) x1ðtÞ; (b) x2ðtÞ; (c) y1ðtÞ; (d) y2ðtÞ; (e) ee1ðtÞ; and (f) ee2ðtÞ.
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are shown in Fig. 4. From Figs. 3 and 4, we see that the drive system lag synchronizes with the response system
at time r and the parameter estimation in response system tends to converge to the object we want. That is,

yðtÞ � xðt� rÞ�!0; t�!1,

a1ðtÞ � y1�!0; t�!1,

a2ðtÞ � y2�!0; t�!1.

The drive system can lag synchronize with the response system at time 10, see Fig. 3, where
dðtÞ ¼ yðtÞ � xðt� rÞ.

Example 3. Consider a typical delayed dynamical system [30] the same as Example 1:

_xðtÞ ¼ f ðxðtÞÞ þ F ðxðtÞÞy1 þ Gðxðt� tðtÞÞÞy2,

here we choose

erðtÞ ¼ 0; t 2 ½kT ; ðk þ 1=2ÞT �;

10; t 2 ½ðk þ 1=2ÞT ; ðk þ 1ÞT �;

(
where k is a arbitrary integer and T is a sufficient large value, here we choose T ¼ 100. By Corollary 6, we
obtain

_yðtÞ ¼ �½yðtÞ � xðt� erðtÞÞ� þ f ðxðt� erðtÞÞÞ þ F ðxðt� erðtÞÞÞa1 þ Gðxðt� erðtÞ � tðtÞÞÞa2;

_a1ðtÞ ¼ �FTðxðt� erðtÞÞÞ ½yðtÞ � xðt� erðtÞÞ�;
_a2ðtÞ ¼ �GTðxðt� erðtÞ � tðtÞÞÞ ½yðtÞ � xðt� erðtÞÞ�:

8><>:
The above equations are independent of y1 and y2 which are unknown to us. The trajectories of the drive,
response and error systems are shown in Fig. 5. The parameter estimation trajectories of the response system
are shown in Fig. 6. From Figs. 5 and 6, we see that the drive system synchronizes with the response system in
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Fig. 6. Changing parameters of response system: (a) a11ðtÞ; (b) a12ðtÞ; (c) a21ðtÞ; and (d) a22ðtÞ.
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Fig. 7. State trajectories of drive, response and error systems: (a) x1ðtÞ; (b) x2ðtÞ; (c) y1ðtÞ; (d) y2ðtÞ; (e) ee1ðtÞ; and (f) ee2ðtÞ.
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time interval ½0; 50� [ ½100; 150�, lag synchronizes with the response system at time 10 in time interval
½50; 100� [ ½150; 200� and the parameter estimation in response system tends to converge to the object we want.
That is,

yðtÞ � xðt� erðtÞÞ�!0,

a1ðtÞ � y1�!0; t�!1,

a2ðtÞ � y2�!0; t�!1.

Example 4. Consider a typical delayed dynamical system [30] the same as Example 1:

_xðtÞ ¼ f ðxðtÞÞ þ F ðxðtÞÞy1 þ Gðxðt� tðtÞÞÞy2,

here we choose

erðtÞ ¼ 10ð1þ sin tÞ.
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By Corollary 8, we obtain

_yðtÞ ¼ �½yðtÞ � xðt� erðtÞÞ� þ ð1� _erðtÞÞf ðxðt� erðtÞÞÞ þ ð1� _erðtÞÞF ðxðt� erðtÞÞÞa1
þð1� _erðtÞÞGðxðt� erðtÞ � tðtÞÞÞa2;

_a1ðtÞ ¼ �ð1� _erðtÞÞFTðxðt� erðtÞÞÞ½yðtÞ � xðt� erðtÞÞ�;
_a2ðtÞ ¼ �ð1� _erðtÞÞGTðxðt� erðtÞ � tðtÞÞÞ½yðtÞ � xðt� erðtÞÞ�:

8>>>><>>>>:
The above equations are independent of y1 and y2 which are unknown to us. The trajectories of the drive,
response and error systems are shown in Fig. 7. The parameter estimation trajectories of the response system
are shown in Fig. 8. From Figs. 7 and 8, we see that the drive system lag synchronizes with the response system
at time erðtÞ and the parameter estimation in response system tends to converge to the object we want. That is,

yðtÞ � xðt� erðtÞÞ�!0,

a1ðtÞ � y1�!0; t�!1,

a2ðtÞ � y2�!0; t�!1.

4. Conclusion

In this paper, the problem of synchronization and lag synchronization of uncertain dynamical system has
been considered. The theorems for synchronization and lag synchronization are derived in this paper. It is easy
and convenient to use this method by adopting an adaptive law. Numerical simulations are given to show the
effectiveness and feasibility of the developed method.
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identification, Phys. Lett. A 321 (2004) 50–55.

[23] H.B. Fotsin, J. Daafouz, Adaptive synchronization of uncertain chaotic colpitts oscillators based on parameter identification, Phys.

Lett. A 339 (2005) 304–315.
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