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Abstract—The paper presents a universal and compre-
hensive synthesis technique of coupled resonator filters with
source/load-multiresonator coupling. The approach is based
on repeated analyses of a circuit with the desired topology; no
similarity transformation is needed. Restrictions imposed by the
implementation on the coupling coefficients such as signs and
orders of magnitudes are straightforwardly handled within this
technique. The technique is then used to synthesize and design fil-
ters with full or almost full coupling matrices by selecting, among
the infinite number of solutions, the matrix that corresponds to
the actual implementation. In such cases, analytical techniques
and those based on similarity transformations cannot be used
since they provide no mechanism to constrain individual coupling
coefficients in order to discriminate between two full coupling
matrices, which are both solutions to the synthesis problem. Using
the technique described in this paper, a filter designer can extract
the coupling matrix of a filter of arbitrary order and topology
while enforcing relevant constraints. There is no need to master all
the different existing similarity-transformation-based techniques
and the topologies to which they are applicable. For the first time,
detailed investigations of parasitic coupling effects, for either
compensation or utilization, are made possible. The method is
applied to the synthesis of a variety of filters, some of which are
then designed and built and their response measured.

Index Terms—Bandpass filters, design, dual-mode filters, elliptic
filters, resonator filters, synthesis.

I. INTRODUCTION

T HE synthesis and design of coupled resonator filters
with additional cross-couplings between nonadjacent

resonators has been the subject of intense research efforts due to
their importance in modern wireless communications systems.
Efficient spectrum utilization imposes stringent frequency-se-
lectivity requirements, which are commonly met only by those
filters with sharp cutoff skirts; additional couplings are often
used to generate attenuation poles in the stopband in order
to increase the cutoff slope. Naturally, the number of finite
transmission zeros and their location in the complex plane
determine the performance of the filter, especially its stopband
attenuation and group delay. The number of finite transmission
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zeros is directly related to the topology of the coupling network,
whereas their location is further affected by the relative signs
and magnitudes of the different coupling coefficients.

A survey of the voluminous literature on microwave filters
shows that most of the research effort has been focused on fil-
ters where the source feeds only one resonator (resonator 1) and
the load is connected to only one resonator (resonator) [1]–[7].
It is well established that such filters can generate at most
finite transmission zeros with resonators [1]. However, some
specifications for filtering structures may be more expediently
fulfilled by exploiting additional couplings between the source
and the load and the resonators. Indeed, when the source is di-
rectly coupled to the load, finite transmission zeros can be
generated with resonators [8], [9]. Despite the attractive fea-
tures of filters with source/load-multiresonator couplings, their
investigation has been reported in only a few papers [10]–[15].
Filters where the source and load are coupled to more than one
resonator, but not to each, other were also reported [16]–[18].
The synthesis of canonical filters with source–load coupling can
be handled with the technique presented by Bell [19], [20], al-
though no examples were given in these two papers. A slightly
more general approach was given by Pfitzenmaier, but again,
with no examples [21]. More recently, extraction techniques,
which are applicable only to canonical folded structures, were
published by Montejo-Garai [22] and Amari [23].

Although the synthesis techniques mentioned above produce
a coupling matrix, which fulfills the filter specifications, they
eventually rely on similarity transformations to enforce a de-
sired topology [19], [20]. Unfortunately, there is no general and
reliable algorithm to generate a coupling matrix with an arbi-
trarily chosen topology starting from a canonical matrix. When
faced with a new topology, a practicing engineer with common
experience in dealing with this kind of transformations must
rely on the special knowledge of high-level experts in the field.
Even when a coupling matrix with the proper topology is ob-
tained, the approach provides no mechanism for enforcing con-
straints on the individual entries of the coupling matrix. When
more than one coupling matrix can satisfy the filter specifica-
tions, but only one of these can be realized using the imple-
mentation under consideration, it becomes crucial to identify the
proper solution, i.e., that matrix whose entries satisfy whatever
constraints are imposed by the implementation. The inability of
the above-mentioned techniques to strictly enforce an arbitrary
topology and constrain the coupling coefficients was the main
reason for developing the technique presented in this paper.

The technique is based on the presentation in [24] with proper
extension to handle the presence of source/load-multiresonator
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coupling. The coupling coefficients are used as independent
variables in minimizing a simple cost function.1

II. FILTERING FUNCTION

The class of filtering functions that are used here are the gen-
eralized Chebyshev functions, which can be computed from a
simple recursion relation recently given by Amari [24]. The fil-
tering function of order , i.e., , is related to the trans-
mission coefficient by

(1)

The ripple level is related to the minimum in-band return
loss by . The generalized Chebyshev
function of order is defined by

(2)

where is related to the th transmission zero by
. It can be shown that is a ra-

tional function of the form where
the denominator is given by the product

[28]. The polynomials are related
by the recursion relation [24]

(3)

The polynomials and are given by
and .

III. T HE MODEL

The two-resonator model introduced in [11] is extended to the
case of resonators, which are coupled to one another by fre-
quency-independent coupling coefficients . Both the source
and load are coupled to more than one resonator and possibly
to each other. The resistive terminations are set to unity. Since
the model can be straightforwardly deduced from the discussion
in [11], it is not reproduced here. The domain of validity of the
model and its scaling properties are well described in [1]. Fig. 1
shows the coupling and routing scheme of a general network of
coupled resonators with source/load-multiresonator coupling.

1Note that similar optimization-based approaches were also used for the
model described in [1] by Atiaet al. [25], Bandler et al. [26], and more
recently, by Levy and Petre [27].

Fig. 1. Routing and coupling scheme ofn coupled resonators with source/load
multiresonator coupling. Dark disks: resonators, lighter disks: source and load.
Solid lines: direct (main) couplings, dashed lines: bypass couplings.

A simple analysis of the network along the lines described in
[11] or [19] shows that the loop currents, which are grouped in
a vector , are given by a matrix equation of the form

(4)

Here, is a matrix whose only nonzero
entries are , is similar to the

identity matrix, except that
[19], and is the symmetric coupling
matrix. The excitation vector is . The
low-pass prototype frequency is denoted byand is related
to the actual frequency by the standard transformation

, where is the center frequency of the
filter and is its bandwidth. Both and are set to unity
since they act only as scaling parameters [1]. Note that the cou-
pling matrix may have nonzero diagonal elements, which
account for differences in the resonant frequencies of the dif-
ferent resonators. The transmission coefficient and reflec-
tion coefficient of the model are given by (load and source
resistors 1)

(5)

and

(6)

The synthesis problem consists in determining the coupling
matrix such that a prescribed response is reproduced.
The coupling matrix is to have a well-defined topology with
coupling coefficients that may be required to satisfy additional
constraints that are dictated by the implementation envisaged.
A synthesis technique that allows the enforcement of a given
topology and constraints on the entries of the coupling matrix,
when the source feeds only one resonator and the load is
coupled to only one resonator, was recently proposed by Atia
et al. [25] and a more comprehensive version by Amari [24].
It is used here after proper extension to handle source–load
coupling. The approach determines the coupling matrix by
minimizing a suitable cost function where the optimization
variables are the nonzero entries of the coupling matrix.
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IV. COST FUNCTION

The cost function used in this paper is identical to the one
given by Amari [24], .i.e.,

(7)

Here, and are the zeros and poles of the filtering
function , respectively. It is assumed that has
poles and zeros. The arguments leading to its derivation can
be found in [24] and are not repeated here. Note that the cost
function is evaluated at no more than frequency points
for a filter of order .

V. GRADIENT OF COST FUNCTION

In this paper, we use a gradient-based optimization technique
where the gradient of the cost function is computed exactly and
from a single analysis of the model.

The gradient of the cost function given in (7) is determined
from the gradient of the reflection and transmission coefficients.
Following the discussion in [24], it is straightforward to estab-
lish the following results:

(8a)

(8b)

(8c)

(8d)

Here, the topology matrix of the network is defined by
if and if . The topology of the

network can be specified beforehand and will be enforced at
each step in the optimization. The matrix is given in (4).

VI. COMPUTATION OF GROUPDELAY

The group delay of the synthesized filter can be determined
from the transmission coefficient directly without first com-
puting its phase and without finite differences. Again, a simple
extension of the formulation in [24] leads to

(9)

where stands for the imaginary part of. Note that the
sum runs from to , while that in [24] runs from

to since the latter does not involve source–load
coupling and both the source and load are coupled to only one
resonator each.

VII. RESULTS

The synthesis technique described in this paper was applied
to filters of varied orders and topologies. A sample of these are
discussed here.

The first example (filter 1) is a third-order filter with three
transmission zeros at finite frequencies. The center frequency
of the filter is 26.453 GHz, its bandwidth is 41 MHz, and its
maximum in-band return loss is 26 dB. The transmission zeros
are located at GHz, GHz, and

GHz. To implement a total of three finite trans-
mission zeros using three resonators, it is necessary to couple
the source to the load directly. Although the total number of fi-
nite transmission zeros is then determined, their locations in the
complex plane depend on the remaining details of the topology.
To accommodate the planned implementation of this filter, a
coupling matrix of the following form is sought:

(10)

Note that the filter is symmetric, although its response is not.
The initial guess for the optimization corresponds to setting all
couplings to zero, except and , which are set to 1.0
and 0.9, respectively. These values are chosen to guarantee a
signal path between input and output. We also used the starting
point and and all the remaining entries in
the coupling matrix set to zero with no noticeable difference in
the convergence of the minimization process. (A “better” initial
guess corresponds to using the Chebyshev solution for a filter of
the same order and minimum in-band return loss, but with the
three transmission zeros removed to infinity.) After optimiza-
tion, the obtained coupling matrix is

(11)

The transmission and reflection coefficients of the filter, as
computed directly from the filtering function, are shown in
Fig. 2. The presence of the three transmission zeros, as well
as the specified minimum in-band return loss, are evident.
Also plotted are the transmission and reflection coefficients
obtained directly from the coupling matrix in (11), computed
according to (5) and (6). The difference between the two results
is not visible, thereby illustrating the accuracy of the synthesis
technique.
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Fig. 2. Transmission and reflection coefficients of filter 1 (synthesized), as obtained from the coupling matrix in (11) and the filtering function.The two cannot
be distinguished.

Fig. 3. Group delay (normalized) for filter 1 as obtained from (9) and by differentiating the phase ofS . The two cannot be distinguished.

The group delay of the filter was also computed from (9) and
is shown in Fig. 3. We also calculated the group delay from
the derivative of the phase of the transmission coefficient and
obtained identical results. We should mention that Fig. 3 shows

the normalized group delay, which is related to the actual group
delay by a simple transformation [21].

The synthesized filter has been realized by a symmetrical
cavity configuration, which is folded in the -plane and op-
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Fig. 4. Layout and dimensions (in millimeters) of filter 1.

erated with resonance modes (cf. Fig. 4). Cavities 1 and
3 exhibit a common broad wall, which contains the inter-cavity
iris 1–3 needed for all bypass couplings. There are irises at the
center of the respective other broad wall of these cavities for
interfacing with WR34 waveguides (representing source and
load, respectively), i.e., the ports are located at opposite sides
of the overall structure. One broad wall of cavity 2 faces one of
the narrow walls of the adjacent cavities 1 and 3 to allow the
realization of the main couplings ( ) between the
cavities by irises within their respective common walls. Due to
this symmetrical structure, there are four bypass couplings that
have been considered by the synthesis of the coupling matrix.
First, coupling is realized directly by the inter-cavity iris
1–3. Second, is performed by the input irises, the nonres-
onating mode of cavity 1, and also the inter-cavity iris
1–3. Third, corresponds to the second one, but
to the output direction. Fourth, uses the input and output
irises, inter-cavity iris 1–3, and the nonresonating cavity
modes of cavities 1 and 3. Consequently, the present design
makes use of the parasitic effects presented in [16]. It should
be noted that the transformation properties of overmoded cavi-
ties, as introduced in [29], must be considered carefully for the
realization of this type of filters.

Since the bypass couplings partly use the same discontinu-
ities, (e.g., inter-cavity iris 1–3) control of the individual cou-
plings is obtained by accurate determination of the geometry
(width and height) and location (1) of the dedicated irises. For
the present filter, it was sufficient to consider these parameters
for the inter-cavity iris 1–3 only.

The filter structure has been optimized using a
mode-matching based computer-aided design (CAD) tool
to fit the specifications—and, finally, it has been realized by
computer numerically controlled milling techniques. Owing to
the very narrow bandwidth (0.2%), a little tuning is necessary
to account for the manufacturing tolerances. Fig. 5 shows a
photograph of the realized filter.

Fig. 6 depicts the comparison of the filter response from the
synthesis (dashed line), computer field theoretic simulation
(dotted line), and measurement (solid line). All results agree

Fig. 5. Photograph of the realized filter (filter 1).

well and validate the presented method. The measured in-band
insertion loss can be well accounted for by the present synthesis
method using the realizable unloadedfactor of about 6000
(cf. Fig. 6), corresponding to a -efficiency of approximately
75%.

The next example (filter 2) was chosen to better illustrate the
necessity of constraining the individual coupling coefficients to
fit the implementation; it is no longer sufficient to simply gen-
erate a coupling matrix with the proper topology and whose
response fulfills the specifications. The filter specifications are
met by a fourth-order filter with four transmission zeros in the
lower stopband. The center frequency is GHz, the
bandwidth is 450 MHz, the in-band return loss is 26 dB, and
the transmission zeros are located at GHz,

GHz, GHz, and GHz.
The implementation of the filter involves a full coupling ma-

trix where each resonator is coupled to all the remaining ones
and the source and load are coupled to each other and to each of
the four resonators. Bypass couplings are realized through the
idea of utilizing parasitic couplings [16].

The structure of this special in-line cavity filter is depicted
in Fig. 7. It is based on single-mode -mode resonances.
The inter-cavity irises are located in the broad walls of the cav-
ities, which couple mainly magnetically. The waveguide inter-
face ports directly face the respective broad wall of the first and
fourth cavities with an offset from the center for the realiza-
tion of the assigned coupling magnitudes and signs. Moreover,
cross-couplings are realized by electrical bypasses through the
irises and (nonresonating) cavity modes. Consequently,
the satisfaction of a desired filter response needs proper control
of all main and cross-couplings, which is performed by opti-
mization of all iris dimensions (cross section, length, and offsets
in regards to the respective cavities) and the cavity dimensions
as well. Hence, all couplings, including the source–load one,
may be realized. However, the magnitude of the cross-coupling
coefficients decreases with the number of bypassed discontinu-
ities (irises and cavities).

It is well established that the response of a given full cou-
pling matrix is invariant under any similarity transformation that
does not modify the input and output [19]. It should be obvious
that there exist an infinite number of solutions to the synthesis
problem examined in this example. However, most of these so-
lutions cannot be implemented using the structure in Fig. 7. In-
deed, from our experience with this kind of cross-couplings (uti-
lized parasitic), the magnitude of a bypass coupling decreases
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Fig. 6. Transmission coefficient of filter 1. Solid line: measured. Dashed line: simulated. Dotted line: synthesized.

Fig. 7. Structure used for filter 2.

by roughly an order of magnitude for each bypassed cavity.
For example, , , and must satisfy the inequalities

.
The application of the synthesis technique yielded the cou-

pling matrix, shown in (12), at the bottom of this page, which
satisfies both the specifications and the constraints.

Note that other coupling matrices, which yield the same re-
sponse, were also obtained, but were rejected because their en-
tries do not fit the constraints imposed by the special in-line im-
plementation (Fig. 7).

Starting from this coupling matrix, a filter was designed and
simulated using a mode-matching based CAD tool. The inser-
tion and return loss versus frequency are shown in Fig. 8 as the
solid lines. It is in excellent agreement with the synthesized re-
sponse of the coupling matrix given in (5) and (6) (cf. dotted
line in Fig. 8). To further validate these results, the filter was an-
alyzed with the CST Microwave Studio (finite-integral based).
The CST results, which are shown as the dashed line in Fig. 8,
are in good agreement with those of the coupled integral-equa-
tions technique (CIET), which has been extensively tested (cf.
[30] and [31]).

The third example (filter 3) concerns an asymmetric five-pole
filter response exhibiting four transmission zeros above the
passband (see Fig. 9). A compact realization of this filter uses
one triple-mode cavity and one dual-mode cavity, as shown in
Fig. 10.

The input port of the filter is located at one top wall of the
triple mode cavity—a convenient offset iris design allows si-
multaneous couplings of the dedicated and
mode with the interfacing waveguide mode [15]. The
other top wall of the triple mode cavity is facing the dual mode

(12)
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Fig. 8. Response of filter 2. Solid line: CIET. Dashed line: CST. Dotted line: prototype.

Fig. 9. Transmission and reflection coefficients of filter 3.

one, which is short circuited at one end. Possible inter-cavity
couplings can be performed between identically polarized

modes, as well as between the modes of the
dual-mode cavity and the mode of the triple mode

one by offset irises [33]. However, the latter ones must consider
a simultaneous coupling of the respective modes
within both cavities [33]. The output port is located at the
circumference of the triple mode cavity—a slot iris is aligned
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Fig. 10. Structure for the realization of filter 3.

along the circumference (situated at nearly maximum magnetic
field components of the and vanishing -field
components of the modes) to allow coupling of the

mode only with the interfacing waveguide
mode.2 As is well known, properly located screws in the cavity
walls (not shown in the sketch) allow individual frequency
adjustment of the dedicated resonance modes and provide the
assigned couplings between the modes of the same cavity.

The allocation of the resonance modes to the filter circuits
and the coupling possibilities of the desired triple/dual-mode
realization mentioned above yields the feasible entries of the
coupling matrix, shown in (13), at the bottom of this page.

Additional constraints are imposed on the magnitudes of cou-
plings, namely, and relating to proper
offset iris designs of inter-cavity couplings between the
modes of the dual-mode cavity with the respective and

modes of the triple mode one.

2Note that an offset of the iris in the cavity axial direction may also provide
the possibility ofTE -mode couplings to the “load” interface port, but would
yield increased design effort and, thus, has not been further considered.

Using these entries for the straightforward optimization
with the introduced method yields the coupling matrix, shown
in (14), at the bottom of this page, which exactly satisfies
the desired response with the inherent design restrictions of
the triple/dual-mode cavity configuration. Note that the main
coupling becomes zero and resonance 3 is only coupled to
resonance 4 ( ), i.e., the complete energy is transferred
by bypass couplings , , , and . The principle
iris designs for the required couplings are indicated in the
sketch in Fig. 10.

VIII. I SSUE OFCONVERGENCE

A perennial issue that optimization-based techniques face is
the thorny problem of convergence. Obviously, the fact that the
method converged for all cases examined does not constitute a
proof that convergence is always guaranteed. Perhaps a reas-
suring point in this regard lies in the observation that the min-
imum of the cost function for an exact synthesis is known be-
forehand and is equal to zero. As long as a minimum value of
zero is reached, the resulting coupling matrix is guaranteed to
satisfy the original specifications. If the minimum reached is
nonzero, the solution can be either rejected or examined further
to decide whether it provides an acceptable approximation to
the synthesis problem. Naturally, the method will not converge
to zero when the chosen topology cannot generate the desired
response regardless of the actual values of the coupling coeffi-
cients.

It is possible to devise complex algorithms to deal with con-
vergence within the method described here. A simple scheme
corresponds to starting from the Chebyshev solution, which is
known analytically [32], and then move the finite transmission
zeros gradually from infinity (a large normalized value, say, 40)
to their final location. The solution from one step is then used

(13)

(14)



AMARI et al.: RESONATOR FILTERS WITH SOURCE/LOAD-MULTIRESONATOR COUPLING 1977

as the initial guess in the next step where the zeros are moved
further closer to their final locations. Fortunately, in all cases
examined, this laborious scheme has not been necessary.

IX. CONCLUSIONS

A systematic and universal method of synthesis of coupled
resonator filters with source/load-multiresonator coupling has
been presented. The method eliminates the need for similarity
transformations and enforces the desired topology directly. Con-
straints dictated by the implementation, in regards to orders of
magnitude and signs, can be enforced within the technique. This
is a major advantage over existing extraction-followed-by-rota-
tions techniques, which cannot constrain the entries of the cou-
pling matrix. The entries of the coupling matrix are used as inde-
pendent variables in a gradient-based minimization technique,
where a cost function is evaluated at no more than fre-
quency points for a filter of order . The gradient of the cost
function is determined analytically from a single analysis of the
circuit. The method has been applied to filters of varied degrees
and symmetries and has yielded excellent results. Example fil-
ters have been synthesized, designed, simulated, and measured.
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