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This study addresses the adaptive synchronization of Rössler and Chua circuit systems with
unknown parameters. By using Lyapunov stability theory the adaptive synchronization law
with a single-state variable feedback is derived, such that the trajectory of the two systems are
globally stabilized to an equilibrium point of the uncontrolled system (globally stable means
that the method of the solution is restricted in area of phase space i.e. globally in a subset
of a phase space with bounded zero volume). We use the Lyapunov direct method to study
the asymptotic stability of the solutions of error system. Numerical simulations are given to
explain the effectiveness of the proposed control scheme.
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1. Introduction

We define in general terms the concept of synchro-
nization of the dynamical variables in two dynami-
cal systems which can exhibit either chaotic or non-
chaotic behavior.

Synchronization can occur within a subset of
dynamical variables instead of all of them. In or-
der to make our technique have some partical use
we approach synchronization stresses with the use
of controlling forces that are given in terms of ob-
servable. We apply synchronization to two different
nonlinear systems separately, first the Rössler sys-
tem and second, the Chua circuit which can exhibit
chaos.

In all cases, the controlling forces that we use
are expressed in terms of the difference of the in-
stantanceous value of a dynamical variable in one
system, called the driving system, and the corre-
sponding variable in the other system, called the

controlled system. The parameters of both sys-
tems are assumed to be identical, but unknown.
We present some methods that are successful if a
Lyapunov function can be shown to exist. If the
Lyapunov function exists globally, then the syn-
chronization occurs globally. The specific Lyapunov
functions presented for the specific systems, the
Rössler and the Chua circuit systems, are decreas-
ing functions of time only in restricted regions of
phase space, i.e. “globally” in a subset of phase
space where the volume is zero.

Chaos has been thoroughly studied over the
past two decades [Chen & Dong, 1993; Chen, 1997].
A chaotic system is a nonlinear deterministic system
that displays complex, noise-like and unpredictable
behavior. The sensitive dependence upon initial
conditions and on the variations of the system’s
parameter are prominent characteristics of chaotic
behavior. Researchers have investigated the “chaos
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control” and “chaos synchronization” problems in
many physical chaotic systems [Pecora & Carroll,
1990; Carroll & Pecora, 1991; Chen & Dong, 1993;
Kapitaniak, 1995; Xie & Chen, 1996; Chen, 1997].

The idea of synchronizing two identical systems
that start from different initial conditions was in-
troduced by Pecora and Carroll [1990]. It investi-
gates the linking of the trajectory of one system to
the other system with the same values parameter
(solution), such that they remain together in each
step through the transmission of a signal.

Synchronization in chaotic dynamical systems
has received considerable attention in nonlinear
sciences in the last decade [Pecora & Carroll,
1991; Pyragas, 1992; Cuomo & Oppenheim, 1993;
Kocarev & Parlitz, 1995; Femat & Solis-Perales,
1999].

The concept of chaos synchronization involves
making two chaotic systems oscillate in a synchro-
nized manner. It holds promise for creating secure
communication systems [Wu et al., 1996; Zeng &
Singh, 1996].

One of the important issues in the study of
synchronization of dynamical systems of unknown
system parameters is the adaptive synchronization
of chaotic dynamical systems. Some papers [Liao
& Lin, 1999; Hegazi et al., 2001] have derived an
adaptive scheme for synchronization in the control
of two chaotic systems with mismatched parame-
ters. An adaptative mechanism can compensate for
the effects of those parametric uncertainties. The
control scheme was then successfully applied to the
Lorenz system [Liao & Lin, 1999] and Nuclear Spin
Generator system [Hegazi et al., 2001]. In this work
we apply the control scheme to Rössler and Chua
circuit systems.

Consider the following system

ẋ = f(x) , x ∈ Rn , f ∈ c1[R, R]

Instead of state variables x, we consider m
scalar functions S1(x), . . . , Sm(x) versus state vari-
ables x ∈ Rn. These m functions are observable
and are also called synchronizable variables here.
Since what should be of concern in a system are the
variables that are observable, the synchronization is
thus naturally defined as follows [Yang, 1999, 2000].

Definition 1. Two systems

ẋ = f(x) , x ∈ Rn , f ∈ c1[R, R] (1)

ẏ = G(y) , y ∈ Rn , G ∈ c1[R, R] (2)

are said to be synchronizable with respect to observ-
able variables S1(x), S2(x), . . . , Sm(x) by a cou-
pling (c1(x, y), c2(x, y)), if

lim
t→∞

‖Si(x(t)) − Si(y(t))‖ = 0 , i = 1, 2, . . . , m .

Here the coupling takes the form of

ẋ = f(x, c1(x, y))

ẏ = G(y, c2(x, y))

More generally, the synchronization can be de-
fined between two (or more) subsystems of a large
system

Definition 2. Consider the following system

ẋ = f(x, y) (3)

ẏ = G(x, y) , (x, y) ∈ Rn ×Rn (4)

The state variables x and y are said to be syn-
chronizable with respect to observable variables
S1, S2, . . . , Sm if the relation

lim
t→∞

‖Si(x(t)) − Si(y(t))‖ = 0 , i = 1, 2, . . . , m

holds.

In view of the above definitions, an important
practical question arises: what variable is observ-
able and meaningful versus state variables? This
apparently depends on what system is used.

Taking Si(x) to be xi, and Si(y) to be yi, i =
1, 2, . . . , n, we then return to the popular concept
of synchronization in the current literature. Clearly,
the phase locking and the frequency locking are spe-
cial cases of the above definitions.

The concept of synchronization, in its broadest
meaning, should be defined as follows.

Definition 3. Consider system

ẋ = f(x, y) (5)

ẏ = G(x, y) , (x, y) ∈ Rn ×Rn (6)

Let Q1(x), Q2(x), . . . , Qh(x) and S1(y),
S2(y), . . . , Sh(y) be observable variables of sys-
tems (5) and (6), respectively, which possess the
same physical meaning. The systems (5) and
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(6) are said to be synchronizable with respect to
(Q1, Q2, . . . , Qh) and (S1, S2, . . . , Sh), if

lim
t→∞

‖Qi(x(t))− Si(y(t))‖ = 0 , i = 1, 2, . . . , h .

It is easy to see that Definition 3 includes the
known notion of generalized synchronization as its
special case [Kocarev & Pralitz, 1996; Pralitz et al.,
1997].

Proposition 1. Let S1, S2, . . . , Sm be observ-
able variables for systems (3) and (4). Let
V (x1, x2, . . . , xm) be a positive definite Lyapunov
function with V (0) = 0. Suppose that

d

dt
V (S1(x(t))−S1(y(t)), S2(x(t))−S2(y(t)), . . . ,

Sm(x(t))−Sm(y(t)))≤0

where the equality holds only if Si(x(t)) =
Si(y(t)), i = 1, 2, . . . , m. Then systems (3) and (4)
are synchronizable with respect to S1, S2, . . . , Sm.

Proposition 2. Let (Q1, Q2, . . . , Qh) and
(S1, S2, . . . , Sh) be two groups of observable vari-
ables for systems (5) and (6), respectively. Suppose
that there exists a positive definite Lyapunov func-
tion V (x1, x2, . . . , xh) such that

d

dt
V (Q1(x(t))−S1(y(t)), Q2(x(t))−S2(y(t)), . . . ,

Qh(x(t))−Sh(y(t)))≤0

and the equality holds only if (Qi(x(t))−Si(y(t))) =
0, i = 1, 2, . . . , h. Then systems (5) and (6) are
synchronizable with respect to (Q1, Q2, . . . , Qh) and
(S1, S2, . . . , Sh).

Proposition 3. Let (Q1, Q2, . . . , Qh) and (S1,
S2, . . . , Sk) be two groups of observable variables for
systems (5) and (6), respectively. Suppose that there
is a transformation F : Rh → Rk and positive defi-
nite Lyapunov function V (x1, x2, . . . , xk) such that

d

dt
V (T1(Q(x(t)) − S1(y(t)), . . . ,

Th(Q(x(t)) − Sk(y(t))) ≤ 0

and the equality holds only if Ti(Q(x(t)) −
Si(y(t))) = 0, i = 1, 2, . . . , k. Then systems (5)
and (6) are generalized synchronizable with respect
to (Q1, Q2, . . . , Qh) and (S1, S2, . . . , Sk).

Proposition 4. Suppose that the orbit pair
x(t, x0, y0) and y(x0, y0) in systems (1) and (2) are

synchronizable with respect to observable variables
S1, S2, . . . , Sm, then the omega limit set Ω(x0, y0)
lies in the set MS = {(x, y) : Si(x) = Si(y),
(x, y) ∈ Rn × Rn, i = 1, . . . , m}. And on this set
Ω(x0, y0), the following holds

F (x, y) · gradSi(x)−G(x, y) · gradSi(y) = 0

where (x, y) ∈ Ω(x0, y0).

Proposition 5. Suppose that the orbit pair
x(t, x0, y0) and y(x0, y0) in systems (5) and
(6) are synchronizable with respect to ob-
servable variables Q1(x), Q2(x), . . . , Qh(x) and
S1(y), S2(y), . . . , Sh(y). Then the omega limit set
Ω(x0, y0) lies in the set MQS = {(x, y) : Qi(x) =
Si(y), (x, y) ∈ Rm × Rn, i = 1, . . . , h}. And on
this set Ω(x0, y0), the following holds

F (x, y) · gradQi(x)−G(x, y) · gradSi(y) = 0

where (x, y) ∈ Ω(x0, y0).

The above criteria are of more theoretical inter-
est. The aim of this paper is to have a practical sig-
nificance, so we control and synchronize the chaotic
dynamical system Rössler and Chua circuit by us-
ing adaptive synchronization. The Lyapunov direct
method is used to prove the asymptotic behavior of
the solutions for the controlled system. We apply
this technique for Rössler and Chua circuit systems
of differential equations and drag the trajectories of
the error system to the zero solution.

2. Adaptive Synchronization of
Rössler System

Let us consider the Rössler dynamical system [Xie
& Chen, 1996] which is given by the autonomous
differential equations:

ẋ = −y − z
ẏ = x+ ay (7)

ż = b+ (x− c)z

where a, b and c are positive constants.
The system of differential equations (7) has two

equilibrium points: (x1, y1, z1) = (aσ−, −σ−, σ−)

and (x2, y2, z2) = (aσ+, −σ+, σ+) where σ+ = c+√
c2 − 4ab/2a and σ− = c−

√
c2 − 4ab/2a.
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For c2 > 4ab, we get σ+ > 0 and σ− > 0, hence
xi > 0, yi < 0 and zi > 0, i = 1, 2. The equilib-
rium point (x1, y1, z1) is unstable solution for the
system (7).

In order to observe the synchronization behav-
ior in Rössler systems [Wu et al., 1996; Liao & Lin,
1999], we have two Rössler systems where the drive
system with three state variables denoted by the
subscript 1 drives the response system having iden-
tical equations denoted by the subscript 2. How-
ever, the initial condition of the drive system is dif-
ferent from that of the response system; therefore
two Rössler systems are described, respectively, by
the following equations:

ẋ1 = −y1 − z1

ẏ1 = x1 + ay1 (8)

ż1 = b+ (x1 − c)z1

and

ẋ2 = −y2 − z2 + u1

ẏ2 = x2 + ay2 + u2 (9)

ż2 = b+ (x2 − c)z2 + u3

We have introduced three control inputs, u1,
u2 and u3 in Eq. (9). u1, u2 and u3 are to be de-
termined for the purpose of synchronizing the two
identical Rössler systems with the same but un-
known parameters a, b and c in spite of the dif-
ferences in initial conditions.

Remark 1. The Rössler system has a bounded, zero
volume, globally attracting set [Xie & Chen, 1996].
Therefore, the state trajectories x(t), y(t) and z(t)
are globally bounded for all t ≥ 0 and continuously
differentiable with respect to time. Consequently,
there exist three positive constants s1, s2 and s3

such that |x(t)| ≤ s1 < ∞, |y(t)| ≤ s2 < ∞ and
|z(t)| ≤ s3 <∞ hold for all t ≥ 0.

Let us define the state errors between the re-
sponse system that is to be controlled and the con-
trolling drive system as

ex = x2 − x1 , ey = y2 − y1 and ez = z2 − z1

(10)

Subtracting Eq. (8) from Eq. (9) and using the

notation (10) yields

ėx = −ey − ez + u1

ėy = ex + aey + u2 (11)

ėz = z1ex + (x2 − c)ez + u3

Hence the synchronization problem is now re-
placed by an equivalent problem of stabilizing the
system (11), by using a suitable choice of the control
laws u1, u2 and u3. Let us now discuss the following
three cases of control inputs u1, u2 and u3 :

2.1. First case

The state variable x1 of the drive system is coupled
to the first equation of the response system, and an
external control with the state x2 as the feedback
variable is introduced into the first equation in (11).
Therefore, the feedback control law is described as

u1 = −k̃1ex , u2 = 0 and u3 = 0 (12)

where k̃1 denotes an estimated feedback gain which
is updated according to the following adaptative
algorithm

˙̃
k1 = γe2

x , k̃1(0) = 0 (13)

Then the resulting error dynamical system can
be expressed as

ėx = −k̃1ex − ey − ez
ėy = ex + aey

ėz = z1ex + (x2 − c)ez (14)

˙̃
k1 = γe2

x , k̃1(0) = 0

We define the Lyapunov function V by

V =
1

2

(
e2
x + e2

y + e2
z +

1

γ
(k̃1 − k∗∗1 )2

)
(15)

In order to control Lyapunov function of the
system we define another positive constant k∗∗1
which makes V̇ a negative definite (V̇ < 0). Taking
the time derivative of Eq. (15), we get

V̇ = −{k∗∗1 e2
x − ae2

y + (c− x2)e2
z + (1− z1)exez}

= −{k∗∗1 e2
x − ae2

y + (c− s1)e2
z + (1− s3)exez}

≤ 0 (16)

From Remark 1 the response variables are
bounded and the derivative V̇ ≤ 0. We deduce the
following condition:
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Since

(i) c− s1 > 0
(ii) 1− s3 > 0
(iii) k∗∗1 > 0 and we choose
(iv) k∗∗1 e

2
x + (c − s1)e2

z + (1 − s3)exez > ae2
y then

k∗∗1 e
2
x − ae2

y + (c− s1)e2
z + (1− s3)exez > 0

Since V is a positive and decreasing function
and V̇ is a negative semidefinite, it follows that the
equilibrium point (ex = 0, ey = 0, ez = 0, k̇1 = k∗∗1 )
of the system (14) is uniformly stable. This im-
plies that the two Rössler systems have been glob-
ally asymptotically synchronized under the control
law (14) associated with (13).

2.2. Second case

The state variable y1 of the drive system is coupled
to the first equation of the response system and an
external control with the state y2 as the feedback
variable is also introduced into the second equa-
tion in (11). Therefore, the feedback control law is
described as

u1 = 0 , u2 = −k̇2ey and u3 = 0 (17)

where k̇2 is an estimated feedback gain updated ac-
cording to the following adaptative algorithm

˙̃
k2 = γe2

y , k̃2(0) = 0 (18)

Then the resulting error dynamical system can
be expressed as

ėx = −ey − ez
ėy = ex + (a− k̃2)ey

ėz = z1ex + (x2 − c)ez
˙̃
k2 = γe2

y , k̃2(0) = 0

(19)

Let us consider Lyapunov function as follows

V =
1

2

(
e2
x + e2

y + e2
z +

1

γ
(k̃2 − k∗∗2 )2

)
(20)

where k∗∗2 is a positive constant which will be de-
fined later. Taking the time derivative of Eq. (20),
we get,

V̇ = −{(k∗∗2 − a)e2
y + (c− x2)e2

z + (1− z1)exez}

= −{(k∗∗2 − a)e2
y + (c− s1)e2

z + (1− s3)exez}
≤ 0 (21)

Since c − s1 > 0 and 1 − s3 > 0 we choose
k∗∗1 > a, that is V̇ ≤ 0. Similarly, since V is a pos-
itive and decreasing function and V̇ is a negative
semidefinite, we can conclude that the two Rössler
systems have been asymptotically synchronized un-
der the control law (19) associated with (18).

2.3. Third case

The state variable z1 of the drive system is coupled
to the first equation of the response system and an
external control with the state z2 as the feedback
variable is also introduced into the second equa-
tion in (11). Therefore, the feedback control law is
described as

u1 = u2 = 0 and u3 = k̃3ez (22)

where k̃3 is an estimated feedback gain updated ac-
cording to the following adaptative algorithm

˙̃
k3 = γe2

z , k̃3(0) = 0 (23)

Then the resulting error dynamical system can
be expressed as

ėx = −ey − ez
ėy = ex + aey

ėz = z1ex + (x2 − c− k̃3)ez
˙̃
k3 = γe2

z , k̃3(0) = 0

(24)

Consider Lyapunov function candidate as

V =
1

2

(
e2
x + e2

y + e2
z +

1

γ
(k̃3 − k∗∗3 )2

)
(25)

where k∗∗2 is a positive constant which will be de-
fined later. Taking the time derivative of Eq. (25),
we get,

V̇ = −{−ae2
y + (k∗∗3 + c− x2)e2

z + (1− z1)exez}

= −{−ae2
y + (k∗∗3 + c− s1)e2

z + (1− s3)exez}
≤ 0 (26)

Since 1 − s3 > 0, and we chose k∗∗1 > c − s1,
V̇ ≤ 0. Similarly, since V is a positive and decreas-
ing function and V̇ is a negative semidefinite, we can
conclude that the two Rössler systems have been
globally asymptotically synchronized under the con-
trol law (24) associated with (23).
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2.4. Numerical results

Fourth-order Runge–Kutta method is used to solve
the system of differential equations. In addition, a
time step size 0.001 is employed. The two parame-
ters are chosen as a = 0.2 and c = 5.4 in all simula-
tions so that the Rössler system exhibits a chaotic

behavior if no control is applied. The initial states
of the drive system are x1(0) = 0.5, y1(0) = 0.5
and z1(0) = 0.5 and of the response system are
x2(0) = 1, y2(0) = 1 and z2(0) = 0.8. Then ex(0) =
0.5, ey(0) = 0.5 and ez(0) = 0.3. In this case,
we assume that the drive system and the response
system are two identical Rössler systems with

(a) (b)

(c)

Fig. 1. Shows that the trajectory (a) ex of the error system tends to zero when the parameter values are a = 0.2 and c = 5.4

where the controls u1 = k̃1ex with
˙̃
k1 = 1.5e2

x are activated at t = 10. (b) ey of the error system converges to zero when

a = 0.2 and c = 5.4 where the controls u1 = k̃1ex with
˙̃
k1 = 1.5e2

x are activated at t = 10. (c) ez of the error system converges

to zero when a = 0.2 and c = 5.4 where the controls u1 = k̃1ex with ˙̃
k1 = 1.5e2

x are activated at t = 10.
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different initial conditions. Figure 1 shows the evo-
lutions of state synchronization errors and the his-
tory of the estimated feedback gain using the feed-
back control law, Eq. (13), associated with the
adaptation algorithm (14). Figure 2 shows the state
responses of adaptive synchronization when the

adaptive control law is u1 = k̃1ex with ˙̃
k1 = 1.5e2

x.
Figure 3 shows the evolutions of state synchroniza-
tion errors and the history of the estimated feedback
gain using the feedback control law, Eq. (18), asso-
ciated with the adaptation algorithm (19). Figure 4
shows the state responses of adaptive synchroniza-
tion when the adaptive control law is u2 = k̃2ey

with ˙̃
k2 = e2

y. Figure 5 shows the evolutions of state
synchronization errors and the history of the es-
timated feedback gain using the feedback control
law, Eq. (23), associated with the adaptation al-
gorithm (24). Figure 6 shows the state responses
of adaptive synchronization when the adaptive con-

trol law is u3 = k̃3ez with
˙̃
k3 = 0.01e2

z . These nu-
merical results demonstrate that the Rössler sys-
tems have been asymptotically synchronized using
the proposed adaptive schemes.

3. Adaptive Synchronization of
Chua’s Circuit System

Chua’s circuit consists of one inductor, two capac-
itors, one linear resistor, and one piecewise-linear
nonlinear resistor. The mathematical model equa-
tions [Matsumoto et al., 1985; Hwang et al., 1996;
Hwang et al., 1997] for this circuit are

ẋ = α(y − x− f(x))

ẏ = x− y + z (27)

ż = −βy

f(x) =


bx+ a− b x > 1

ax |x| ≤ 1

bx− a+ b x < −1

In the model equations, variables x and y rep-
resent the voltages across the two capacitors, and
variable z in the current through the inductor. Typ-
ical values of the system parameters α = 9, β =
100/7, a = −(8/7) and b = −(5/7) create chaotic
behavior in the dynamical system (27). Through
this choice, the corresponding equilibrium points
of system (27) are clearly (1.5, 0, −1.5), (0, 0, 0)
and (−1.5, 0, 1.5), which are located in the regions
x > 1, |x| ≤ 1 and x < −1, respectively.

Fig. 2. Shows the state responses of adaptive synchroniza-
tion when the adaptive control law is u1 = k̃1ex with
˙̃
k1 = 1.5e2

x.

We have two Chua’s circuit systems where the
drive system with three state variables denoted by
the subscript 1 drives the response system hav-
ing identical equations denoted by the subscript
2. However, the initial condition on the drive sys-
tem is different from that of the response system,
therefore two Chua’s circuit systems are described,
respectively, by the following equations:

ẋ1 = α(y1 − x1 − f(x1))

ẏ1 = x1 − y1 + z1 (28)

ż1 = −βy1

where

f(x1) =


bx1 + a− b x1 > 1

ax1 |x1| ≤ 1

bx1 − a+ b x1 < 1

and

ẋ2 = α(y2 − x2 − f(x2)) + u1

ẏ2 = x2 − y2 + z2 + u2 (29)

ż2 = −βy2 + u3

f(x2) =


bx2 + a− b x2 > 1

ax2 |x2| ≤ 1

bx2 − a+ b x2 < 1
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(a) (b)

(c)

Fig. 3. Shows that the trajectory (a) ex of the error system converges to zero when a = 0.2 and c = 5.4 where the controls

u2 = k̃2ey with ˙̃
k2 = e2

y are activated at t = 15. (b) ey of the error system converges to zero when a = 0.2 and c = 5.4 where

the controls u2 = k̃2ey with
˙̃
k2 = e2

y are activated at t = 10. (c) ez of the error system converges to zero when a = 0.2 and

c = 5.4 where the controls u2 = k̃2ey with ˙̃
k2 = e2

y are activated at t = 18.

We have introduced three control inputs, u1,
u2 and u3 in Eq. (29). u1, u2 and u3 are to be de-
termined for the purpose of synchronizing the two
identical Chua’s circuit systems with the same but
unknown parameters a, b and c in spite of the dif-
ferences in initial conditions.

Remark 2. Chua’s circuit system has a bounded,
zero volume, globally attracting set [Matsumoto

et al., 1995; Hwang et al., 1997]. Therefore, the
state trajectories x(t), y(t) and z(t) are globally
bounded for all t ≥ 0 and continuously differen-
tiable with respect to time. Consequently, there
exist three positive constants s1, s2 and s3 such
that |x(t)| ≤ s1 < ∞, |y(t)| ≤ s2 < ∞ and
|z(t)| ≤ s3 <∞ hold for all t ≥ 0.

Let us define the state errors between the
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Fig. 4. Shows the state responses of adaptive synchroniza-

tion when the adaptive control law is u2 = k̃2ey with ˙̃
k2 = e2

y.

response system that is to be controlled and the
controlling drive system as

ex = x2 − x1 , ey = y2 − y1 and ez = z2 − z1

(30)

Subtracting Eq. (28) from Eq. (29) and using
the notation (30) yields

ėx = α(ey − ex − g(ex)) + u1

ėy = ex − ey + ez + u2 (31)

ėz = −βey + u3

g(ex) =

{
aex |ex| ≤ 2

bex otherwise

hence the synchronization problem is now replaced
by the equivalent problem of stabilizing the system

(32) using a suitable choice of the control laws u1,

u2 and u3. Let us now discuss the following three
cases of control inputs u1, u2 and u3 :

3.1. First case

The state variable x1 of the drive system is coupled
to the first equation of the response system and an
external control with the state x2 as the feedback
variable is introduced into the first equation in (32).
Therefore, the feedback control law is described as

u1 = −k̃1ex , u2 = 0 and u3 = 0 (32)

where k̃1 denotes an estimated feedback gain which
is updated according to the following adaptative
algorithm

˙̃
k1 = γe2

x , k̃1(0) = 0 (33)

Then the resulting error dynamical system can
be expressed as

ėx = α(ey − (1 + k̃1)ex − g(ex))

ėy = ex − ey + ez

ėz = −βey
˙̃
k1 = γe2

x , k̃1(0) = 0

(34)

where

g(ex) =

{
aex |ex| ≤ 2

bex otherwise

Let us consider the Lyapunov function V which
is defined by

V =
1

2

(
1

α
e2
x + e2

y + e2
z +

1

γ
(k̃1 − k∗∗1 )2

)
(35)

where k∗∗1 is a positive constant which will be de-
fined later. Taking the time derivative of Eq. (35),
then we get

V̇ = −{(1 + l + k∗∗1 )e2
x + e2

y − 2exey + (β − 1)eyez}

= −[|ex| |ey| |ez |]


(1 + l + k∗∗1 ) 0 0

−2 1 2(β − 1)

0 −(β − 1) 0



|ex|
|ey|
|ez|


≡ −[|ex| |ey| |ez |]Ψ(k∗∗1 )[|ex| |ey| |ez|]T (36)
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(a) (b)

(c)

Fig. 5. Shows that the trajectory (a) ex of the error system converges to zero when a = 0.2 and c = 5.4 where the controls

u3 = k̃3ez with
˙̃
k3 = 0.01e2

z are activated at t = 25. (b) ey of the error system converges to zero when a = 0.2 and c = 5.4

where the controls u3 = k̃3ez with
˙̃
k3 = 0.01e2

z are activated at t = 25. (c) ez of the error system converges to zero when

a = 0.2 and c = 5.4 where the controls u3 = k̃3ez with ˙̃
k3 = 0.01e2

z are activated after t > 35.

where

l =

{
a |ex| ≤ 2

b otherwise

If k∗∗1 is appropriately chosen such that the 3×3
matrix Ψ(k∗∗1 ) in Eq. (36) is positive definite, then
V̇ ≤ 0 holds. Since V is a positive and decreas-

ing function, V̇ is a negative semidefinite. It fol-
lows that the equilibrium point (ex = 0, ey = 0,

ez = 0, k̃1 = k∗∗1 ) of the system (34) is uniformly
stable, i.e. ex(t), ey(t), ez(t) ∈ L∞ and k̃1(t) ∈ L∞.
From Eq. (36) we can easily show that the squares
of ex(t), ey(t) and ez(t) are integrable with respect
to time t, i.e. ex(t), ey(t), ez(t) ∈ L2. Next by
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Fig. 6. Shows the state responses of adaptive synchroniza-
tion when the adaptive control law is u3 = k̃3ez with
˙̃
k3 = 0.01e2

z .

Barbalat’s Lemma Eq. (34) implies that ėx(t), ėy(t),
ėz(t) ∈ L∞, which in turn implies ex(t), ey(t),
ez(t) → 0 as t → ∞. Thus, in the closed-loop sys-
tem x2(t) → x1(t), y2(t) → y1(t), z2(t) → z1(t)
and t → ∞. This implies that the two Chua’s
circuit systems have been globally asymptotically
synchronized under the control law (34) associated
with (33).

3.2. Second case

The state variable y1 of the drive system is coupled

to the first equation of the response system and an
external control with the state y2 as the feedback
variable is also introduced into the second equa-
tion in (32). Therefore, the feedback control law is
described as

u1 = 0 , u2 = −k̃2ey and u3 = 0 (37)

where k̃2 is an estimated feedback gain updated ac-
cording to the following algorithm

˙̃
k2 = γe2

y , k̃2(0) = 0 (38)

Then the resulting error dynamical system can
be expressed as

ėx = α(ey − ex − g(ex))

ėy = ex − (1 + k̃2)ey + ez

ėz = −βey
˙̃
k2 = γe2

y , k̃2(0) = 0

(39)

where

g(ex) =

{
aex |ex| ≤ 2

bex otherwise

Let us consider Lyapunov function by

V =
1

2

(
1

α
e2
x + e2

y + e2
z +

1

γ
(k̃2 − k∗∗2 )2

)
(40)

where k∗∗2 is a positive constant which will be de-
fined later. Taking the time derivative of Eq. (40),
then we get,

41V̇ = −{(1 + l)e2
x + (1 + k∗∗2 )e2

y − 2exey + (β − 1)eyez}

= −[|ex| |ey| |ez|]

 (1 + l) −1 0

−1 1 + k∗∗2 −(β − 1)
0 2(β − 1) 0


 |ex||ey|
|ez |


≡ −[|ex| |ey| |ez|]Ψ(k∗∗1 )[|ex| |ey| |ez|]T (41)

where

l =

{
a |ex| ≤ 2

b otherwise

If k∗∗2 is appropriately chosen such that the 3×3
matrix Φ(k∗∗2 ) in Eq. (41) is positive definite, then
V̇ ≤ 0 holds. Similarly, since V is a positive and de-
creasing function and V̇ is a negative semidefinite,
we can conclude that the two Chua’s circuit systems

have been globally asymptotically synchronized un-
der the control law (39) associated with (38).

3.3. Third case

The state variable z1 of the drive system is coupled
to the first equation of the response system and an
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external control with the state z2 as the feedback
variable is also introduced into the second equa-
tion in (32). Therefore, the feedback control law is
described as

u1 = u2 = 0 and u3 = k̃3ez (42)

where k̃3 is an estimated feedback gain updated ac-
cording to the following adaptative algorithm

˙̃
k3 = γe2

z , k̃3(0) = 0 (43)

Then the resulting error dynamical system can
be expressed as

ėx = α(ey − ex − g(ex))

ėy = ex − ey + ez

ėz = −βey − k̃3ez

˙̃
k3 = γe2

z , k̃3(0) = 0

(44)

where

g(ex) =

{
aex |ex| ≤ 2

bex otherwise

Consider Lyapunov function candidate as

V =
1

2

(
1

α
e2
x + e2

y + e2
z +

1

γ
(k̃3 − k∗∗3 )2

)
(45)

where k∗∗2 is a positive constant which will be de-
fined later. Taking the time derivative of Eq. (45),
we get,

V̇ = −{(1+l)e2
x+e2

y+k∗∗3 e
2
z−2exey+(β−1)eyez}

= −[|ex| |ey| |ez|]


(1+l) 0 0

−2 1 β−1

0 0 k∗∗3



|ex|
|ey|
|ez|


≡ −[|ex| |ey| |ez|]Ω(k∗∗3 )[|ex| |ey| |ez|]T

(46)

where

l =

{
a |ex| ≤ 2

b otherwise

(a)

Fig. 7. Shows that the trajectory (a) ex of the error system tends to zero when the parameter values are α = 9, β = 100/7,

a = −(8/7) and b = −(5/7) where the controls u1 = k̃1ex with
˙̃
k1 = 5e2

x are activated after t > 40. (b) ey of the error system

converges to zero when α = 9, β = 100/7, a = −(8/7) and b = −(5/7) where the controls u1 = k̃1ex with ˙̃
k1 = 5e2

x are
activated after t > 40. (c) ez of the error system converges to zero when α = 9, β = 100/7, a = −(8/7) and b = −(5/7) where

the controls u1 = k̃1ex with
˙̃
k1 = 5e2

x are activated after t > 40.
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(b)

(c)

Fig. 7. (Continued)
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If k∗∗2 is appropriately chosen such that the 3×3
matrix Ω(k∗∗3 ) in Eq. (46) is positive definite, then
V̇ ≤ 0 holds. Similarly, since V is a positive and de-
creasing function and V̇ is a negative semidefinite,
we can conclude that the two Chua’s circuit systems
have been globally asymptotically synchronized un-
der the control law (45) associated with (44).

3.4. Numerical results

Fourth-order Runge–Kutta method is used to solve
the system of differential equations. In addition, a
time step size 0.001 is employed. The three param-
eters are chosen as α = 9, β = 100/7, a = −(8/7)
and b = −(5/7) in all simulations so that the Chua’s
circuit system exhibits chaotic behavior if no con-
trol is applied. The initial states x1(0) = 0.5,
y1(0) = 0.5 and z1(0) = −0.5 of the drive system
and x2(0) = 1, y2(0) = 1, z1(0) = −0.2 of the
response system. Then ex(0) = 0.5, ey(0) = 0.5
and ez(0) = 0.3. In this case, we assume that
the drive system and the response system are two
identical Chua’s circuit systems with different ini-

tial conditions. Figure 7 shows the evolutions of
state synchronization errors and the history of the
estimated feedback gain using the feedback control
law, Eq. (33), associated with the adaptation al-
gorithm (34). Figure 8 shows the state responses
of adaptive synchronization when the adaptive con-

trol law is u1 = k̃1ex with
˙̃
k1 = 5e2

x. Figure 9
shows the evolutions of state synchronization errors
and the history of the estimated feedback gain using
the feedback control law, Eq. (38), associated with
the adaptation algorithm (39). Figure 10 shows the
state responses of adaptive synchronization when

the adaptive control law is u2 = k̃2ey with
˙̃
k2 = 4e2

y .
Figure 11 shows the evolutions of state synchroniza-
tion errors and the history of the estimated feedback
gain using the feedback control law, Eq. (44), associ-
ated with the adaptation algorithm (45). Figure 12
shows the state responses of adaptive synchroniza-
tion when the adaptive control law is u3 = k̃3ez with
˙̃
k3 = 3e2

z. These numerical results demonstrate that
the Chua’s circuit systems have been asymptotically
synchronized using the proposed adaptive schemes.

Fig. 8. Shows the state responses of adaptive synchronization when the adaptive control law is u1 = k̃1ex with ˙̃
k1 = 5e2

x.
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(a)

(b)

Fig. 9. Shows that the trajectory (a) ex of the error system converges to zero when α = 9, β = 100/7, a = −(8/7) and

b = −(5/7) where the controls u2 = k̃2ey with
˙̃
k2 = 4e2

y are activated at t = 15. (b) ey of the error system converges to zero

when α = 9, β = 100/7, a = −(8/7) and b = −(5/7) where the controls u2 = k̃2ey with ˙̃
k2 = 4e2

y are activated at t = 15.
(c) ez of the error system converges to zero when α = 9, β = 100/7, a = −(8/7) and b = −(5/7) where the controls u2 = k̃2ey

with ˙̃
k2 = 4e2

y are activated at t = 15.
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(c)

Fig. 9. (Continued)

Fig. 10. Shows the state responses of adaptive synchronization when the adaptive control law is u2 = k̃2ey with
˙̃
k2 = 4e2

y.



Adaptive Synchronization for Rössler and Chua’s Circuit Systems 1595

(a)

(b)

Fig. 11. Shows that the trajectory (a) ex of the error system converges to zero when α = 9, β = 100/7, a = −(8/7) and

b = −(5/7) where the controls u3 = k̃3ez with
˙̃
k3 = 4e2

z are activated at t = 15. (b) ey of the error system converges to zero

when α = 9, β = 100/7, a = −(8/7) and b = −(5/7) where the controls u3 = k̃3ez with ˙̃
k3 = 3e2

z are activated at t = 6.
(c) ez of the error system converges to zero when α = 9, β = 100/7, a = −(8/7) and b = −(5/7) where the controls u3 = k̃3ez

with
˙̃
k3 = 3e2

z are activated at t = 4.
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(c)

Fig. 11. (Continued)

Fig. 12. Shows the state responses of adaptive synchronization when the adaptive control law is u3 = k̃3ez with ˙̃
k3 = 3e2

z.
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4. Conclusions

In this paper we introduce adaptive synchronization
problems for the Rössler and Chua’s circuit systems,
which are taken as examples of nonlinear dynami-
cal systems of great importance in physics. The
mathematical controllability conditions are derived
from the Lyapunov direct method. As an example
of a nonlinear dynamical system we have taken the
Rössler and Chua’s circuit systems which have great
importance in physics. The first system (Rössler)
after adding the adaptive control law u1 and u2

the trajectory (ex, ey and ez) tended to zero after
t > 10, and after adding u3 the trajectory tended
to zero after t > 25. The second system (Chua’s
circuit) after adding the adaptive control law u1

the trajectory (ex, ey and ez) tended to zero after
t > 40. After adding u2 the trajectory tended to
zero after t > 15 and after adding u3 the trajectory
tended to zero after t > 4.
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