
 Open access Journal Article DOI:10.1109/TII.2013.2255062

Adaptive Synchronization in IEEE802.15.4e Networks — Source link

David Stanislowski, Xavier Vilajosana, Qin Wang, Thomas Watteyne ...+1 more authors

Institutions: University of California, Berkeley

Published on: 01 Feb 2014 - IEEE Transactions on Industrial Informatics (IEEE)

Topics: Clock drift, Wireless mesh network, Order One Network Protocol, Wireless sensor network and Synchronization

Related papers:

 OpenWSN: a standards‐based low‐power wireless development environment

 Tsmp: time synchronized mesh protocol

 Standardized Protocol Stack for the Internet of (Important) Things

 Adaptive synchronization in multi-hop TSCH networks

 Orchestra: Robust Mesh Networks Through Autonomously Scheduled TSCH

Share this paper:

View more about this paper here: https://typeset.io/papers/adaptive-synchronization-in-ieee802-15-4e-networks-
3wx4nmeefo

https://typeset.io/
https://www.doi.org/10.1109/TII.2013.2255062
https://typeset.io/papers/adaptive-synchronization-in-ieee802-15-4e-networks-3wx4nmeefo
https://typeset.io/authors/david-stanislowski-38457ey037
https://typeset.io/authors/xavier-vilajosana-4499qsymuv
https://typeset.io/authors/qin-wang-4dqns2qsb2
https://typeset.io/authors/thomas-watteyne-5e0krab7u7
https://typeset.io/institutions/university-of-california-berkeley-24veh4gb
https://typeset.io/journals/ieee-transactions-on-industrial-informatics-1gm33xe8
https://typeset.io/topics/clock-drift-1ny75t9m
https://typeset.io/topics/wireless-mesh-network-13wnve1v
https://typeset.io/topics/order-one-network-protocol-3vddgifg
https://typeset.io/topics/wireless-sensor-network-2eic5t0n
https://typeset.io/topics/synchronization-2wu61gqg
https://typeset.io/papers/openwsn-a-standards-based-low-power-wireless-development-3imgplsmrx
https://typeset.io/papers/tsmp-time-synchronized-mesh-protocol-2ybzienqv3
https://typeset.io/papers/standardized-protocol-stack-for-the-internet-of-important-56gpwn0k0i
https://typeset.io/papers/adaptive-synchronization-in-multi-hop-tsch-networks-wh4kpz0xpf
https://typeset.io/papers/orchestra-robust-mesh-networks-through-autonomously-4x7ijagnls
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/adaptive-synchronization-in-ieee802-15-4e-networks-3wx4nmeefo
https://twitter.com/intent/tweet?text=Adaptive%20Synchronization%20in%20IEEE802.15.4e%20Networks&url=https://typeset.io/papers/adaptive-synchronization-in-ieee802-15-4e-networks-3wx4nmeefo
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/adaptive-synchronization-in-ieee802-15-4e-networks-3wx4nmeefo
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/adaptive-synchronization-in-ieee802-15-4e-networks-3wx4nmeefo
https://typeset.io/papers/adaptive-synchronization-in-ieee802-15-4e-networks-3wx4nmeefo

Citation for published version

© IEEE Transactions on Industrial Informatics (2014). The definitive, peer
reviewed and edited version of this article is published in:

Stanislowski, D., Vilajosana, X., Wang, Q., Watteyne, T. & Pister, K.
(2014). Adaptive Synchronization in IEEE802.15.4e Networks. IEEE
Transactions on Industrial Informatics, 10(1), 795-801. doi:
10.1109/TII.2013.2255062

DOI
https://doi.org/10.1109/TII.2013.2255062

Document Version

This is the Accepted Manuscript version. The version in the Universitat
Oberta de Catalunya institutional repository, O2 may differ from the final
published version.

Copyright and Reuse

This manuscript version is made available under the terms of the Creative
Commons Attribution Non Commercial No Derivatives licence
(CC-BY-NC-ND) ​http://creativecommons.org/licenses/by-nc-nd/3.0/es​,
which permits others to download it and share it with others as long as they
credit you, but they can’t change it in any way or use them commercially.

Enquiries

If you believe this document infringes copyright, please contact the
Research Team at: repositori@uoc.edu

Universitat Oberta de Catalunya Research archive

https://doi.org/10.1109/TII.2013.2255062
http://creativecommons.org/licenses/by-nc-nd/3.0/es

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS OF INDUSTRIAL INFORMATICS 1

Adaptive Synchronization in

IEEE802.15.4e Networks
David Stanislowski, Xavier Vilajosana, Member, IEEE, Qin Wang,

Thomas Watteyne, Member, IEEE, Kris Pister

Abstract—Industrial low-power wireless mesh networks are
shifting towards time synchronized medium access control (MAC)
protocols which are able to yield over 99.9% end-to-end reliabil-
ity, and radio duty cycles well below 1%. In these networks, motes
use time slots to communicate, and neighbor motes maintain their
clocks’ alignment, typically within 1ms. Temperature, supply
voltage and fabrication differences cause the motes’ clocks to
drift with respect to one another. Neighbor motes need to re-
synchronize periodically through pairwise communication. This
period is typically determined a priori, based on the worst case
drift.

In this article, we propose a novel technique which mea-
sures and models the relative clock drift between neighbor
motes, thereby reducing the effective drift rate. Instead of re-
synchronizing at a preset rate, neighbor motes re-synchronize
only when needed. This reduces the minimum achievable duty
cycle of an idle network by a factor of 10, which, in turn,
lowers the mote power consumption, and extends the network
lifetime. This Adaptive Synchronization is implemented as part of
IEEE802.15.4e in the OpenWSN protocol stack, and is validated
through extensive experimentation.

Index Terms—IEEE802.15.4e, Synchronization, Wireless Sen-
sor Networks, Duty Cycle, Energy Consumption,TSCH.

I. INTRODUCTION

In the last decade, contention-based wireless medium access

control (MAC) layers have been used in many low-power

wireless mesh protocols. ZigBee1 has been the de-facto stan-

dard for these types of networks, but has failed to fulfill the

industrial reliability requirements.

Things started to change with the development of the Time

Synchronized Channel Hopping (TSCH) technique that was

adopted by major industrial low-power wireless standards

such as WirelessHART [1] and the recently as a part of the

published IEEE802.15.4e standard [2]. As of today, several

commercial networking providers are offering 99.9% reliable

MAC layers that provide radio duty cycles well below 1%,

thereby reducing the mote power consumption and increasing

the network lifetime2.

D. Stanislowski and K. Pister are with BSAC, University of California,
Berkeley, CA, USA.

X. Vilajosana is with BSAC, University of California, Berkeley, CA, USA
and Universitat Oberta de Catalunya, Barcelona, Spain and Worldsensing,
Barcelona, Spain.

Q. Wang is with with BSAC, University of California, Berkeley,
CA, USA and University of Science and Technology, Beijing, China.

T. Watteyne is with with BSAC, University of California, Berkeley, CA,
USA and Dust Networks/Linear Technology, Hayward, CA, USA.

1http://www.zigbee.org/.
2http://www.linear.com/products/smartmesh ip.

Fig. 1. Timeline of an IEEE802.15.4e slot showing how two motes
synchronize by exchanging a data packet.

The IEEE802.15.4e standard [2] is an amendment to the

MAC protocol of IEEE802.15.4-2006 [3]. It achieves bet-

ter reliability and lower power consumption through Time

Synchronized Channel Hopping (TSCH). All motes in an

IEEE802.15.4e network are synchronized and time is split into

time slots, each typically 10ms long. Time slots are grouped

into a super-frame which continuously repeats over time.

A schedule instructs each mote what to do in each time

slot: send to a particular neighbor, receive from a particular

neighbor, or sleep [4]. Channel diversity is obtained by spec-

ifying, for each send and receive slot, a channel offset. The

same channel offset translates into a different frequency on

which to communicate at each iteration of the super-frame.

The resulting channel hopping communication reduces the

impact of external interference and multi-path fading, thereby

increasing the reliability of the network [5].

Crystal oscillators are commonly used for timing since they

offer a good trade-off between power consumption, frequency

stability and cost. The frequency of a crystal is affected by

manufacturing differences, temperature, and supply voltage. A

crystal oscillator is rated by its frequency stability: a 32kHz

crystal rated 30ppm (parts-per-million) will pulse somewhere

between 32768.99Hz and 32767.01Hz. Two motes equipped

with these crystal can drift by 60ppm to one another (one

going fast, one going slow), i.e. they will desynchronize by

60µs each second. Motes therefore need to re-synchronize

periodically.

In a TSCH network, all transmitting motes are scheduled to

begin transmission at the same time in a slot (typically about

http://www.zigbee.org/
http://www.linear.com/products/smartmesh_ip

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS OF INDUSTRIAL INFORMATICS 2

2ms into the slot, called the TsTxOffset). To allow for some

de-synchronization, receivers start listening some time before

this instant (see Fig. 1), and keep listening some time after.

This duration is called the “guard time”

Assuming a guard time of 1ms, and if two motes are

equipped with 30ppm crystals, it takes 16s for them to desyn-

chronize by more than 1ms. Since they cannot communicate if

they get desynchronized past the guard time, they periodically

re-synchronize. Eq. (1) can be used to determine the maximum

allowable synchronization period τka as a function of the

guard time Tg and the drift rate ∆ν. Re-synchronizing more

frequently than the limit obtained with Eq. (1) guarantees that

the motes stay synchronized within their guard time. The larger

the guard time Tg, or the smaller the drift ∆ν, the less frequent

motes need to re-synchronize.

τka =
Tg

∆ν
(1)

As detailed in Section III, re-synchronizing in a TSCH

network involves exchanging a data packet and an acknowl-

edgment. Since the radio consumes power, it is best not to

have to re-synchronize too often. We call the idle duty cycle

the portion of time the radio of a mote needs to be on just

to keep synchronized to its neighbors. The smaller this value,

the longer the lifetime of the mote.

Typically, the worst-case drift rate is used to hard-code the

re-synchronization period in the motes. This often results in

“over-synchronization”, hence a waste of energy. This article

proposes a technique which allows a mote to measure its clock

drift rate with a neighbor. Using this information, it tracks its

neighbor’s drift by periodically applying internal correction to

its clock, which allows it to re-synchronizes less often. This

estimated correction helps to ensure that even in very large

networks the total de-synchronization between two arbitrary

nodes is reduced as individual parent-child drifts are reduced.

This technique, called Adaptive Synchronization, is added

to the TSCH mode of the IEEE802.15.4e implementation of

the OpenWSN protocol stack [6], and used on real hardware.

Experimental results presented in Section V show a reduction

of the minimum achievable duty cycle of an idle network by

a factor of 10.

II. RELATED WORK

Network synchronization is a well-studied topic. Lindsey et.

al. published early theoretical work on synchronization, cov-

ering independent clocks settings, master-slave hierarchical

settings (centralized), time reference distribution and mutual

synchronization (decentralized) [7], [8]. The emergence of

cellular and wireless networks came with new requirements

on network synchronization, such as multi-frame synchro-

nization [9] or network-wide synchronization in ad-hoc [10]

networks. Recently, synchronization has also been studied in

the context of industrial real-time systems, which introduces

strict accuracy constraints [11]. The Time Synchronized Mesh

Protocol (TSMP) [12] and the Timing-sync Protocol for Sensor

Networks (TPSN) [13] were the first to apply synchronization

techniques to low-power mesh networks. By synchronizing

the transmitter to the receiver, both motes spend most of

their time with their radio off, only turning it on when a

communication is about to take place. This yields very low

radio duty cycles and long network lifetimes. The ideas de-

veloped from these protocols are the foundation for standards

such as IEEE802.15.4e [2]. The technique presented in this

article builds on top of TSMP, TPSN and IEEE802.15.4e.

Instead of always re-synchronizing at a “worst case” rate,

Adaptive Synchronization lowers the radio’s duty cycle even

more by modeling the clock drift between neighbor motes, and

reducing the effective drift rate by making small corrections

that do not require the radio to be powered. This results

in a lower idle duty cycle, thus a longer network lifetime.

Recently, Kerkez [14] investigated how to achieve tight clock

synchronization without a precise clock source. This allows

for a board manufacturer to swap an (expensive) crystal

for a (cheap) on-chip oscillator. Similar to our approach,

Kerkez proposes to account clock drift to be able to correct

clock misalignment by modifying slot phase and duration,

but requires motes to communicate at every time frame. Very

interesting approaches have been published recently, Medina

et.al. [15] present a synchronization algorithm based on an

estimation of the relative clock drift of each node, their scheme

uses periodic beacons to determine clock drift with respect

to a global clock shared by all the motes in the network.

Besides, in [16] the same authors present a theoretical error

characterization of clock drift in similar scenarios. Adaptive

synchronization presented in this article takes a similar ap-

proach and complements estimated clock drift with periodic

temperature monitoring in order to compensate temperature

effects on the drift rate of crystals. Liu et.al. [17] uses a

Kalman filter to compensate clock drift, their scheme named

AdaSynch shows how clock drift can be modeled and fit to

a certain value using different Kalman filters. The important

aspect is the deep analysis of clock drift that authors carry on

a set of 100 telosb motes which can be further used to improve

the Adaptive synchronization estimation scheme. Temperature

compensation schemes have been studied recently by Brunelli

et.al. [18]. Authors propose to divide operation in two phases,

a one time calibration where nodes learn the drifting pattern

and a operation phases where nodes apply the learnt pattern

according to the temperature reading. Adaptive Synchroniza-

tion composes a temperature synchronization scheme with an

adaptive synchronization which benefits from the fact that no

calibration is needed and that temperature readings can be

spaced in time so energy consumption is not compromised.

III. SYNCHRONIZING IN IEEE802.15.4E

In an IEEE802.15.4e Time Synchronized Channel Hopping

(TSCH) network, communication happens in time slots. A

network-wide schedule instructs each mote what to do in each

slot. The schedule is built to satisfy the throughput and delay

requirements of the different traffic flows. A time slot is long

enough for the transmitter to transmit the longest possible

packet, and for the receiver to send back an acknowledgment

indicating reception.

All motes in an IEEE802.15.4e network are synchronized,

i.e. neighbor motes are desynchronized by at most a guard

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS OF INDUSTRIAL INFORMATICS 3

0 200 400 600 800 1000 1200
−5

0

5

10

15

20

25

30

35

Time (s)

C
o
rr

e
c
ti
o
n
s
 (

ti
c
k
s
)

Software Sync

Packet Sync

(a) Indoor setup: the temperature is constant.

0 200 400 600 800 1000 1200
−5

0

5

10

15

20

25

30

35

Time (s)

C
o
rr

e
c
ti
o
n
s
 (

ti
c
k
s
)

Software Sync

Packet Sync

(b) Outdoor setup: the temperature varies by 15
◦C over the course of the

experiment.

0 200 400 600 800 1000 1200
−5

0

5

10

15

20

25

30

35

Time (s)

C
o
rr

e
c
ti
o
n
s
 (

ti
c
k
s
)

Software Sync

Packet Sync

(c) Oven setup: the temperature varies by 55
◦C over the course of the

experiment.

Fig. 2. Corrections are applied to the clock of a mote which uses Adaptive Synchronization to track the drift with a neighbor mote. Packet-based
synchronization, which happens every 60s or when mote temperature has changed 2

◦C since last packet sync, whichever comes first, causes the offset
(red circles) to be applied; software corrections are used to further track the calculated drift in-between packet-based synchronizations. The same experiment
is conducted in three environments with different temperature variations. Corrections are expressed in 32kHz clock ticks.

time, typically 1ms. The network schedule indicates the “time

parents” of each mote, the neighbor motes to which this mote

needs to keep synchronized. This results in a synchronization

directed acyclic graph. Once a mote has been assigned its time

parents, it needs to ensure its clock never drifts by more than

a guard time with respect to its time parents.

IEEE802.15.4e is designed to cope with clock drift. It

includes timing information in all packets, to allow for two

neighbor motes to re-synchronize to one another whenever

they communicate. When a transmitter transmits a packet,

the receiver timestamps the instant at which it receives the

packet, and indicates the offset between that measured time

and the theoretical reception time TsTxOffset in its ac-

knowledgment. As a result, upon each communication, both

the transmitter and the receiver know how de-synchronized

they are. Depending on which mote is the time parent, either

the transmitter or the receiver aligns its clock to the other.

Fig. 3. The GINA mote.

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS OF INDUSTRIAL INFORMATICS 4

After re-synchronizing, the clocks of both motes are perfectly

aligned.

When data packets flow through the network, keeping

synchronized comes at no extra cost3. When the network sits

idle (no data packets are flowing), motes send empty data

packets periodically to keep synchronized. The period at which

these “keep-alive” packets are exchanged is the object of this

article. We call “idle duty cycle” the portion of the time a

mote’s radio is on just to keep synchronized, when the network

sits idle.

Let’s take a typical case where a mote has 2 time parents,

and 2 children. We assume the mote runs IEEE802.15.4e with

a 1ms guard time, and is equipped with a 30ppm crystal.

As per the calculation above, it can expect, each 16s, to

participate in 4 re-synchronizations: to both parents and both

children. Each re-synchronization involves exchanging the

keep-alive packet (around 15 bytes) and the acknowledgment

(around 15 bytes). At 250kpbs, and taking into account radio

startup and turnaround times, this translates to a radio on

time of around 2ms per synchronization. To participate in all

synchronizations, it will have its radio on for around 8ms each

16s, or an idle radio duty cycle of 0.050%.

The goal of the Adaptive Synchronization technique pre-

sented in Section IV is to bring this idle duty cycle down by

extending the period between two re-synchronization between

neighbor motes.

IV. ADAPTIVE SYNCHRONIZATION

Adaptive Synchronization allows a mote to track the drift

rate to its neighbor, which it then uses to increase the time

between keep-alive messages.

This is done by measuring the effective clock drift be-

tween two consecutive keep-alive messages, and then using

that rate to make periodic “software” adjustments (which do

not require communication) in-between “packet-based” re-

synchronizations.

At each packet synchronization, the timestamping of the

packets indicates to a mote how offset its clock is with respect

to its neighbor’s. It can calculate the experimental clock drift

rate rexp by dividing this offset ε by the duration since the

previous packet-based synchronization ∆T , as shown in (2).

rexp =
ε

∆T
(2)

If a mote uses (2) and determines it is fast with respect

to a neighbor, it will periodically adjust its own clock in

order to “slow down”. It can do so by periodically adding a

clock tick. This allows it to track its neighbor’s clock, thereby

reducing the drift. Since the correction is not perfect and the

drift rate changes (e.g. with temperature), packet-based re-

synchronizations is still needed, but can be less frequent.

Fig. 2(a) shows experimental results gathered on a pair of

GINA motes [19] running in a temperature controlled environ-

ment. The blue dots show the periodic software corrections

applied to the mote’s clock; the red circles represent the

3Strictly speaking, the time offset between transmitter and receiver is
encoded as a 2 byte signed value, which is added to the acknowledgment.
Transmitting this extra field costs some energy.

0 50 100 150
0

10

20

30

40

50

60

Time (s)

In
te

rv
a
l
b
e
tw

e
e
n
 s

y
n
c
 (

s
)

Software Sync (4ppm)

Packet Sync (4ppm)

Software Sync (11ppm)

Packet Sync (11ppm)

Fig. 4. Correction interval is the interval between each type of sync. For
Software Syncs, which in this case has a consistent correction value of a
single clock cycle, the interval is closely related to the clock drift rate. This
figure shows an overlay of correction intervals for two mote-pairs of different
drift rates.

offset indicated by each packet-based synchronization (which

is pre-set to happen every 60s). After a learning period –

during which the mote measures the drift rate – the software

corrections track the drift, and the offset measured by the

packet-based synchronization drops from 22 ticks (671µs) to

3 ticks (91µs). This corresponds to an effective drift dropping

from 11ppm to 1.5ppm.

Temperature causes the clock drift rate to change. To

account for temperature changes, Adaptive Synchronization

records the temperature during the most recent packet-sync

event and then measures the temperature periodically. If the

difference between the recorded temperature and any mea-

surement thereafter is larger than ϕ, a keep-alive message is

triggered to re-synchronize and determine the new effect drift

rate. The threshold ϕ – set to 2◦C in our experiments – can

be tuned to match the crystal’s temperature sensitivity and the

application requirements.

The other sources of clock drift (supply voltage and crystal

aging) change much more slowly and are unlikely to be

noticed even with extended keep-alive packet intervals. For

this reason we did not make any attempt to measure or correct

for these sources.

There is an error associated with the experimental clock

drift rate that increases as the packet interval decreases: short

intervals make for inaccurate predictions. This could be an

issue if a short message interval were immediately followed

by a long one. To prevent such a situation, the interval between

keep-alive packets is controlled so that a short interval is

followed by one twice as long, then four times as long,

etcetera, until the target interval length is reached. In our

experimental setting we started at a period of 5s, increasing

it up to 60s. This is similar to TCP’s “slow start” [20].

V. EVALUATION

In this section, we experimentally explore the trade-off

between synchronization accuracy and energy consumption,

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS OF INDUSTRIAL INFORMATICS 5

for different crystal oscillator configurations and temperature

conditions.

All experiments are conducted with GINA motes [19]

(shown in Fig. 3), which feature a Texas Instruments MSP430

micro-controller and an Atmel AT86RF231 IEEE802.15.4

radio chip.

Data was collected at each synchronization event, whether

packet or software based. Clock correction amount (in units of

ticks), time of correction, a unique sync event ID, temperature,

and whether the correction was packet or software based were

all recorded.

A. Impact of Manufacturing Differences

To isolate crystal manufacturing, all experiments in this

section are conducted with motes operating in the same

temperature-controlled environment, corresponding to the in-

doors case shown in Fig. 2(a).

By letting the motes synchronize without Adaptive Synchro-

nization, we can measure the drift rate. We cherry-pick two

pairs of motes: motes H1 and H2 exhibit a high clock drift

of 11ppm; motes L1 and L2 have a low effective clock drift

of 4ppm. The motes in both pairs run the same firmware, and

are configured to exchange a keep-alive every 60s.

Fig. 4 depicts the interval between two synchronizations.

Because Adaptive Synchronization speeds up synchronization

when the drift is large, the interval between software synchro-

nization events is smaller for the (H1,H2) 11ppm pair than

for the (L1,L2) 4ppm pair. The frequency of synchronization

is proportional to the clock drift, so in this case the 11ppm

pair makes corrections about 2.75 time as frequently as the

4ppm pair

B. Impact of Temperature

A pair of motes is setup to send keep-alive messages to keep

synchronized using Adaptive Synchronization; no application

data is exchanged. To measure the impact of temperature

variation the same experiment is repeated in the following

cases:

• In the indoor case, the pair of motes is placed on a

desktop in an office environment. The experiment is

conducted over the course of 20 hours, during which the

temperature is constant.

• In the outdoor case, one mote is placed indoors, the

other one outdoors. The experiment is conducted over the

course of 12 hours, during which the temperature drops

by 15◦C.

• In the oven case, one mote is placed at a constant 20◦C,

the other one is placed in an oven. From 20◦C, the

temperature of the oven is brought to 75◦C over the

course of 2 minutes, then down to 55◦C over 10 minutes.

In each case, Adaptive Synchronization is running with a

preset keep-alive interval of 60s. As detailed in Section IV,

sudden changes in temperature trigger extra keep-alive mes-

sages.

Fig. 5 shows the total accumulated correction conducted by

Adaptive Synchronization in the three cases.The total amount

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

Time (s)

In
te

rv
a
l
b
e
tw

e
e
n
 s

y
n
c
 (

s
)

Software Sync

Packet Sync

Fig. 6. The interval between time correction events in the oven setup scenario.
Packet-based corrections are separated from software-based corrections. At
around 250s, the temperature is increased using the oven. The slow start
process can be seen when temperature reaches a steady state at around 350s
to 400s.

that Adaptive Synchronization corrected is equivalent to how

the two motes would drift when corrections are not applied,

therefore, Fig. 5 presents as well the accumulated drift between

two motes in the presented scenarios. A change in temperature

alters the accumulation rate. In the indoor case, the value of

accumulated correction over time is increasing linearly due to

stable temperature. There is slow variation in the accumulation

rate of correction in the outdoor case, caused by the slow

temperature drift during the transition between day and night.

In the oven case, the green line shows the sharp temperature

change when the oven is switched on.

Figure 6 shows the interval between time correction events

in the oven setup. As the temperature increases, it can be seen

the packet synchronizations happen frequently at around 250s

as the temperature rapidly increases. When temperature sta-

bilizes, Adaptive Synchronization starts the slow start process

to achieve the maximum keep alive interval.

C. Energy Consumption Discussion

Fig. 7 shows a direct comparison between synchronizing

with and without Adaptive Synchronization. Because drift is

not compensated when not using Adaptive Synchronization

the offset is large at each packet-based synchronization. In

Fig. 7, this is around 20 ticks, or a drift of 11ppm. When using

Adaptive Synchronization, drift is compensated, and the offset

triggered by each packet-synchronization drops to 2 ticks, or

1ppm.

This means that the guard time can be much smaller. In this

case, without Adaptive Synchronization, the guard time must

be at least 660µs long (i.e. the clock drift in 60s); it can be

60µs when using Adaptive Synchronization, using the same

60s keep-alive interval. This translates into a 90% reduction

of the energy spent by the mote idle listening for packets.

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS OF INDUSTRIAL INFORMATICS 6

0 1 2 3 4 5 6

x 10
4

0

0.5

1

1.5

2

x 10
4

Time (s)

A
c
c
u
m

u
la

te
d
 C

lo
c
k
 D

ri
ft
 (

ti
c
k
s
)

Accumulated Drift

(a) Indoor setup.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Time (s)

A
c
c
u
m

u
la

te
d
 C

lo
c
k
 D

ri
ft
 (

ti
c
k
s
)

Accumulated Drift

(b) Outdoor setup.

0 200 400 600 800 1000 1200

0

1000

2000

3000

Time (s)

A
c
c
u
m

u
la

te
d
 C

lo
c
k
 D

ri
ft
 (

ti
c
k
s
)

0 200 400 600 800 1000 1200

20

40

60

80

T
e
m

p
e
ra

tu
re

 (
°C

)

Accumulated Drift

Mote Temperature

(c) Oven setup.

Fig. 5. Accumulated Clock Drift for a mote pair. This is the accumulated value of corrections made by both software adjustments and packet-based re-
synchronizations which shows how two motes would drift when corrections are not applied. The figures show how the drift rate, ie. the slope, changes with
temperature.

VI. CONCLUSION

Time Synchronized Channel Hopping networks such as

those defined by the IEEE802.15.4e standard require tight syn-

chronization of their motes, which limits the lowest achievable

duty cycle and hence the minimum energy consumption of

the network. Clock drift is attributed to crystal manufactoring

differences and temperature, mainly. TSCH uses periodic

keep-alive messages to re-synchronize neighbor motes in the

absence of application traffic.

This article presents a simple Adaptive Synchronization

technique which can either reduce the keep-alive interval, or

shorten the guard time. In both cases, this translates directly in

a reduction of the idle duty cycle. Experimental results show

an idle duty cycle reduced by a factor of 10, with the ability to

maintain synchronization even in rapidly varying temperature

settings. The technique is implemented in the IEEE802.15.4e

MAC layer of the OpenWSN protocol stack, and evaluated on

off-the-shelf motes.

0 100 200 300 400 500
−5

0

5

10

15

20

25

30

35

40

Time (s)

C
o
rr

e
c
ti
o
n
s
 (

ti
c
k
s
)

Adaptive Software Sync

Adaptive Packet Sync

Packet Only Sync

Fig. 7. Correction values for the 11ppm mote-pair running Adaptive
Synchronization versus packet-only correction.

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS OF INDUSTRIAL INFORMATICS 7

ACKNOWLEDGEMENTS

This publication is based in parts on work performed in the

framework of the projects CALIPSO-288879, OUTSMART-

285038, RELYONIT-317826 and SWAP-251557, which are

partially funded by the European Community. We are es-

pecially thankful for the preliminary work carried out by

Turker Beyazoglu. Xavier Vilajosana is funded by the Spanish

Ministry of Education under Fullbright-ME grant (INF-2010-

0319).

REFERENCES

[1] WirelessHART Specification 75: TDMA Data-Link Layer, HART Com-
munication Foundation Std., Rev. 1.1, 2008, hCF SPEC-75.

[2] 802.15.4e-2012: IEEE Standard for Local and metropolitan area

networks–Part 15.4: Low-Rate Wireless Personal Area Networks (LR-

WPANs) Amendment 1: MAC sublayer, IEEE Std., 16 April 2012.
[3] 802.15.4-2006: IEEE Standard for Information technology, Local and

metropolitan area networks, Wireless Medium Access Control (MAC)

and Physical Layer (PHY) Specifications for Low Rate Wireless Personal
Area Networks (WPANs), IEEE Std., 2006.

[4] E. Toscano and L. L. Bello, “Multichannel Superframe Scheduling
for IEEE802.15.4 Industrial Wireless Sensor Networks,” IEEE Trans.

Industrial Informatics, vol. 8, no. 2, pp. 337–350, 2012.

[5] T. Watteyne, A. Mehta, and K. S. J. Pister, “Reliability Through Fre-
quency Diversity: Why Channel Hopping Makes Sense,” in Performance

Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks (PE-

WASUN), October 2009.
[6] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wang,

S. D. Glaser, and K. Pister, “OpenWSN: a Standards-based Low-
power Wireless Development Environment,” Transactions on Emerging
Telecommunications Technologies, vol. 23, no. 5, pp. 480–493, 2012.

[7] W. C. Lindsey, F. Ghazvinian, W. Hagmann, and K. Dessouky, “Network
Synchronization,” Proceeding of the IEEE, vol. 73, no. 1, pp. 1445–
1467, Oct 1985.

[8] J.-H. Chen and W. Lindsey, “Mutual Clock Synchronization in Global
Digital Communication Networks,” European Transactions on Telecom-

munications, vol. 7, no. 1, pp. 25 –37, January-February 1996.
[9] Z. Zhang, H. Kayama, and C. Tellambura, “New Joint Frame Synchro-

nisation and Carrier Frequency Offset Estimation Method for OFDM
Systems,” European Transactions on Telecommunications, vol. 20, no. 4,
pp. 413–430, 2009.

[10] C. H. Rentel and T. Kunz, “Network Synchronization in Wireless Ad
Hoc Networks,” Carleton University, Tech. Rep., July 2004.

[11] M. M. H. P. van den Heuvel, R. J. Bril, and J. J. Lukkien, “Transparent
synchronization protocols for compositional real-time systems.” IEEE

Trans. Industrial Informatics, vol. 8, no. 2, pp. 322–336, 2012.
[12] K. S. J. Pister and L. Doherty, “TSMP: Time Synchronized Mesh

Protocol,” in International Symposium on Distributed Sensor Networks
(DSN). Orlando, Florida, USA: IASTED, November 2008.

[13] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync Protocol
for Sensor Networks,” in International Conference on Embedded Net-
worked Sensor Systems (SenSys). New York, NY, USA: ACM, 2003,
pp. 138–149.

[14] B. Kerkez, “Adaptive Time Synchronization and Frequency Channel
Hopping for Wireless Sensor Networks,” Master’s thesis, University of
California, Berkeley, EECS Department, June 2012.

[15] C. Medina, J. C. Segura, and A. De La Torre, “Accurate
time synchronization of ultrasonic tof measurements in ieee
802.15.4 based wireless sensor networks,” Ad Hoc Netw.,
vol. 11, no. 1, pp. 442–452, Jan. 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.adhoc.2012.07.005

[16] C. Medina, J. C. Segura, and A. de la Torre, “A synchronous tdma ultra-
sonic tof measurement system for low-power wireless sensor networks,”
Instrumentation and Measurement, IEEE Transactions on, vol. PP,
no. 99, pp. 1 –13, 2012.

[17] Q. Liu, X. Liu, J. L. Zhou, G. Zhou, G. Jin, Q. Sun, and M. Xi,
“Adasynch: A general adaptive clock synchronization scheme based on
kalman filter for wsns,” Wirel. Pers. Commun., vol. 63, no. 1, pp. 217–
239, Mar. 2012.

[18] D. Brunelli, D. Balsamo, G. Paci, and L. Benini, “Temperature com-
pensated time synchronisation in wireless sensor networks,” Electronics

Letters, vol. 48, no. 16, pp. 1026 –1028, 2 2012.

[19] A. Mehta and K. Pister, “WARPWING: A Complete Open-Source
Control Platform for Miniature Robots,” in International Conference

on Intelligent Robots and Systems (IROS). IEEE/RSJ, 2010.
[20] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,” RFC

5681 (Draft Standard), Internet Engineering Task Force, September.

http://dx.doi.org/10.1016/j.adhoc.2012.07.005

