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Abstract of the Dissertation

Adaptive Techniques for Mitigating Circuit

Imperfections in High Performance A/D

Converters

by

Shang Kee Ting

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2014

Professor Ali H. Sayed, Chair

In this dissertation, we examine the effect of four sources of circuit imperfec-

tions on the performance of analog-to-digital converters (ADCs), including sam-

pling clock jitters, spurious sidebands, timing mismatches, and gain mismatches.

These imperfections distort the sampled data and degrade the signal-to-noise ra-

tio (SNR) of the ADCs. We develop signal models for the distortions and propose

effective adaptive signal processing techniques to filter the sampled data and mit-

igate the spurious effects. Rather than remove the distortions by perfecting the

circuitry, the proposed techniques focus on processing the sampled data by using

adaptive DSP algorithms.

Analog circuit impairments create many distortions including I/Q imbalances,

phase noise, frequency offsets, and sampling clock jitter. Timing jitters generally

arise from noise in the clock generating crystal and phase-locked-loop (PLL). The

jitters cause the ADCs to sample the input signals at non-uniform sampling times

and introduce distortion that limits the signal fidelity and degrades the SNR.

While the effects of jitter noise can be neglected at low frequencies, applications

ii



requiring enhanced performance at higher frequencies demand higher SNR from

the sampling circuit. We first examine the effect of the clock jitter on the SNR

of the sampled signal and subsequently propose compensation methods based on

a signal injection structure for direct down-conversion architectures.

We also address the effect of non-ideal PLL circuitry on the quality of the

sampled data. In a non-ideal PLL circuit, leakage of the reference signal into

the control line produces spurious tones. When the distorted PLL signal is used

to generate the sampling clock, it injects the spurious tones into the sampled

data. These distortions are harmful for wideband applications, such as spectrum

sensing, since they affect the detection of vacant frequency bands. We again

examine the distortion effect in some detail and propose techniques in the digital

domain to clean the data and remove the PLL leakage effects. We study the

performance of the proposed algorithms and compare it against the corresponding

Cramer-Rao bound (CRB).

We further propose an adaptive frequency-domain structure to compensate

the effect of timing and gain mismatches in time-interleaved ADCs. An M-

channel time-interleaved ADC uses M ADCs to sample an input signal to obtain a

larger effective sampling rate. However, in practice, combining ADCs introduces

mismatches among the various ADC channels. In the proposed solution, the

signal is split into multiple frequency bins and adaptation across the frequency

channels is combined by means of an adaptive strategy. The construction is able

to assign more or less weight to the various frequency channels depending on

whether their estimates are more or less reliable in comparison to other channels.
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CHAPTER 1

Introduction

1.1 Imperfections in analog-to-digital conversion

One of the key components in radio and communication devices is the analog-

to-digital converter (ADC). In modern communication systems, there is a trend

to miniaturize radio devices and, yet, increase their flexibility to handle higher

carrier frequencies and larger bandwidths. For example, certain applications of

modern radios, such as cognitive radios and UWB radios [3], may require ADCs

operating at high sampling rates due to the use of wide frequency bands. However,

these circuit requirements are generally hard to meet in current practice and

have cost implications on hardware design [4,5], especially since variations in the

fabrication processes make it difficult to control RF/analog circuit impairments.

Furthermore, the desire to reduce costs by simplifying circuit design can only

accentuate the problem. Circuit impairments create many distortions, some of

which manifest themselves in the form of I/Q imbalances, phase noise, frequency

offsets, and sampling jitter. Advances in digital processing and VLSI techniques

enable designers to use elaborate digital signal processing (DSP) methods to

reduce the effects of these impairments in the digital domain at more affordable

costs than trying to perfect the circuits and the fabrication processes [6–13]. In

this dissertation, we will be applying DSP techniques to mitigate several sources

of circuit imperfections in ADC design.
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In the ideal case, an ADC should sample the input signal at uniform intervals.

However, due to circuit imperfections, this is not the case. For example, the

ADC requires a sampling clock that triggers it at the correct instants. One way

to generate the sampling clock is to use a phase-locked loop (PLL) frequency

synthesizer. The PLL uses a reference signal to control the voltage-controlled

ocillator (VCO) that produces the clock signal. However, the reference signal

can leak into the control line of the VCO, and this leakage signal creates spurious

tones in the clock signal. As a result, spurious sidebands are introduced into

the sampled data. In applications such as spectrum sensing in cognitive radios,

spurious tones from primary signals might give a false positive detection on actual

free channels. Another source of imperfections in ADCs is due to the phase noise

of the sampling clock. The phase noise creates random perturbations in the

sampling instants of the ADC. This random jitter reduces the signal-to-noise

ratio (SNR) of the sampled data.

An alternative way to sample the input signal without requiring faster ADCs

is to interleave multiple ADCs in order to produce an effective higher sampling

rate [14–16]. This ADC architecture is called time-interleaved ADC (TI-ADC).

Since each ADC operates at a slower rate, the clock will have less distortions

thereby reducing the distortion effects due to the sampling clock. This technique,

however, introduces other problems such as mismatch in the delay of the clock

fed into each ADC, the gain of each ADC, and DC offset between ADCs.

This dissertation focuses on problems related to spurious sidebands and ran-

dom jitter in single-channel ADCs, and timing and gain mismatches in TI-ADCs.

We will examine how these imperfections affect the sampled data, and propose

adaptive signal processing solutions to mitigate their effects. In Chapter 2, we

study the effect of spurious sidebands in the sampling clock of the ADC, and
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propose a solution to estimate and remove the sideband distortions. In Chapter

3, we extend the results to spectrum sensing applications where we propose a

low-complexity solution that reuses the existing spectrum sensing modules, and

analyze the impact of spurious sidebands on spectrum sensing. In Chapter 4, we

modify the proposed structure of Chapter 2 to mitigate sampling errors caused

by random jitter in the clock signal. Next, in Chapter 5, we study and propose

solutions for the timing and gain mismatches in TI-ADC. More details are pro-

vided in the next two sections where we discuss some of our contributions and

summarize the work in each chapter.

1.2 Contributions

In this dissertation, we study the effect of circuit imperfections on both ADCs

and TI-ADCs, and propose DSP techniques to mitigate the problems due to the

imperfections. Specifically, we examine the distortions that arise due to the im-

perfect sampling clock, which generates spurious sidebands and random jitter in

the sampled data of ADCs. We also examine the distortions that are due to the

gain and timing mismatches in the TI-ADCs. For each type of distortion, we

approach the problem in the following way. First, we examine the effect of the

imperfection on the sampled data, and provide system models that describe the

distortions. Next, using the system models, we propose algorithms that estimate

and remove the distortions from the sampled data using DSP techniques. We also

carry out performance analysis to predict the theoretical limits of performance

and compare against simulated results. The results show that the proposed so-

lutions are effective in reducing the distortions.
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1.3 Organization

The organization of the dissertation is as follows.

• Chapter 2: This chapter first examines the PLL and how the leakage

of the reference signal into the control line of the VCO creates spurious

tones in the sampling clock and the sampled data [17]. We show that the

sideband distortions in the sampled data can be expressed as a function of

some parameters. Using a training signal, we propose an estimation scheme

that estimates the distortion parameters online, and a compensation scheme

that corrects the distorted signal. The Cramer-Rao bound for estimating

the distortion parameters is derived and compared against the simulation

results. The simulations also examine the effect of bit resolution, amplitude

of the training signal, additional noise in the system, e.g., random jitter in

the sampling clock or in the training signal, on the performance of the

proposed solution.

• Chapter 3: In this chapter, we extend our Chapter 2 and examine the

impact of spurious tones in spectrum sensing applications [18]. In these

applications, the presence of spurious sidebands can lead to false detection

of signals in otherwise empty channels. Here, we assume that the PLL is

in tracking mode (when the loop is in lock) and the distortion parameters

are estimated using a training signal before spectral sensing. In spectrum

sensing applications, a commonly used module is one that performs the

discrete Fourier transform (DFT) or the fast Fourier transform (FFT). To

reduce hardware complexity and computation cost, we propose an algo-

rithm that uses the FFT block to estimate the sampling errors from the

spurious sidebands. We also analyze the effects of the spurious sidebands
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on spectrum sensing. Theoretical analysis of the detection performance in

the presence of the distortions is derived and it shows that the detection

performance is degraded. Computer simulations are included to show that

the proposed solution can remove the spurious sidebands and improve the

detection performance.

• Chapter 4: In this chapter, we extend the work from Chapter 2 to handle

distortions due to random jitter in the sampling clock. We further extend

the work to the case where the signal is down-converted into in-phase and

quadrature-phase components before they are sampled [19]. We analyze

the performance of the proposed techniques in some detail and provide

supporting simulations.

• Chapter 5: In this chapter, we develop and analyze an adaptive frequency-

domain structure to compensate the effects of timing and gain mismatches

in TI-ADCs [20, 21]. The solution eliminates some of the conditions and

limitations of prior approaches and is able to deliver enhanced performance.

The signal is split into multiple frequency bins and adaptation across the

frequency channels is combined by means of an adaptive strategy. The

construction is able to assign more or less weight to the various frequency

channels depending on whether their estimates are more or less reliable

in comparison to other channels. Analysis and simulations are used to

illustrate the superior performance of the proposed technique.

• Chapter 6: The last chapter conclude the dissertation and discuss future

research directions.
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CHAPTER 2

Digital Suppression of Spurious PLL Tones in

ADCs

This chapter focuses on the distortions caused by the spurious sidebands that are

induced by the imperfections in the sampling clock of an ADC [17]. The sampling

clock is usually generated by a phase-locked loop (PLL) frequency synthesizer.

Spurious tones in the ADC clock result from leakage of the reference signal in the

PLL into the control line of the voltage-controlled oscillator (VCO). As a result,

spurious sidebands are introduced into the sampled data. In applications such as

spectrum sensing in cognitive radios, spurious tones from primary signals might

give a false positive detection on actual free channels [18]. Conventional ways to

mitigate the problem include reducing mismatch in the charge pump (CP) and

using large capacitors in the loop filter of the PLL [22, 23].

Other approaches [24, 25] include increasing the complexity of the circuit de-

sign. For example, [24] proposed using multiple phase-frequency detectors (PFD)

and CPs that operate in delay with respect to one another. This approach reduces

the magnitude of the spurs, and shifts the frequency of the sidebands away from

the frequency of the PLL clock. Reference [25] proposed adding another PFD,

integrators and voltage-controlled current sources. The additional components

are used to reduce the distortions after the PLL is locked.

Other ways to mitigate the problem is to change the architecture of the ADC.
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Some approaches [14–16] interleave several ADCs in order to produce an effec-

tive higher sampling rate. Since each ADC operates at a slower rate, the clock

will have lower distortions thereby reducing the distortion effects. This tech-

nique, however, introduces other problems such as mismatch in the delay of the

clock fed into each ADC, the gain of each ADC, and DC offset between ADCs.

In [1, 14, 15], methods to estimate and remove these mismatches are proposed.

Later in Chapter 5, we will present a new compensation technique, which gives

better performance than existing solutions. Another form of ADC that differs

from conventional impulse sampling is the weighted integration sampler. Ref-

erences [26–29] describe and analyze integration sampling circuits with internal

antialiasing filtering. The integration sampler creates an internal filter, which can

be used to reduce distortions. However, the integration sampler is more complex

than a conventional impulse sampler. The basic component in the integration

sampler is a charge sampling circuit. The circuit contains a capacitor that is first

charged, then sampled and finally discharged. This process is repeated continu-

ously. The integration sampler is designed either using multiple charge sampling

circuits that are time-interleaved, or using a charge sampling circuit that has a

larger sampling frequency in comparison to the desired channel bandwidth.

These compesation techniques are largely in the analog domain. We pursue

a different approach to the problem by using digital signal processing (DSP)

techniques. DSP techniques rely on processing the data algorithmically in the

digital domain, which is a more affordable approach than trying to perfect the

circuitry. There already exist works that handle various types of distortions in

the ADC via digital signal processing methods. For example, in [30], a technique

was proposed to remove jitter in narrowband signals with the help of a reference

signal. This method was improved in [31] and used to handle jitter errors in

OFDM signals. References [32,33] extended the method to bandpass signals with
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an input reference signal. Reference [34] analyzed the effects of finite aperture

time and sampling jitter in wideband data acquisition systems. Reference [35]

addressed a problem in front-end ADC circuitry involving nonlinear frequency-

dependent errors using calibration signals. These works were proposed to solve

the distortions caused by the random jitter in the ADC. In this chapter, we

consider the distortions due to the spurious tones in the sampling clock of the

ADC. We will show that the spurious tones in the sampling clock give rise to

a deterministic (as opposed to random) distortion. We further show that the

effect of these distortions can be modeled by a few parameters. Moreover, the

estimation of these parameters can be improved by using a longer integration

time. Consequently, the distortions in the sampled data can be removed more

effectively.

Rather than reduce the PLL sidebands, we propose a method to estimate the

sidebands imparted on a sinusoid training signal and then use this information

to compensate for the distortions caused by spurious sidebands on the actual

sampled data. This is done by estimating the distortion errors caused by the

sidebands and using an interpolation scheme to remove their effect in the digital

domain. The work here is based on [17], which expands on the earlier and shorter

work [36] and provides detailed derivations, derives the Cramer-Rao bound for

the estimation error, compares the estimation performance against the CRB, and

simulates the proposed algorithm under various types of noise and parameters.

The chapter is organized as follows. Section 2.1 discusses a mathematical

model for the VCO clock and what happens when the reference signal is leaked

into the control line of the VCO. Section 2.2 derives a model for the non-ideal

sampling instants of the ADC. Section 2.3 shows the effect of the non-ideal sam-

pling model on a sinusoidal tone. Section 2.4 proposes an architecture to remove
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the distortion effect caused by the PLL sidebands. Section 2.5 develops a method

to estimate the distortion errors from the sampled data; the errors are used in

the proposed architecture in section 2.4. We also derive a Cramer-Rao bound for

the estimates to illustrate the performance of the estimation algorithm. Section

2.6 provides computer simulations and section 2.7 summarizes the paper.

2.1 Effect of leakage on the clock signal

In this section and the next one, we develop an analytical model that captures

the effect of spurious PLL sidebands on the sampling time instants. Our aim is to

arrive at an expression that describes the resulting fluctuations in the sampling

times of the ADC.

2.1.1 Source of leakage

To begin with, in [22] and [37], a VCO is defined as a circuit that generates a

periodic clock signal, s(t), whose frequency is a linear function of a control voltage,

Vcont. Let the gain of the VCO and its “free running” frequency be denoted by

Kvco and fs, respectively. The generated clock signal is described by

s(t) = As sin

(

2πfst +Kvco

∫ t

−∞
Vcontdt

)

(2.1)

To attain some desired oscillation frequency, the quantity Vcont is set to an appro-

priate constant value. However, the generated signal, s(t), may not be an accurate

tone due to imperfections. To attain good frequency synthesis, the clock signal is

divided and fed back into a control block that consists of a phase-detector (PD)

and a low-pass filter (LPF) as shown in Figure 2.1 [22, 37]. The PD/LPF block

compares the divided frequency clock signal with a low-frequency reference signal

at fref and makes adjustments to Vcont.
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Reference
sinewave

Vr cos(2πfreft+ θr)

PD and LPF

V0 cos(2πfreft+ θ0)

Vcont
VCO

÷N

s(t)

Figure 2.1: Block diagram of a PLL.

The reference leakage into the control line of the VCO is typically due to the

imperfections in the PD and LPF before the VCO. A non-ideal PD leaks the

reference signal and a non-ideal LPF fails to remove the leakage fully. Interested

users can refer to [22,38–40] for detailed explanations. This leakage feed-through

causes the PLLs to have spurious tones. The periodic leakage signal has a funda-

mental frequency at fref and may have higher harmonic components. However,

the most dominant component in the leakage signal is the one at fref. This most

dominant component also relates directly to the most dominant spurious tones

in the distorted clock signal. Here, we assume that the leakage signal is a sinu-

soidal signal at fref. We will show that the sinusoidal leakage creates sampling

offsets that are defined by a sinusoidal expression at the same frequency. Fur-

thermore, once the parameters in the sinusoidal expression are estimated, we can

compensate for the distorted sampling offsets. Similarly, any periodic signal can

be represented by a summation of sinusoidal signals at multiples of fref. The

sampling offsets that are created by the summation of sinusoidal signals will also

result at some summation of sinusoidal expression. More interestingly, there is a

unique relationship between each sinusoidal signal in the leakage signal and a pair

of sinusoidal expression in the sampling offsets. Thus, the work in this chapter

(which examines sinusoidal leakage) can be be extended for periodic signals as

well.
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2.1.2 Effect of leakage

Due to imperfections in the circuitry, the reference signal leaks into the control

line of the VCO. We assume that the presence of the LPF before the control line

of the VCO attenuates the leakage to some extent (but is not able to remove it

completely) so that it is reasonable to assume the variable C0 further ahead in

(2.4) satisfies C0 ≪ 1. For simplicity, we assume that the desired clock signal at

fs is obtained when Vcont is 0. Now, suppose there is leakage from the reference

signal so that Vcont becomes

Vcont = V0 cos(2πfreft+ θ0) (2.2)

for some {V0, θ0}. Then, the output of the VCO becomes

s(t) = As sin(2πfst + C0 sin(2πfreft+ θ0) + φs) (2.3)

where φs is some unknown phase offset and

C0 =
Kvco

2πfref
V0 (2.4)

We will be analyzing the signal model with respect to an arbitrary reference of

time. Using a change of variables, let t = t′ − φs

2πfs
and substitute t into (2.3).

The new equation is similar to (2.3) except that φs is 0. Therefore, we can set

φs = 0 without loss of generality. Using a trigonometric identity, (2.3) can be

expressed as

s(t) = As sin(2πfst) cos(C0 sin(2πfreft + θ0))

+ As cos(2πfst) sin(C0 sin(2πfreft+ θ0))
(2.5)
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Using sin(x) ≈ x and cos(x) ≈ 1 when x is small, and the assumption C0 ≪ 1,

then (2.5) can be approximated as:

s(t) ≈ As sin(2πfst) + AsC0 cos(2πfst) sin(2πfref t+ θ0)

= As sin(2πfst) +
AsC0

2
sin(2π(fs + fref)t+ θ0)

− AsC0

2
sin(2π(fs − fref)t− θ0)

(2.6)

The value of C0 determines the relative power. For example, if the ratio of the

sideband power (AsC0)
2/8 to the desired clock power (A2

s/2) is -50 dBc to -70

dBc, then C0 would be in the range 6.32× 10−3 to 6.32× 10−4.

2.2 Non-ideal sampling and distortion model

The distorted signal, s(t), in (2.3) is often used as the sampling clock for an ADC.

The leakage in s(t) results in some deterministic distortions on the sampling

instants. To analyze the effect of these distortions, we derive an approximate

model for the sampling offsets first, and then examine the accuracy of the model.

2.2.1 Sampling instants

We start by determining the sampling instants of the ADC that would result

from using (2.3) as a clock signal. For ease of notation, define ǫs(t) and ǫs[n] as

ǫs(t) =
C0

2πfs
sin(2πfreft + θ0) (2.7a)

ǫs[n] , ǫs(t)|t=nTs
(2.7b)

The sampling instants of the ADC are the zero-crossings of (2.3). Using (2.3)

and (2.7) and defining Ts = 1/fs, the sampling instants, tn, of the ADC must
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satisfy the condition:

2πfs (tn + ǫs(tn)) = 2πn (2.8)

or, equivalently,

tn + ǫs(tn) = nTs (2.9a)

tn = nTs − ǫs(tn) (2.9b)

This is a nonlinear equation in tn. We solve it as follows. Let

tn , nTs + e[n] (2.10)

for some perturbation terms e[n] that we wish to determine. From (2.9) we have

that

e[n] = −ǫs(tn)

= −ǫs(nTs − ǫs(tn)) (2.11)

Since C0 ≪ 1, we know that ǫs(tn) is bounded by

|ǫs(tn)| ≤
C0

2πfs
≪ Ts (2.12)

Therefore, the discrete sequence of offsets e[n] is approximated as

e[n] ≈ −ǫs[n] (2.13)

The next section provides a bound for the approximation.

2.2.2 Accuracy of model

Let x̂n refer to the approximate value (i.e.,−ǫs[n] for the true value xn (i.e., e[n] =

−ǫs(tn)). For brevity’s sake, the relative error bound is stated here and the

derivations are shown in Appendix 2.A. The relative error bound is found to be:
∣
∣
∣
∣

x̂n − xn
xn

∣
∣
∣
∣
≤ γ(1 + γ)

1− γ
(2.14)
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where

γ , C0
fref
fs
, 0 < γ < 1 (2.15)

For example, if the ratio of the sideband power (A2
sC

2
0/8) to the desired signal

power (A2
s/2) in (2.6) is -50 dBc, then C0 = 6.32× 10−3. Suppose the frequency

of the clock signal, fs, and the frequency of the reference signal, fref, are 1 GHz

and 20 MHz, respectively. Then γ = 1.26× 10−4. In this case, we conclude from

(2.14) that the relative error is upper bounded by 1.26× 10−4. The error bound

shows that the model (2.13) approximates well the perturbations.

2.3 Effect of sampling distortions on ADC performance

Using the sampling model (2.10) and (2.13) derived in the previous section, we

can examine the effect of the spurious PLL tones on the performance of the ADC.

Let the input signal to the ADC be

w(t) = Aw cos(2πfwt + φw) (2.16)

Using (2.10), the distorted sampled signal, w̌[n], is given by

w̌[n] , w(t)|t=tn

= w(nTs + e(n)) (distorted sample)
(2.17)

Let

w[n] , w(t)|t=nTs
(desired sample) (2.18a)

ẇ[n] , ẇ(t)|t=nTs
(2.18b)

From Taylor series approximations, we know that when |y − a| is small, a differ-

entiable function f(y) can be approximated to first-order by

f(y) ≈ f(a) + (y − a)ḟ(a) (2.19)

14



in terms of the derivative of f at a. If we set a = nTs and y = nTs + e[n], and

apply (2.19) to w(t) we find that w̌[n] and w[n] are related via

w̌[n] ≈ w[n] + e[n]ẇ[n] (2.20)

Let

wc[n] = cos(2πfwnTs + φw) (2.21a)

ws[n] = sin(2πfwnTs + φw) (2.21b)

ẇ[n] = −2πfwAwws[n] (2.21c)

The term e[n]ẇ[n] in (2.20) can be expressed using (2.13) as

e[n]ẇ[n] = 2πfwAwws[n]ǫs[n] (2.22)

Using (2.7) and (2.21b), the above equation can be expressed as

fwAwC0

2fs
[cos(2π(fw − fref)nTs + φw − θ0) − cos(2π(fw + fref)nTs + φw + θ0)]

(2.23)

This represents two sideband frequencies at fw ± fref. These results show that

when the input w(t) is a tone at frequency fw, then the sampled data, w̌[n], will

consist of three sinusoids at fw and fw ± fref.

An interesting observation in the sampled data is that the ratio of the power

of the sidebands (2.23) to the carrier signal (2.16) is smaller compared to the

case in the spurious clock signal in (2.6). To observe this, recall from the last

paragraph of Section 2.1 that if the sideband of the clock, s(t), is at -50 dBc,

then C0 = 6.32× 10−3. Suppose fw and fs are chosen to be 40 MHz and 1 GHz,

respectively. From w[n] and (2.23), the ratio of the power of the sideband to the

power of the carrier signal is approximately:

20 log10

(
fw
fs

C0

2

)

= −78 dBc (2.24)
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Figure 2.2 shows a realization of the distorted PLL clock at 1GHz and the sampled

sinusoidal tone at 40 MHz. The distorted PLL clock and sampled signal are

simulated using the expressions in (2.3) and (2.17), respectively. The power ratio

of the sideband to carrier signal in the PLL and sampled signal are -50.8 dBc and

-78.2 dBc, respectively.
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Figure 2.2: The left figure shows the power spectral density (PSD) of the distorted

PLL clock at 1 GHz and the right figure shows the PSD of the sampled sinusoidal tone

at 40 MHz.

2.4 Sideband suppression

The previous section showed how the input tone is distorted by the offsets e[n]

(see (2.20)). If e[n] were known, then we could remove its effects. From (2.7) and

(2.13), e[n] is dependent on the value of the parameters C0 and θ0. Therefore,

our first step towards compensating for the effect of e[n] is to estimate {C0, θ0}.

One initial approach is to inject a training sinusoidal signal into the ADC and

sample it before acquiring any signal of interest. Then, the parameters {C0, θ0}
and the offsets can be estimated from the training signal. Subsequently, it be-
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comes possible to compensate signals of interest to obtain the desired signals.

This approach assumes that the parameters {Ĉ0, θ̂0} of the PLL sideband distor-

tions do not change over the duration of signal acquisition.

However, if the parameters {Ĉ0, θ̂0} change during signal acquisition, then

it is desirable to have a mechanism to measure {Ĉ0, θ̂0} either continuously or

intermittently during the acquisition. This is the approach we shall adopt and it

will be based on extending the technique proposed in [41]. Figure 2.3 shows the

proposed design and is motivated as follows.

r(t)r(t)
q(t)q(t) ·q[n]·q[n]

ê[n]ê[n]
Signal ExtractionSignal Extraction

Parameter and
o®set estimation

fĈ0; µ̂0g

Parameter and
o®set estimation

fĈ0; µ̂0g

ADCADC
-

+

Signal RecoverySignal Recovery

Derivative
¯lter

Derivative
¯lter

High frequency
(jittered) oscillator (fy)

High frequency
(jittered) oscillator (fy)

Low frequency
(clean) oscillator (fw)

Low frequency
(clean) oscillator (fw)

w(t)w(t) y(t)y(t)

Recovered
samples r̂[n]
Recovered
samples r̂[n]

·r[n]·r[n]

Distorted
Sampling Clock
Distorted

Sampling Clock

wm(t)wm(t)

·p[n]·p[n]

HPFHPF
·wm[n]·wm[n]

LPF1LPF1

Figure 2.3: Proposed architecture for reducing the effect of PLL sidebands on A/D

converters.

Two tone signals are used; one at low frequency and another at high frequency.

A low-frequency tone, w(t), is multiplied by a high-frequency tone, y(t), to obtain

a modulated signal, wm(t). It is possible that the signal y(t) has some jitter. The

signal wm(t) is then injected into the ADC along with the desired input signal,

r(t). We assume that r(t) is in a lower frequency band and does not overlap with

wm(t) in the frequency domain; the purpose of the high-frequency tone y(t) is

to modulate w(t) to higher bands where this overlap is minimal. The jittered

sampled signal q̌[n] contain contributions from the desired signal r(t) and the

control signal s(t). By examining the effect of the ADC conversion on wm(t),

we can infer the distortion caused on r(t) and use this information to recover

the samples r[n]. We now explain the operation of the proposed structure in
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greater detail. We will split the structure into four main components. They are

called training signal injection, training signal extraction, parameter and offset

estimation, and signal recovery. We will discuss the training signal injection,

training signal extraction and signal recovery in this section. The parameter and

offset estimation is covered in the next section.

2.4.1 Training signal injection

Let us write

y(t) = cos(2πfy(t+ τ(t)) + θy) (2.25)

where τ(t) models the jitter in y(t) and is assumed to be small. We assume

that the jitter arises from a second-order PLL phase noise model as described in

Appendix 2.B. Multiplying w(t) by y(t) yields a modulated signal wm(t). The

signal wm(t) is non-uniformly sampled by the ADC using the sampling instants

nTs + e[n], i.e,

w̌m[n] , w̌[n]y̌[n] (2.26)

where w̌[n] is defined in (2.17) and y̌[n] is

y̌[n] , cos(2πfy(nTs + e[n] + τ(nTs + e[n]) + θy) (2.27a)

≈ cos(2πfy(nTs + e[n] + τ [n]) + θy)

≈ cos(2πfynTs + θy)− 2πfy(e[n] + τ [n]) sin(2πfynTs + θy) (2.27b)

τ [n] , τ(t)|t=nTs
(2.27c)

The spectrum of the jitter (see Appendix 2.B) is a skirt where the spectrum decays

with frequency. Thus, we assume that the jitter is relatively slowly-varying.

Therefore, when the slow-varying jitter is sampled with offset e[n], the term
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τ(nTs + e[n]) in (2.27a) is approximated by τ [n]. (2.27b) is derived using a first-

order Taylor series approximation. Observe that w̌m[n] contains the distortion

from both the deterministic offset e[n] and the jitter from y(t).

2.4.2 Training signal extraction

We are interested in estimating the offset e[n] that is in w̌[n]. Thus, we would like

to remove y̌[n], which contains both e[n] and τ [n]. This can be done by creating

an in-phase cosine sequence digitally, and multiplying the sequence with w̌m[n]

to yield

w̌m[n] cos(2πfynTs + θy) = w̌[n]y̌[n] cos(2πfynTs + θy)

≈ 1

2
(w̌[n] + w̌[n] cos (4πfynTs + 2θy)−

2πfy(τ [n] + e[n])w̌[n] sin(4πfynTs + 2θy))

(2.28)

The above equation shows w̌[n] multiplied by a DC term, a noiseless cosine se-

quence and a noisy sine sequence. The noisy sine sequence contains τ [n] and

e[n]. In the frequency domain, the spectrum of the noisy sine sequence is the

spectrum of τ [n] and e[n] centered around ±(2fy + fw) and ±(2fy − fw), and

repeated at multiples of fs. The dominant frequency content is concentrated

around ±(2fy+fw) and ±(2fy −fw) and its replica are spaced at multiples of fs.

However, there is some noisy frequency content from τ [n] in the low frequency

region where w̌[n] occurs. An illustration of the spectrum in (2.28) is shown in

Fig. 2.4. The parameters used are fw = 40 MHz, fy = 420 MHz.

If the dominant noisy frequency content is far from w̌[n], then its effect on

w̌[n] is reduced. Therefore, a low-pass filter is used to retain the sequence w̌[n],

and remove the effects of the sine and cosine sequences in (2.28). Under the

simulation parameters used in the paper, we assume that the noise from τ [n] is

not significant and the output after the low-pass filter contains only w̌[n]. This
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Figure 2.4: PSD of w̌m[n] cos(2πfynTs + θy) in (2.28). Note that w̌[n] is in the lower

frequency range.

is verified in the next two sections. First, in section 2.5, we analyze the mean-

square error in estimating e[n] from w̌[n]. Next, in section 2.6, we simulate the

estimation and compensation process and verify that the noise from τ [n] does

not affect performance. If it is required, we can use the phase-noise model of

Appendix 2.B to characterize the effect of τ [n] on w̌[n]. For completeness, we

examine the effect of τ [n] in Appendix 2.C. Thus, we assume in the paper that

the output after the low-pass filter is p̌[n]:

p̌[n] =
Aw

2
cos(2πfw(nTs + e[n]) + φw) (2.29)

The training signal extraction block diagram is shown in Figure 2.5. This stage

is represented by the “Parameter and offset estimation” block in Figure 2.3.

The signal p̌[n] will be used in the next section to estimate {C0, θ0} and the

sampling offset e[n]. The phase recovery in Figure 2.5 estimates θy from w̌m[n]

and generates cos(2πfynTs+θ̂y). The phase θy can be estimated by approximating

20



·wm[n]·wm[n]
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Phase recoveryPhase recovery

Figure 2.5: Diagram of signal extraction block.

w̌m[n] as the summation of two tones:

w̌m[n] = w̌[n]y̌[n]

= Aw cos(2πfw(nTs + e[n]) + φw) cos(2πfy(nTs + e[n] + τ [n]) + θy)

≈ Aw cos(2πfwnTs + φw) cos(2πfynTs + θy)

=
Aw

2
[cos(2π(fw − fy)nTs + φw − θy)

+ cos(2π(fw + fy)nTs + φw + θy)]

(2.30)

Thus, θ̂y can be found after estimating the phases in the two tones at (fw − fy)

and (fw+fy). One way to estimate the phases of the tones is shown in Appendix

2.D.

2.4.3 Signal recovery

Let us assume for now that e[n] has been estimated. We can then recover the

desired signal, r[n], from ř[n] as follows:

r[n] , r(nTs)

= r (nTs + e[n]− e[n])

≈ r(nTs + e[n])− e[n]ṙ(nTs + e[n])

= ř[n]− e[n]ṙ(nTs + e[n]) (2.31)
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where ř[n] are the distorted samples, e[n] are the sampling offsets (2.13) and

ṙ(nTs + e[n]) are the derivatives of r(t) at t = nTs + e[n]. These derivatives can

be approximated using a discrete filter applied to ř[n]. Equation (2.31) shows that

r(n) can be recovered by subtracting from ř[n] the product of the offsets, e[n],

and the output of the differentiator filter. A block diagram showing the signal

recovery process using the estimated offsets, ê[n], is illustrated in Figure 2.6. An

-

+

ř[n]

ê[n]

derivative
filter

recovered
samples r̂[n]

Figure 2.6: Block diagram of the signal recovery.

example of a differentiator filter is a finite impulse response (FIR) filter with

the weights shown in Table 2.1 below. In summary, the steps for the proposed

algorithm are summarized in Algorithm 2.1.

Table 2.1: Filter coefficients of a FIR differentiator filter.

Tap 1 2 3 4 5 6

Weights 0.004 -0.028 0.106 -0.307 0.888 0.000

Tap 7 8 9 10 11 -

Weights -0.888 0.307 -0.106 0.028 -0.004 -
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Algorithm 2.1 Summary of sideband suppression algorithm

Require: The sampled data is filtered by the LPF1 and HPF in Fig. 2.3 to obtain

ř[n] and w̌m[n], respectively.

% Training signal extraction (See Fig. 2.5)

p̌[n] = LPF2

{

w̌m[n] cos(2πfynTs + θ̂y)
}

% Ĉ0 and θ̂0 are estimated using Algorithm 2.2 or 2.3 in Section 2.5.

[Ĉ0, θ̂0] = ParameterEstimate(p̌[0, · · · , L− 1])

repeat

% Offeset estimation (2.13)

ê[n] = − Ĉ0

2πfs
sin(2πnfrefTs + θ̂0)

% Signal recovery (see Fig. 2.6)

r̂[n] = ř[n]− e[n]ṙ(nTs + e[n])

until end of data

2.5 Parameter and offset estimation

2.5.1 Estimation algorithm

We estimate {C0, θ0} from the sidebands appearing in p̌[n] given by (2.29). We

formulate a least-squares estimation problem. We first express p̌[n] using (2.10)

and (2.13) as

p̌[n] =
Aw

2
cos(2πfw(nTs + e[n]) + φw)

≈ Aw

2
[cos(2πfwnTs + φw)− 2πfwe[n] sin(2πfwnTs + φw)]

=
Aw

2
cos(2πfwnTs + φw)+

fpAwC0

4fs
[cos(2π(fw − fref)nTs + φw − θ0)

− cos(2π(fw + fref)nTs + φw + θ0)]

(2.32)
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The signal p̌[n] depends on the parameters in the following vector (see (2.36)

further ahead):

λ ,











λ1

λ2

λ3

λ4











=











Aw

2
cos(φw)

Aw

2
sin(φw)

fwC0

2fs
cos(θ0)

fwC0

2fs
sin(θ0)











(2.33)

Here, we assume that Aw and φw are unknown parameters to be estimated along

with {C0, θ0}. However, their values may be known or controlled. Later, we will

show how to simplify the proposed algorithm if their values are known. For now,

let’s assume that we need to estimate all the parameters in λ. Observe that if λ

is estimated, then the parameters C0 and θ0 can be recovered as:

Ĉ0 =
2fs
fw

√

λ23 + λ24

θ̂0 = tan−1

(
λ4
λ3

) (2.34)

For ease of notation, the following sequences are defined:

c1[n] = cos (2πfwnTs) , s1[n] = sin (2πfwnTs)

c2[n] = cos (2π (fw − fref)nTs) , s2[n] = sin (2π (fw − fref)nTs)

c3[n] = cos (2π (fw + fref)nTs) , s3[n] = sin (2π (fw + fref)nTs)

(2.35)

Using trigonometric identities and some algebra, we can write (2.32) as

p̌(n,λ) = g1[n]λ1 + g2[n]λ2 + g3[n]λ1λ3

+ g4[n]λ2λ3 + g5[n]λ2λ4 + g6[n]λ1λ4

(2.36)

where

g1[n] = c1[n], g2[n] = −s1[n]
g3[n] = c2[n]− c3[n], g4[n] = −s2[n] + s3[n]

g5[n] = c2[n] + c3[n], g6[n] = s2[n] + s3[n]

(2.37)
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Suppose we collect a segment of data of length L perturbed by noise v[n], say,

yp[n] = p̌[n] + v[n]. Then we can pose the problem:

min
λ

L−1∑

k=0

[yp[k]− p̌(k,λ)]2 (2.38)

It is noted that p̌(n,λ) is not a linear function over λ; it is linear if either {λ1, λ2}
or {λ3, λ4} are fixed. Therefore, a sub-optimal approach is used by iteratively

fixing a pair of variables while solving for the other pair. When {λ3, λ4} are fixed,

we solve for {λ1, λ2} using

min
pα

‖yα −Gαpα‖2 (2.39)

where

Gα =
[

g1 + λ3g3 + λ4g6 g2 + λ3g4 + λ4g5

]

(2.40a)

gi =








gi[0]
...

gi[L− 1]








(2.40b)

yα =








yp[0]
...

yp[L− 1]








(2.40c)

pα =




λ1

λ2



 (2.40d)

From [42], the closed-form solution is

pα = (GT
αGα)

−1GT
αyα (2.41)

Similarly, when {λ1, λ2} is fixed, we could solve for {λ3, λ4} using

min
pβ

‖yβ −Gβpβ‖2 (2.42)
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where

Gβ =
[

λ1g3 + λ2g4 λ2g5 + λ1g6

]

(2.43a)

pβ =




λ3

λ4



 (2.43b)

yβ = yα − λ1g1 − λ2g2 (2.43c)

The closed-form solution is

pβ = (GT
βGβ)

−1GT
βyβ (2.44)

The closed-form solutions in (2.41) and (2.44) involve a matrix-matrix multipli-

cation and an inverse matrix operation. The matrices GT
αGα and GT

βGβ are 2 ×
2 matrices. Thus, their inverses can be computed easily. The computation of the

matrix-matrix multiplication can be reduced by exploiting the structure in the

matrices. For example, for the matrix GT
αGα, its elements are linear combina-

tions of gTk gl, {k, l} ∈ {1, 2, ..., 6} and gTk gl can be pre-computed and reused in

the iterative algorithm. Alternatively, if we assume that the length of the data

(L) is large, gTk gk can be approximated as:

gT1 g1 ≈ L
2
, gT3 g3 ≈ L, gT5 g5 ≈ L

gT2 g2 ≈ L
2
, gT4 g4 ≈ L, gT6 g6 ≈ L

(2.45)

and gTk gl ≈ 0, k 6= l. Thus, GT
αGα and GT

βGβ can be approximated as

GT
αGα ≈ L

2
(1 + 2λ23 + 2λ24)I (2.46a)

GT
βGβ ≈ L(λ21 + λ22)I (2.46b)

From simulations, it was observed that the mean-square error (MSE) for Aw and

θ0 deviates from the Cramer Rao Bound (CRB) for small sample length when

(2.46) is used. It was found that the estimated values are biased and it is caused
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by a poor approximation of the matrix GT
αGα. A better approximation is found

to be:

GT
αGα ≈





L
2
(1 + 2λ23 + 2λ24) gT1 g2

gT1 g2
L
2
(1 + 2λ23 + 2λ24)



 (2.47)

where gT1 g2 can be pre-computed and reused. In summary, the proposed algo-

rithm to estimate the sampling offset parameters C0 and θ0 is shown in Algorithm

2.2, where it solves for all 4 parameters in λ. If Ap and φp are known, then the

problem is simplified into solving the minimization problem (2.42) only. The

simplified algorithm is shown in Algorithm 2.3.

2.5.2 Cramer-Rao bound

The previous section estimates C0 and θ0 using (2.34). These two parameters

are used to estimate the sampling offsets via (2.13) and (2.7). We will derive the

Cramer-Rao Bound (CRB) [43] for the parameters and the sampling offsets in

white Gaussian noise (WGN). Let

κ = [κ1 κ2 κ3 κ4]
T

,

[
Aw

2

fwC0

2fs
φw θ0

]T (2.48)

The vector κ is now used instead of λ from the previous section since the Fisher

Information Matrix (FIM) (see (2.52) further ahead) involving κ can be easily

inverted to yield the CRB for the parameters, κi, and the sampling offsets. We

rewrite (2.32) in terms of κ as follows:

p̌(n,κ) = κ1 cos(2πfwnTs + κ3)+

κ1κ2 [cos(2π(fw − fref)nTs + κ3 − κ4)

− cos(2π(fw + fref)nTs + κ3 + κ4)]

(2.49)
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Algorithm 2.2 Parameter estimation algorithm

Require: Let the number of iterations be N and λ = [ 0 0 0 0 ]T . Precompute

gi from (2.40b) and (2.37).

procedure ParameterEstimate(yp[0, · · · , L− 1])

for k = 1, · · · , N do
[

λ1 λ2 λ3 λ4

]T

= λ

% Estimate {λ1, λ2} using (2.41)

yα =
[

yp[0] · · · yp[L− 1]
]T

Gα =
[

g1 + λ3g3 + λ4g6 g2 + λ3g4 + λ4g5

]

GT
αGα =





L
2 (1 + 2λ2

3 + 2λ2
4) gT1 g2

gT1 g2
L
2 (1 + 2λ2

3 + 2λ2
4)





pα = (GT
αGα)

−1GT
αyα

[

λ1 λ2

]T

= pα

% Estimate {λ3, λ4} using (2.44)

Gβ =
[

λ1g3 + λ2g4 λ2g5 + λ1g6

]

GT
βGβ = L(λ2

1 + λ2
2)I

yβ = yα − λ1g1 − λ2g2

pβ = (GT
βGβ)

−1GT
β yβ

[

λ3 λ4

]T

= pβ

end for

% Ĉ0 and θ̂0 are estimated from {λ3, λ4} using (2.34)

Ĉ0 =
2fs
fw

√

λ2
3 + λ2

4

θ̂0 = tan−1

(
λ4

λ3

)

return Ĉ0, θ̂0

end procedure
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Algorithm 2.3 Simplified parameter estimation algorithm

Require: Let the number of iterations be N and λ = [ 0 0 0 0 ]T . Precompute

gi from (2.40b) and (2.37). Let λ1 = Ap cos(φp) and λ2 = Ap sin(φp).

procedure ParameterEstimate(yp[0, · · · , L− 1])
[

− − λ3 λ4

]T

= λ

% Estimate {λ3, λ4} using (2.44)

Gβ =
[

λ1g3 + λ2g4 λ2g5 + λ1g6

]

GT
βGβ = L(λ2

1 + λ2
2)I

yα =
[

yp[0] · · · yp[L− 1]
]T

yβ = yα − λ1g1 − λ2g2

pβ = (GT
βGβ)

−1GT
βyβ

[

λ3 λ4

]T

= pβ

% Ĉ0 and θ̂0 are estimated from {λ3, λ4} using (2.34)

Ĉ0 =
2fs
fw

√

λ2
3 + λ2

4

θ̂0 = tan−1

(
λ4

λ3

)

return Ĉ0, θ̂0

end procedure
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The FIM of the sampled signal p̌(n,κ) with length L in WGN with variance σ2

is

[I(κ)]ij =
1

σ2

L−1∑

k=0

∂p̌(k,κ)

∂κi

∂p̌(k,κ)

∂κj
(2.50)

The partial derivatives are given by

∂p̌(n,κ)

∂κ1
= cos (2πfwnTs + κ3)

+ κ2 cos (2π (fw − fref)nTs + κ3 − κ4)

− κ2 cos (2π (fw + fref)nTs + κ3 + κ4) (2.51a)

∂p̌(n,κ)

∂κ2
= κ1 cos (2π (fw − fref)nTs + κ3 − κ4)

− κ1 cos (2π (fw + fref)nTs + κ3 + κ4) (2.51b)

∂p̌(n,κ)

∂κ3
= −κ1 sin (2πfwnTs + κ3)

− κ1κ2 sin (2π (fw − fref)nTs + κ3 − κ4)

+ κ1κ2 sin (2π (fw + fref)nTs + κ3 + κ4) (2.51c)

∂p̌(n,κ)

∂κ4
= κ1κ2 sin (2π (fw − fref)nTs + κ3 − κ4)

+ κ1κ2 sin (2π (fw + fref)nTs + κ3 + κ4) (2.51d)

Assuming L is large, the FIM matrix I(κ) can be approximated to:

I(κ) ≈ 1

σ2











L
2
[1 + 2κ22] Lκ1κ2 0 0

Lκ1κ2 Lκ21 0 0

0 0 L
2
[κ21 + 2κ21κ

2
2] 0

0 0 0 L (κ1κ2)
2











(2.52)
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and the inverse FIM, I−1(κ), becomes

I−1(κ) ≈ σ2











2
L

− 2κ2

Lκ1
0 0

− 2κ2

Lκ1

1
Lκ2

1
[1 + 2κ22] 0 0

0 0 2
Lκ2

1(1+2κ2
2)

0

0 0 0 1
L(κ1κ2)

2











(2.53)

The CRB for each parameter, κi, is the diagonal value of the matrix, {I−1(κ)}i,i.
Now we derive the CRB for the sampling offset estimates. Introduce the sampling

offset function (2.13) that we want to estimate using κ as:

g(κ) = −ǫs[n]

= − 1

πfw

(
fwC0

2fs

)

sin(2πfref nTs + θ0)

= − κ2
πfw

sin(2πfref nTs + κ4) (2.54)

Then

∂g(κ)

∂κ
=

[

0
∂g(κ)

∂κ2
0
∂g(κ)

∂κ4

]T

(2.55)

where

∂g(κ)

∂κ2
= − 1

πfw
sin(2πfref nTs + κ4) (2.56a)

∂g(κ)

∂κ4
= − κ2

πfw
cos(2πfref nTs + κ4) (2.56b)

The Cramer Rao Bound (CRB) for the sampling offsets e(n) is then

Ce =
∂g(κ)T

∂κ
I−1(κ)

∂g(κ)

∂κ

=
1

L

(
σ

πfwκ1

)2
(
1 + 2κ22 sin

2(2πfref nTs + κ4)
)

≈ 1

L

(
σ

πfwκ1

)2

=
1

L

(
2σ

πfwAw

)2

(2.57)
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The derived CRB is used to assess the performance of the proposed compen-

sation and estimation algorithm in the next section. The CRB of e[n] is inversely

proportional to L and the square of fw and Aw and is proportional to σ2. This re-

veals that e[n] can be estimated more accurately when L, fw or Aw are increased

or when σ2 is reduced.

2.5.3 Performance analysis

To verify the performance of the parameter estimation algorithm, the following

simulation is done. Sampled data p̌[n] are created using (2.32) by fixing the

parameters to C0 = 6.32 × 10−3, Aw = 0.1 V, fw = 40 MHz, fref = 20 MHz.

The chosen value of C0 simulates a sideband of -78 dBc in the data. The phases

are randomly chosen and WGN is added to the signal. Simulations are repeated

using different noise powers. The standard deviations of the noise , σ, are { 1√
2
(1×

10−3), 1√
2
(1× 10−4), 1√

2
(1× 10−5)}. The factor 1√

2
is used to represent the noise

power reduction due to the multiplication with the cosine sequence in the signal

extraction block (Figure 2.5). This let us compare with the simulation results

where we simulate the entire proposed architecture process (Figure 2.3) in section

2.6. The length of the data, L, is varied from 28 to 220 and the results are obtained

by averaging over 300 simulations.

The parameter estimation algorithm stated in section 2.5.1 is used to estimate

C0 and θ0. Recall that in the estimation algorithm, the matrices GT
αGα and

GT
βGβ can be approximated as (2.47). In the simulations, the performance using

no approximation and the approximated matrices are compared. The methods

using no approximation and (2.47) are labeled as Mtd 1 and Mtd 2, respectively.

The sampling offset e(n) can be estimated using {Ĉ0, θ̂0} with (2.13). The

mean-square-error (MSE) of the sampling offset is calculated for performance
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analysis. The CRB bound for the sampling offset estimates in (2.57) is used to

benchmark the performance. The power of e[n] can be calculated and is found

to be 5.06 × 10−25 W. Thus, we normalize the MSE and CRB by dividing them

by the power of e[n]. Recall that the parameter estimation algorithm stated in

Section 2.5.1 has a user-defined number of iteration, N . In the simulations, N is

fixed at 1.
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Figure 2.7: The figure shows the normalized MSE of the sampling offset estimates

averaged over 300 simulations and the normalized CRB bound.

Figure 2.7 shows the normalized MSE of the estimated sampling offset using

various data lengths L and in the presence of noise. The normalized CRB of the

sampling offset estimation at the 3 different noise powers are the 3 lines in the

plot. As the noise power increases, the CRB increases. From the plot, it can be

seen that the estimation algorithm is performing close to the CRB.
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2.6 Simulations

The proposed method is tested over a range of input frequencies. The frequency of

the sampling clock, the low-frequency sinusoidal signal, and the high-frequency

sinusoidal signal are set at fs = 1 GHz, fw = 40 MHz and fy = 420 MHz,

respectively. Recall that we assume the high frequency signal y(t) is jittery. We

assume that y(t) from (2.25) is generated using a second-order PLL clock and has

a phase noise. This phase noise can be translated to random jitter τ(t) expressed

in y(t). The phase noise model is described in Appendix 2.B and the parameter

fn in the model is set to 5 MHz. The standard deviation of the random jitter

τ(t) due to phase noise is set to 1% of the sampling period. The frequency of the

reference signal in the PLL feedback loop is fref = 20 MHz. The input signal used

is a sinusoidal tone whose frequency is varied from 25 MHz to 250 MHz in steps

of 25 MHz. To reduce the effects of the training signal on the dynamic range

of the input data, the amplitude of the input signal r(t) and the low-frequency

training signal w(t) are set to 0.8 V and 0.1 V, respectively. In the simulations,

the length L is set to {218, 219, 220}. In all the simulations, WGN with standard

deviation σv = 1×10−3 is introduced at the input of the ADC and all the results

are averaged over 50 simulation runs. The lowpass filter LPF1 in Figure 2.3 uses

64 taps with passband to 300 MHz and stopband from 350 MHz. The highpass

filter HPF in Figure 2.3 uses 64 taps with stopband up to 300 MHz and passband

from 350 MHz. The lowpass filter LPF2 in the signal extraction block in Figure

2.5 uses 128 taps with a passband up to 70 MHz and stopband from 90 MHz.

2.6.1 Effect of bit resolution

In the first set of simulations, the ADC is assumed to have a 1V peak-to-peak

input range and various bit resolutions {10, 12, 14, 16} are simulated. Figure 2.8
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and 2.9 show the ratio of the power of the spurious sidebands to the power of

the input tone before and after using the proposed method at 10 bits and 16 bits

ADC resolution, respectively. We denote this ratio as RPSI.
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Figure 2.8: The plots show the RPSI, ratio of the power of the spurious sidebands (in

the sampled data of a 10 bit ADC) to the power of the input tone, before and after

compensation with σv = 1× 10−3.
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Figure 2.9: The plots show the RPSI in the sampled data of a 16 bit ADC, before and

after compensation with σv = 1× 10−3.
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From the plots, in the original signal, the RPSI varies across frequency. This

can be shown using (2.24) where fw denotes the frequency of the input signal.

When more samples are used to estimate the parameters, the accuracy of the

sampling offset estimates improves. Hence, the spurious sideband suppression

also improves.

To analyze the effect of bit resolution on performance, the next two plots are

generated in the following manner. For each simulated ADC bit resolution, the

average improvement in suppressing the spurious sidebands and the average MSE

of the estimated sampling offset normalized to the power of the sampling offset are

calculated and the results are shown in Figures 2.10 and 2.11, respectively. The
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Figure 2.10: The plot shows the trend in suppressing the spurious sidebands using

various bit resolution ADCs.

results show that the sideband suppression performance is directly related to the

accuracy of the sampling offset estimation. The figures also show that when more

data are used, the suppression of the spurious sideband and the sampling offset

estimation improves. In the simulations, WGN with σv = 1× 10−3 is fixed while
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Figure 2.11: The plot shows the trend in MSE of the estimated sampling offset using

various bit resolution ADCs.

the bit resolution is increased. Increasing bit resolution reduces quantization

noise and there is an improvement from 10 bits to 12 bits. However, when WGN

dominates over quantization noise, the performance is limited when more bits are

used.

We can also compare the MSE performance with the CRB in the previous

section. Recall that in section 2.4.2, we assume the effects of noise from the

noisy high frequency tone is negligible and the signal extraction block output

p̌[n] only. Subsequently, the performance analysis in the previous section shows

that the estimation error based on p̌[n] is close to the CRB bound. Here, we

simulate the entire process and evaluate the performance of the estimation error.

When σv = 1 × 10−3 and L = {218, 219, 220}, we show in Figure 2.11 that the

MSE of the sampling offsets is -10, -13 and -16 dB, respectively. These operating

conditions correspond to σv′ = (1 × 10−3)/
√
2 and L = {218, 219, 220} in Figure

2.7. From the two figures, the MSE values are similar. Therefore, we verifies that

the assumption holds for these simulation parameters.
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2.6.2 Effect of increasing the amplitude of the training signal

If we increase the amplitude of the training signal, at the expense of reducing

the dynamic range of the input signal, it is possible to improve the parameter

estimation accuracy and, hence, the spur suppression performance. The following

results are generated by fixing L = 218 and using a 10-bit ADC. The amplitude of

the training signal is increased from 0.05 V to 0.25 V, while the amplitude of the

input signal is decreased from 0.85 V to 0.65 V in tandem. The sum of the two

amplitudes remains at 0.9 V. The other simulation parameters remain the same.

Figure 2.12 shows the RPSI as the amplitude of the training signal increases.
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Figure 2.12: The same simulation parameters as in Fig. 2.8 are used, except that L is

fixed at 218 and the amplitudes of the training and input signals are varied.

To examine the improvement in spur suppression against the amplitude of

the training signal, the next plot is shown. Figure 2.13 shows the average spur

suppression improvement as the amplitude of the training signal is increased from

0.05 V to 0.25 V. We see that doubling the amplitude of the training signal from

0.1 V to 0.2 V reduces the spurious tones from 9 dB to 14 dB. If we compare this
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against Figure 2.10, the same amount of improvement is obtained when the data

length L is quadrupled (with a 10 bit ADC). This can also be inferred from the

CRB bound (2.57) where it is inversely proportional to the data length L and

the square of the amplitude of the training signal κ1.
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Figure 2.13: The plot shows the trend in suppressing the spurious sidebands as the

amplitude of the training signal increases.

2.6.3 Effect of additional random jitter in ADC

In the proposed architecture (Figure 2.3), other sources of imperfection may be

present. One source of imperfection is that the sampling clock itself may have

random jitter in addition to the deterministic sideband distortion caused by the

PLL and which we examined in this paper. Another possible error is that the

low-frequency training signal w(t) may have some amount of random jitter as

well. As such, we included these imperfections into the simulations with a 10 bit

ADC. In the next set of simulations, random time jitter based on a second-order

PLL model is generated. The phase noise model is described in Appendix 2.B.
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In the phase noise model, fn is set to 5MHz and the standard deviation of the

random jitter is normalized to the sampling interval. We denote the standard

deviation of the jitter in the ADC and w(t) by σADC and σLF , respectively. We

choose σADC and σLF , expressed as percentages of the sampling period, from

the set {0.1, 0.5, 1, 5, 10}%. We first investigate the effects when random jitter is

present in the ADC.

The left-sided plots in Figure 2.14 and 2.15 show the PSD where a tone at

125 MHz is perturbed by both the spurious sideband and random jitter (σADC at

0.5% and 1%) in the ADC. Notice that as σADC is increased, the random jitter
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Figure 2.14: The plots show the PSD of a tone at 125 MHz before and after signal

recovery, when the random jitter σADC in the ADC is 0.5%.

creates a noisy spectrum around the tone. The right-sided plots in the figures

show the PSD of the recovered signal.

Figure 2.16 shows the ratio of the power of the spurious sidebands in the

sampled data to the power of the input signal in the presence of the random

jitter in the ADC. The parameters used are the same as those used in Figure 2.8

except that random jitter (σADC at 1% of the sampling period) in the ADC is

added.
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Figure 2.15: The plots show the PSD of a tone at 125 MHz before and after signal

recovery, when the random jitter σADC in the ADC is 1%.

Figure 2.17 is used to analyze the performance when the power of the ran-

dom jitter in the ADC is changed. The plot shows the average improvement in

the sideband suppression when σADC is varied. From the plot, the performance

degrades when σADC increases above 1%.

2.6.4 Effect of noise in training signal

The simulations are repeated again except that the training signal has some

random jitter due to imperfections. Figure 2.18 shows the average improvement

in the sideband suppression when σLF is varied. From the plot, the algorithm

performs well when σLF is below 1% and degrades when it is increased beyond

1%.

2.7 Conclusion

In this chapeter we modeled the effect of PLL imperfections on sampled data

and proposed a technique to compensate for the presence of the spurious tones.
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Figure 2.16: The plot is generated using the same parameters as in Figure 2.8 except

that random jitter (σADC = 1%) in the 10-bit ADC is included.

A training signal is used to estimate the distortion and a filter implementation

is used to remove the distortions from the sampled data by using discrete-time

processing techniques. Simulation results verify that the proposed method is

effective under Gaussian noise, quantization noise, random jitter in the ADC,

and random jitter in the training signal itself.

2.A Derivation of relative error bounds

In this appendix, we derive the relative error bound between the actual e[n] and

its approximation in (2.13). Let x̂n refer to the approximate value (i.e.,−ǫs[n])
for the true value xn (i.e., e[n] = −ǫs(tn)). To find how close x̂n is to xn, we call

upon Taylor’s theorem [44].

Suppose h is a real function on [a, b], m is a positive integer, the (m − 1)-th

derivative h(m−1)(t) is continuous on [a, b] and h(m)(t) exists for every t ∈ (a, b).
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Figure 2.17: The plot shows the trend in suppressing the spurious sidebands using the

same parameters in Fig. 2.10 with a fixed 10 bit ADC and varying the ADC jitter

σADC (as a percentage to the sampling period).
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Figure 2.18: The plot uses the same parameters as in Fig. 2.17, except that σADC = 0

and σLF is varied.

Let α, β be distinct points in [a, b], and define

P (t) , h(α) +

m−1∑

k=1

h(k)(α)

k!
(t− α)k (2.58)
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Then Taylor’s theorem states that there exists a point ξ between α and β such

that

h(β) = P (β) +
h(m)(ξ)

m!
(β − α)m (2.59)

with exact equality in (2.59). The theorem shows that h(t) can be approximated

by P (t) (a polynomial of degree m−1) and (2.59) allows us to estimate the error

if we know bounds on |h(m)(ξ)|.

First, we define a function gn(x) as

gn(x) , x+ ǫs(nTs + x) (2.60)

where the root of gn(x) is at xn = e[n]. Also note that x̂n = −gn(0). Using

Taylor’s theorem and setting m = 1, α = 0, β = x and 0 ≤ ξ ≤ x, we use (2.59)

to express gn(x) in (2.60) exactly as:

gn(x) = gn(0) + ġn(ξ) x (2.61)

where

ġn(x) = 1 + γ cos(2πfref(nTs + x) + θ0) (2.62a)

γ , C0
fref
fs
, 0 < γ < 1 (2.62b)

The condition γ = C0fref/fs < 1 is assumed to hold since the frequency, fref, of

the reference signal and C0 in a typical PLL system are small compared to the

frequency, fs, of the clock signal. Let {xn, ξn} be the solution to gn(xn) = 0.

Then (2.61) gives

xn = − gn(0)

ġn(ξn)
= e[n] (2.63)

From (2.62), the term ġn(ξn) can be bounded as

0 ≤ 1− γ ≤ ġn(ξn) ≤ 1 + γ (2.64)
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Therefore, if gn(0) < 0 then xn is bounded by

−gn(0)
1 + γ

≤ xn ≤ −gn(0)
1− γ

(2.65)

If instead gn(0) > 0, the lower and upper bounds on xn are reversed. Now observe

from (2.60) that x̂n is

x̂n = −ǫs[n]

= −gn(0)
(2.66)

Therefore,






gn(0)
(

−γ

1−γ

)

≤ xn − x̂n ≤ gn(0)
(

γ

1+γ

)

, when gn(0) > 0

gn(0)
(

γ

1+γ

)

≤ xn − x̂n ≤ gn(0)
(

−γ

1−γ

)

, when gn(0) < 0
(2.67)

The absolute error is bounded by

|x̂n − xn| ≤ |gn(0)|
γ

1− γ
(2.68)

From (2.63), if gn(0) 6= 0 then xn 6= 0. Therefore, we could use (2.63) and (2.68)

to express the relative error as

∣
∣
∣
∣

x̂n − xn
xn

∣
∣
∣
∣
≤ |ġn(ξn)|

γ

1− γ
(2.69)

Using (2.62) we note that |ġn(ξn)| ≤ 1 + γ. We conclude that the relative error

is bounded by

∣
∣
∣
∣

x̂n − xn
xn

∣
∣
∣
∣
≤ γ(1 + γ)

1− γ
(2.70)

2.B Modeling of phase noise in second-order PLL

This appendix describes the phase noise model used in the simulations for the

random jitter in the high frequency jittery tone fy(t), and when additional ran-

dom jitter is introduced into the ADC and training signal. From [9, 22], the
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closed-loop transfer function for a second-order PLL is

H(s) =
2ηωns+ ω2

n

s2 + 2ηωns+ ω2
n

(2.71)

where ωn is the loop natural frequency and η is the damping factor. If we let

η = 1√
2
, then the single-sided PSD of the phase noise model for the second-order

PLL can be shown to be

Sφ(f) = |1−H(j2πf)|2 ν

πf 2

=
νf 2

π(f 4 + f 4
n)

(2.72)

where fn = ωn

2π
is a measure of the loop bandwidth and ν is called the oscillator

linewidth. The variance is ν

2
√
2fn

and the autocorrelation function of the phase

noise φ(t) is

Rφ(λ) =

∫ ∞

−∞

νf 2

2π(f 4 + f 4
n)
ej2πfλdf (2.73)

Using the PSD and autocorrelation model, it is possible to simulate the phase

noise in a second-order PLL. We can relate the phase noise to the time jitter in

a clock signal with frequency fs as φ(t) = 2πfsτ(t). The standard deviation of

the random jitter is 1
2πfs

σφ. Normalizing the standard deviation to the sampling

interval yields στ = 1
2π
σφ.

2.C Effect of jitter in y̌(n) on training signal extraction

Based on the simulation parameters in section 2.6, we fix the standard deviation

of the jitter in y(t) to be 1% of the sampling period. Equivalently, this means

that the standard deviation of the phase noise is 1% of 2π. From Appendix 2.B,

the variance of the phase noise is ν

2
√
2fn

. In this work, fn is set to 5 MHz. Hence,

ν is 5.58× 104 Hz.
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In section 2.4.2, we like to retain the low-frequency signal w̌(n) (as shown in

Figure 2.4). The highest frequency component of w̌(n) is at 60 MHz. Also, we

we see that the closest jitter’s spectrum is the one that is centered at 120 MHz.

The offset between the two frequencies is 60 MHz. Using (2.28) in section 2.4.2

and (2.72) in Appendix 2.B, the noise power from the jitter onto the highest

frequency component of w̌(n) is

A2
wf

2
yB

16f 2
s

Sφ(fd) (2.74)

where fd is the offset frequency, B is the frequency resolution of the PSD. Using

the parameters in the simulations, Aw = 0.1 V, fy = 420 MHz, fs = 1 GHz and

B ≈ 1 KHz, the noise power at 60 MHz is -122 dB.

2.D Phase estimation

This appendix describes a way to estimate the phases in the tones in (2.30), which

are used in the phase recovery of the signal extraction block diagram in Figure

2.5. To estimate the phase of a sinusoid at frequency fk in a signal of the form

s[n] =

K∑

k=0

Ak cos(2πfknTs + θk) (2.75)

we collect N samples and calculate the following expressions:

wma =
1

N

N−1∑

n=0

s[n] cos(2πfknTs) (2.76a)

wmb =
1

N

N−1∑

n=0

s[n] sin(2πfknTs) (2.76b)
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Substituting (2.75) into (2.76) gives:

wma =
1

N

N−1∑

n=0

s[n] cos(2πfknTs)

=
1

N

N−1∑

n=0

K∑

ℓ=0

Aℓ cos(2πfℓnTs + θk) cos(2πfknTs)

=
1

N

N−1∑

n=0

K∑

ℓ=0

Aℓ

2
[cos(2π(fℓ + fk)nTs + θk) + cos(2π(fℓ − fk)nTs + θk)]

=
1

N

N−1∑

n=0

Ak

2
cos(θk) +

K∑

ℓ=0

1

N

N−1∑

n=0

Aℓ

2
cos(2π(fℓ + fk)nTs + θk)

+
K∑

ℓ=0,ℓ 6=k

1

N

N−1∑

n=0

Aℓ

2
cos(2π(fℓ − fk)nTs + θk)

≈ Ak

2
cos(θk) (2.77)

and

wmb =
1

N

N−1∑

n=0

s[n] sin(2πfknTs)

=
1

N

N−1∑

n=0

K∑

ℓ=0

Aℓ cos(2πfℓnTs + θk) sin(2πfknTs)

=
1

N

N−1∑

n=0

K∑

ℓ=0

Aℓ

2
[sin(2π(fℓ + fk)nTs + θk)− sin(2π(fℓ − fk)nTs + θk)]

= − 1

N

N−1∑

n=0

Ak

2
sin(θk) +

K∑

ℓ=0

1

N

N−1∑

n=0

Aℓ

2
sin(2π(fℓ + fk)nTs + θk)

−
K∑

ℓ=0,ℓ 6=k

1

N

N−1∑

n=0

Aℓ

2
sin(2π(fℓ − fk)nTs + θk)

≈ −Ak

2
sin(θk) (2.78)

Then we estimate the phases θk using

θ̂k = − tan−1

(
wmb

wma

)

(2.79)
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CHAPTER 3

Compensating Spurious PLL Tones in Spectrum

Sensing Architectures

In the previous chapter, we showed that spurious tones in the sampling clock

creates spurious tones in the sampled data of the ADCs. In applications like

spectrum sensing in cognitive radios, spurious tones might give a false positive

detection on actual free channels. To share the frequency spectrum effectively

(such as unused TV bands) there is a need to design better receivers that can

reliably sense free spectrum holes even in the presence of spurious tones [45–47],

especially since cognitive radios are expected to be able to detect very weak sig-

nals [46, 48]. There are various methods that have been used in the literature

to detect such signals, including, energy detection methods, matched filtering

methods and feature detection methods [46, 48, 49]. Moreover, for wideband ap-

plications, it is common to split the spectrum into smaller channels for detection.

For example, references [50, 51] use fast Fourier transform (FFT) to channelize

the spectrum before energy detection. Alternative ways to channelize the spec-

trum also exist [52–54]. Reference [52] proposed a method to sense the channels

serially using a reconfigurable downconverter and filter. Reference [53] proposed a

low-power multiresolution spectrum sensing IC which uses energy detection. Ref-

erence [54] proposed and analyzed a two-stage sensing technique that performs

a coarse resolution sensing (CRS) followed by a fine resolution sensing (FRS).
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The CRS and FRS are performed using a random search and a sequential search,

respectively. In these techniques, it is assumed that an ideal clock is used in

the ADC [50, 51], or in the DDC reference frequency generator [52], or in the

mixer [53]. Here, we show that when the spurious tones in the non-ideal clock

of the ADC are not considered, the false alarm rate will increase. Even if the

difficulty caused by the spurious tones is considered and the thresholds are raised

to reduce the false alarm, the resulting detection rates are likely to decrease.

For these reasons, it is desirable to seek an alternative approach to remove the

spurious sidebands from the sampled data and improve the sensing performance.

In this chapter, we extend the work in the previous chapter from using a si-

nusoidal reference signal to using a general periodic reference signal, and propose

a new approach [18, 55] that relies specifically on the use of a Fourier transform

block (since it is a common building block in wideband applications such as spec-

trum sensing). By reusing existing components, we aim to reduce the hardware

complexity and computation cost when estimating the distortions. The work here

proposes a modification to a spectrum sensing architecture by first performing off-

set estimation on a training sinusoidal signal and then switching to compensating

the distorted samples to obtain the dejittered samples for spectrum sensing. The

offset estimation algorithm (using the training signal and the Fourier transform),

and the compensation algorithm (using first-order Taylor series) are called the

TFT and FOT, respectively. We provide detailed derivations of the distortion

sampling offsets, show that replicas of the modulated signals are created when

the modulated signals are sampled non-uniformly with the derived offsets, evalu-

ate the impact of this distortion during spectrum sensing, derive the theoretical

detection performance for some signals, and simulate to verify the detection per-

formance before and after using the proposed algorithm. To evaluate the effects

on detection performance, we consider the case when the signal of interest is a
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weak signal. We also assume that there is a strong signal at some frequency

offset from the signal of interest. The distortions to the sampled data create

spurious sidebands from the strong signal and we assume that the spurious side-

bands overlap with the signal of interest. Hence, the spurious sidebands become

an interference to the detection of the weak signals.

The chapter is organized as follows. Section 3.1 discusses a mathematical

model for a VCO clock and what happens when the reference signal is leaked

into the control line of the VCO. It also shows the effect on sampling instants

and the sampled data when the sampling clock is used with an ADC. Section

3.2 proposes the TFT that estimates the sidebands of the sampled data using

a Fourier transform block, and the FOT that compensates for the distortions.

Section 3.3 considers the detection performance using an energy detector in the

presence of the spurious sidebands distortion. Section 3.4 presents the simulation

results and Section 3.5 summarizes the chapter.

3.1 Effects of leakage from reference signal

3.1.1 Reference leakage in PLL

In [22, 37], a voltage-controlled oscillator (VCO) is described as a circuit that

generates a periodic clock signal, s(t), whose frequency is a linear function of a

control voltage, Vcont. Let the gain of the VCO and its “free running” frequency

be denoted by Kvco and fs, respectively. The generated clock signal is described

by

s(t) = As sin

(

2πfst +Kvco

∫ t

−∞
Vcontdt

)

(3.1)

To attain some desired oscillation frequency, Vcont is set to some constant value.

However, the generated signal, s(t), may not be an accurate tone. To attain good
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frequency synthesis, a frequency-divided version of the clock signal is fed into a

block that consists of a PFD, a CP and a low-pass filter (LPF) as shown in Fig.

3.1. The PFD/CP/LPF block compares the frequency-divided clock signal with

Figure 3.1: Block diagram of a PLL.

a low-frequency reference signal at fref and makes adjustments to Vcont. The low-

frequency reference signal can be generated using a low-frequency oscillator (e.g.,

a crystal oscillator). Due to imperfections in the circuitry, the reference signal

leaks into the control line of the VCO. Also note that the presence of the LPF

attenuates the leakage signal but fails to remove it completely. For simplicity, we

assume that the desired clock signal at fs is obtained when Vcont is 0. The refer-

ence leakage is assumed to be some periodic signal with fundamental frequency

fref [40]. From [40], one source of reference leakage in the PFD/CP/LPF block

is due to the current mismatch in the CP. The current mismatch creates rect-

angular pulses which are passed through the LPF. Hence, the higher frequencies

components are attenuated and the leakage waveform changes (depending on the

LPF’s frequency response). Another source of leakage is from the reference signal

and the PFD. Similarly, the leakage waveform is also changed due to the LPF.

In this paper, we do not need to know the exact waveform except that it is a

periodic signal. For illustration purposes, we assume here that the periodic signal

is a triangular waveform and can be described by its Fourier series representation.

First, note that the Fourier series representation of a triangular waveform with
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peak amplitude of 1 and a fundamental frequency of fref is given by:

Vr(t) =
8

π2

∞∑

k=0

(−1)k

(2k + 1)2
sin((2k + 1)2πfreft)

=
8

π2

∞∑

k=0

(−1)k

(2k + 1)2
cos((2k + 1)2πfreft−

π

2
) (3.2)

Now, suppose there is leakage into the control line so that Vcont becomes a delayed

and scaled version of Vr(t), say,

Vcont =

∞∑

k=0

Vk cos (2πfkt + θk) (3.3)

where

θk = 2πfref(2k + 1)τ − π

2
(3.4a)

Vk = V0
(−1)k

(2k + 1)2
(3.4b)

fk = (2k + 1)fref (3.4c)

for some {V0, τ}.

3.1.2 Effect of leakage on the sampling clock of the ADC

Then, using (3.1), the output of the VCO becomes

s(t) = As sin (2πfst + ǫs(t) + φs) (3.5)

where φs is some unknown phase offset and

ǫs(t) =
∞∑

k=0

Ck sin (2πfkt+ θk) (3.6)

and

Ck =
Kvco

2πfk
Vk (3.7)
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We assume that the presence of the LPF before the control line of the VCO

attenuates the reference leakage to some extent (but is not able to remove it

completely) (3.3) so that it is reasonable to assume that

|ǫs(t)| ≪ 1 (3.8)

We will be analyzing the signal model with respect to an arbitrary reference time.

Using a change of variables, let t = t′− φs

2πfs
, and substitute t into equations (3.3)

and (3.5). The new equations are similar to the original equations except that

φs is 0. Therefore, we can let φs = 0 without loss of generality. Applying a first

order approximation to (3.5) we get:

s(t) ≈ As sin(2πfst) +
∞∑

k=0

[
AsCk

2
sin(2π(fs + fk)t + θk)

−AsCk

2
sin(2π(fs − fk)t− θk)

] (3.9)

This expansion shows that the distorted sampling clock signal contains multiple

sidebands at fs ± fk. Now the actual sampling instants of an ADC that uses

(3.5) as the clock signal are the zero-crossings of s(t). Using (3.5) and defining

Ts = 1/fs, the sampling instants, tn, of the ADC must satisfy the condition:

tn +
ǫs(tn)

2πfs
= nTs

tn = nTs −
ǫs(tn)

2πfs
(3.10)

This is a nonlinear equation in tn. We solve it as follows. Let

tn , nTs + e[n] (3.11)

for some perturbation terms e[n] that we wish to determine. From (3.10) we have

that

e[n] = −ǫs(tn)
2πfs

= − 1

2πfs
ǫs

(

nTs −
ǫs(tn)

2πfs

)

(3.12)
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Since |ǫs(t)| ≪ 1,
∣
∣
∣
∣

ǫs(tn)

2πfs

∣
∣
∣
∣
≪ Ts (3.13)

Therefore, the discrete sequence of offsets e[n] is approximated as

e[n] ≈ −ǫs[n]
2πfs

(3.14)

3.1.3 Effect of distorted sampling offsets on training signal

Let us now analyze the effect of this distorted sampling on a pure sinusoidal

training tone at the input of the ADC. Since the frequency of the training signal

is much lower than the frequency of the sampling clock generated by the PLL, it

is reasonable to assume that a low frequency oscillator (e.g., a crystal oscillator)

can be used to accurately generate the signal. As such, we assume that the

training signal does not have the same distortion problems as the sampling clock.

Let the input signal to the ADC be

w(t) = Aw cos(2πfwt + φw) (3.15)

Then the sampled signal, w̌[n], is approximated as

w̌[n] ≈ w (nTs + e[n])

≈ w[n] + e[n] ẇ[n]
(3.16)

where

w[n] = w(t)|t=nts

ẇ[n] = ẇ(t)|t=nts (3.17)

Using trigonometry expansions, the term e[n] ẇ[n] in (3.16) is

e[n]ẇ[n] =

∞∑

k=0

fwAwCk

2fs
[cos(2π(fw − fk)nTs + φw − θk)

− cos(2π(fw + fk)nTs + φw + θk)]

(3.18)
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The above expression shows that the sampled data consists of the input signal

and multiple frequency components at fw ± fk. If the magnitude of the Fourier

series coefficients of the reference signal in the PLL decreases rapidly, then the

higher frequencies components in (3.14) and (3.18) can be ignored. Observe that

the amplitude term in (3.18) is directly proportional to the fw. This means that

the power of the spurious sidebands increases with the frequency of the input

signal.

It is possible to relate the power of the sidebands in the sampled data (3.18)

to the sidebands in the sampling clock (3.9). For example, suppose the power

ratio of the sideband at fs+f0 of the clock, s(t), to the tone at fs is -50 dBc, then

C0 is 6.32×10−3. Thus, the power of the sideband at fw+f0 of the sampled data

can be derived. As an example, the reference leakage in the PLL is simulated as

a triangular wave with a fundamental frequency of 20 MHz and is approximated

using the first 4 Fourier series coefficients. A sinusoidal training signal at 45

MHz is distorted by the jittered sampling and its power spectral density (PSD)

is shown in Fig. 3.2. From the plot, only the sidebands at 25 MHz, 65 MHz and

105 MHz are detected (i.e., the effects from the first 2 Fourier series coefficients).

d
B

Freq [MHz]

Sidebands

0 50 100 150 200 250
−120

−100

−80

−60

−40

−20

0

Figure 3.2: The plot shows the PSD of the distorted training signal with two sidebands.
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3.1.4 Effects of the spurious sidebands on spectrum sensing

The previous section shows that the ADC creates spurious tones in the sampled

data. These tones are not supposed to exist and can lead to false alarm in

wideband spectrum sensing applications. Moreover, we can further show that

when the input signal is a modulated signal, then the distorted samples create

replicas of the modulated signal at some offset frequencies. Specifically, suppose

now that w(t) is a modulated signal of the form:

w(t) = m(t) cos(2πfwt+ φw) (3.19)

where m(t) is the message signal and fw is the carrier frequency. Differentiating

w(t) gives

ẇ(t) = ṁ(t) cos(2πfwt+ φw)− 2πfwm(t) sin(2πfwt+ φw)

≈ −2πfwm(t) sin(2πfwt + φw)
(3.20)

The first term in the first line of (3.20) is removed because we assume that m(t)

is a bandlimited baseband signal, whose frequency components are much smaller

than the carrier frequency fw. As such, we assume that ṁ(t) is small relative to

2πfwm(t). Consequently, the distorted samples become

w̌[n] ≈ w[n] + e[n] ẇ[n]

= m[n] cos(2πfwnTs + φw) + e[n] ẇ[n]
(3.21)

where the sidebands are in the second term:

e[n]ẇ[n] =
∞∑

k=0

fwCk

2fs
m[n][cos(2π(fw − fk)nTs + φw − θk)

− cos(2π(fw + fk)nTs + φw + θk)]

(3.22)

The above expressions, as indicated earlier, show that the spurious sidebands

are replicas of the original modulated signal at a lower amplitude and frequency-

shifted by fk.
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3.2 Proposed solution

In a typical spectrum sensing application, there is usually a module that performs

Short-Time Fourier Transform (STFT) with windowing functions. To save com-

putation and hardware complexity, we will use this module as a building block in

our proposed solution. Figure 3.3 shows the proposed architecture. We assume

Figure 3.3: Proposed architecture for reducing the effects of PLL sidebands in spectrum

sensing applications.

that the PLL is in tracking mode (when the loop is in lock) and the distortions to

the sampled data due to the PLL sidebands can be estimated from a sinusoidal

training tone w(t). The distorted sampled data w̌[n] are used with the STFT

module to estimate the sampling distortions (using the TFT algorithm). Once

the distortions (3.14) are estimated, the circuit switches and starts sampling the

desired input signal and the sampled data is corrected in the digital domain before

the spectrum sensing application (using the FOT algorithm).

3.2.1 TFT algorithm

We can use the results in (3.18) to evaluate the sampling offsets’ parameters

{Ck, θk} in (3.14) from the sidebands present in w̌[n]. First, we express (3.15) as

w[n] = Aw cos(2πfwnTs + φw) (3.23)
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Let us assume we have estimated the amplitude and phase of the tones in (3.18).

We will show how to estimate them further ahead (see (3.31)). Let Z(f) = Aejθ

denote the complex representation of the estimated amplitude A and phase θ at

frequency f . Let ∗ denote complex conjugation. Then, using (3.23) and (3.18),

{Ck, θk} can be estimated from the relation

Cke
jθk =

2fse
−jπ

fw

(
Z(fw + fk)

Z(fw)

)

=
2fse

−jπ

fw

(
Z(fw + fk)Z

∗(fw)

|Z(fw)|2
) (3.24)

or,

Cke
jθk =

2fs
fw

(
Z∗(fw − fk)

Z∗(fw)

)

=
2fs
fw

(
Z∗(fw − fk)Z(fw)

|Z(fw)|2
) (3.25)

The question now is how to estimate the sinusoidal sidebands to enable evaluation

of {Ĉk, θ̂k} through (3.24) or (3.25). As mentioned before, in spectrum sensing

applications, there is a module that performs STFT with windowing. Essentially,

this module splits the data into different frequency bins for further processing.

The operation of the STFT is as follows [56].

In the m-th iteration of STFT, an N -point Fast Fourier Transform (N -FFT)

is applied on an N -point data sequence with a windowing function wx[n]. Let us

assume that data sequences do not overlap and let us denote the data sequences

by x[n +Nm]. Thus, the STFT output is

X [m, k] =

N−1∑

n=0

wx[n]x[n +Nm]e−j2π k
N
n (3.26)

where k is a particular frequency bin in the N -FFT. Suppose we want to estimate
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the amplitude and phase of a sinusoid at frequency fp in a signal of the form:

x[n] =

P∑

i=0

Ai cos(2πfinTs + θi)

=
P∑

i=0

Ai

2

[
ej(2πfiTsn+θp) + e−j(2πfiTsn+θp)

]

(3.27)

and only the sinusoid lies in the p-th frequency bin, then the STFT output of the

bin is

X [m, p] = Xp[m, p] +Xn[m, p] (3.28)

where

Xp[m, p] = Ap

[
ape

j(2πfpTsNm+θp) + bpe
−j(2πfpTsNm+θp)

]
(3.29a)

ap =
1

2

N−1∑

n=0

wx[n]e
j2π(fpTs− p

N
)n (3.29b)

bp =
1

2

N−1∑

n=0

wx[n]e
−j2π(fpTs+

p
N
)n (3.29c)

TheXn[m, p] are nuisance terms involving the rest of the frequency components in

x[n] that are out of the p-th frequency band of the FFT. Using proper windowing

functions wx[n], we can attenuate the effect of Xn[m, p]. As an example, a STFT

using 1024-pt FFT is applied on the training signal shown in Fig. 3.2. The

STFT output in the frequency bin that contains the sideband tone at 65MHz is

extracted and its frequency spectrum is plotted in Fig. 3.4. The left and right

plots show the result when no windowing is used, i.e., wx[n] = 1 and when a

Blackman-Harris window is used, respectively. As shown, the window function

reduces the spectral leakage of out-of-band signals into the frequency channel.
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Figure 3.4: The plots show the frequency domain output of a frequency channel in the

STFT when no windowing is used (left) and windowing is used (right).

Thus, manipulating X(m, p) yields

dp[m] ,
1

|ap|2 − |bp|2
[

a∗p −bp
]




X [m, p]

X [m, p]∗





= Ape
jθpej2πfpTsNm + ν[m]

= Z(fp)e
j2πfpTsNm + ν[m]

(3.30)

where ν[m] is some noise residual in terms of Xn[m, p]. Thus, we can estimate

Z(fp) from the data dp[m] using M samples.

Ẑ(fp) =
1

M

M−1∑

m=0

dp[m]e−j2πfpTsNm (3.31)

The TFT algorithm is summarized in Algorithm 3.1.

3.2.2 Block diagram of TFT

The TFT algorithm described in the previous section can be converted to a block

diagram as shown in Fig. 3.5. First, let us assume that we are interested in

suppressing the spurious sidebands at f0 and f1 away from the training signal’s

frequency (fw). The data w̌[n] is segmented into blocks of size N before it is
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Algorithm 3.1 Summary of TFT algorithm

Require: Denote the frequency of the training signal as fp0 = fw and the frequency

of the sidebands as fpk = fw + fk−1, {k = 1, · · · ,K}. Also, denote the STFT

channels that the training signal and sidebands lie in as p0 and pk, {k = 1, · · · ,K},

respectively. Finally, precompute apk and bpk, {k = 0, · · · ,K}, from (3.29).

for m = 0, · · · ,M − 1 do

for k = 0, · · · ,K do

dpk[m] =
1

|apk|2 − |bpk|2
[

a∗pk −bpk

]




X[m, pk]

X[m, pk]
∗





end for

end for

for k = 0, · · · ,K do

Ẑ(fpk) =
1

M

M−1∑

m=0

dpk[m]e−j2πfpkTsNm

end for

for k = 1, · · · ,K do

Ĉk−1e
jθ̂k−1 =

2fse
−jπ

fw

(

Ẑ(fpk)

Ẑ(fw)

)

end for

ǫs[n] =

K−1∑

k=0

Ĉk sin
(

2πnfkTs + θ̂k

)

e[n] = − ǫs[n]

2πfs
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Figure 3.5: Block diagram of the TFT algorithm. The STFT, Apk and Bfk blocks

represent the different stages of the proposed algorithm and their block diagrams are

shown in Fig. 3.6, Fig. 3.7 and Fig. 3.8, respectively. Firstly, the STFT block

channelizes the training signal w̌[n]. Then, the parameters of the sidebands in selected

channels (pk) are estimated using the Apk blocks. Finally, the Bfk blocks generate

some data streams which are added together to obtain the estimated sampling offsets

e[n].

processed by the existing STFT block. The input to the STFT is x[n] = w̌[n].

The STFT block performs the windowed FFT and outputs X [m, k] for the mth

channel (step 1 of TFT algorithm). The detailed block diagram of STFT is shown

in Fig. 3.6. We denote multiplication with fixed constant by a triangular symbol.

We also assume that X [m, p0], X [m, p1] and X [m, p2], contain the training signal

at fw and its spurious sidebands at fw + f0 and fw + f1, respectively.

Figure 3.6: Block diagram of STFT.

In the next stage (Apk blocks) of Fig. 3.5, the phase and amplitude of the tone

in each of the STFT channels X [m, p0], X [m, p1] and X [m, p2] are estimated as
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shown in Fig. 3.7. As shown in the figure, X [m, pk] and its conjugate X∗[m, pk] is

multiplied by some fixed constants in terms of apk and bpk and they sum together

to dpk[m] (step 2 of TFT algorithm). Then, dpk[m] is multiplied with a complex

exponential signal to estimate Ẑ(fpk) (step 3 of TFT algorithm).

Figure 3.7: Block diagram of Apk block.

In the last stage (Bfk blocks), {Ck, θk} is estimated as shown in Fig. 3.8 (step 4

of TFT algorithm). After {Ck, θk} is estimated, the waveform −Ck

2πfs
sin(2πfknTs+

θk) is generated at the output of Bfk. Finally, the offset e[n] is obtained by

summing all the outputs of the Bfk blocks as shown in Fig. 3.5 (step 5 of TFT

algorithm).

Figure 3.8: Block diagram of Bfk block.

3.2.3 FOT algorithm

Once the sampling offsets are known, the next step is to compensate the sam-

pled data to obtain the desired samples. There exist various useful techniques in
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the literature [57–59] that reconstruct signals from non-uniformly sampled data.

For example, [57] proposed a technique based on Taylor series and derived a

differentiator-multiplier cascade (DMC) system to reconstruct signals using up

to the third order of the Taylor series. Reference [58] proposed a method based

on Lagrange interpolation and modified it for band-limited signals. This modi-

fied Lagrange interpolator is called the functionally weighted (FW) interpolator.

Reference [59] described the barycentric interpolator and showed that the FW

interpolator in [58] can be converted to a barycentric interpolator. Reference [59]

states that the reconstruction performance of the algorithms in [58] and [59] is

similar. The algorithms in [57–59] are able to handle large sampling offsets. For

example, [58, 59] can handle sampling offsets up to half of the sampling period.

In this work, we use a similar method as our previous works [17, 36, 41, 55]

to dejitter the sampled data. The method is motivated using a first-order Tay-

lor series and it is denoted as FOT. As such, it is the same as stage 1 of the

DMC in [57]. We have also evaluated the performance if we use the techniques

from [57, 58]. We do not compare with the barycentric interpolator from [59]

since the performance is similar to the FW interpolator from [58]. We found

that under the simulation settings used in this work, when the distortion sam-

pling offsets are small (0.1% of the sampling period), no significant improvement

is provided by these other methods. However, when the size of the distortion

sampling offsets is increased, the techniques in [57–59] can be useful albeit at

higher computational complexity. The details of the comparison are described in

Appendix 3.B. Therefore, our proposed technique is able to compensate for the

effect of small sampling distortions using an efficient architecture that exploits

the convenience of the FFT operation.
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The desired data, r[n], can be expressed as:

r[n] , r(nTs)

= r (nTs + e[n]− e[n])

≈ r(nTs + e[n])− e[n]ṙ(nTs + e[n])

= ř[n]− e[n]ṙ(nTs + e[n]) (3.32)

where ř[n] are the distorted samples, e[n] are the estimated sampling errors (see

(3.14)), and ṙ(nTs + e[n]) are the derivatives of r(t) at t = nTs + e[n]. A block

diagram showing the FOT algorithm is illustrated in Fig. 3.9. The derivatives

can be approximated using a discrete filter applied to ř[n]. The ideal frequency

response of a derivative is a slope (see Fig. 3.10). Here, we like to compensate

the input signal up to 200 MHz (or 0.8π rad/sample). Therefore, we designed a

15-tap filter where we minimized the frequency response error (from 0 to 0.8π)

using a norm-1 criterion. The frequency response of the 15-tap filter is shown in

Fig. 3.10.

-

+

ř[n]

e[n]

derivative

filter

de-jittered

samples r̂[n]

Figure 3.9: Block diagram of the FOT algorithm.

3.3 Detection of signals using an energy detector

In spectrum sensing, one way to detect signals at different frequencies is to use a

STFT to channelize the wideband spectrum and to detect the presence of signals

in each of the channels [49, 50].
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Figure 3.10: The plot shows the frequency response of the derivative filter.

In this work, we employ an energy detector to detect signals in frequency bins

of the STFT. Recall from (3.26) that the STFT output at the kth frequency bin

is X [m, k]. In the analysis, we assume that k is fixed and the energy detector is

used on the kth frequency band. To simplify the notation, we drop k from the

variable X [m, k] and denote it as X [m]. The energy detector using L samples of

X [ℓ] is defined as

TL[X ] ,
1

L

L−1∑

ℓ=0

|X [ℓ]|2 (3.33)

where L is the length of FFT snapshots used for averaging. We will consider

different scenarios such as when the signal is a tone or an unknown white signal.

We also consider the effect of spurious sidebands in the sampled data. In these

scenarios, we assume that the signal of interest is a weak signal in the presence

of white Gaussian noise. To consider the effect of spurious sidebands, we assume

that there is a strong signal at some frequency offset from the signal of interest. In

the ideal case, the strong signal does not affect the detection of the weak signal

as they do not overlap in frequency. However, the distortions create spurious

sidebands from the strong signal. Furthermore, we assume that the spurious

sidebands from the strong signals overlap with the signal of interest. Therefore,

the spurious sidebands interfere with the detection of the weak signals. Hence,
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we will regard these spurious sidebands as interference.

3.3.1 No signal of interest - H0

Let suppose the signal of interest is absent and define this scenario as H0. In this

case, X [n] only contains white noise, say,

X [n;H0] = V [n] (3.34)

where V [n] is assumed to be zero-mean, white circular complex Gaussian noise

with variance σ2
v . From [60], the variable L

σ2
v
TL[X ] has a chi-square distribution

with L degrees of freedom. Therefore, the mean and variance of TL[X ] are

E[TL(X);H0] = σ2
v (3.35a)

var[TL(X);H0] =
1

L
σ4
v (3.35b)

Using the Central Limit Theorem [61], when L is large, we can approximate the

distribution of TL[X ] under H0 as a normal distribution with the above mean

and variance parameters.

3.3.2 Sinusoidal tone- H1

Let us now suppose that the signal of interest is a sinusoidal tone in the presence

of white Gaussian noise and define this scenario as H1. This scenario occurs for

some classes of signals. For example, in TV channels, two common transmission

schemes are the national television system committee (NTSC) scheme and the

advanced television standard committee (ATSC) scheme. The spectrum of the

two schemes are shown in reference [48]. Both schemes have a bandwidth of 6

MHz. NTSC’s spectrum contains three peaks in a bandwidth of 6 MHz, which

represent the video, color and audio carriers. ATSC’s spectrum is flat but has
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a pilot tone located at the lower end of the channel. Hence, during spectrum

sensing, some channels in the STFT block has a sinusoidal tone and an energy

detector can be used to detect the presence of the tone (and, consequently, the

presence of TV signals). Then, X [n;H1] can be expressed as

X [n;H1] = Aej(2πf
′

wnT+θa) + V [n] (3.36)

We can interpret X [n;H1] as a sinusoidal signal with frequency fw that is down-

converted to a complex baseband signal with frequency f ′
w, amplitude A and

phase θa. When A is fixed, the sinusoidal signal in X [n;H1] has a fixed power for

any phase. Hence, we can use Appendix 3.A and conclude that the energy de-

tector on X [n;H1] has a normal distribution with mean and variance parameters

given by:

E[TL[X ];H1] = σ2
v + A2 (3.37a)

var[TL[X ];H1] =
σ2
v

L
(σ2

v + 2A2) (3.37b)

The absence or presence of the sinusoidal tone is determined by performing the

hypothesis test:

TL[X ] ≶ γ (3.38)

where γ is a pre-defined threshold value. The resulting probabilities of false alarm

and detection are given by:

PFA,H1 = Q




γ − σ2

v
√

1
L
σ4
v



 (3.39a)

PD,H1 = Q




γ − σ2

v − A2

√
1
L
σ2
v (σ

2
v + 2A2)



 (3.39b)

where the Q-function is defined as:

Q(x) =
1√
2π

∫ ∞

x

exp

(

−u
2

2

)

du (3.40)
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The parameter γ can be selected to enforce a desired probability of false alarm.

3.3.3 Sinusoidal tone in the presence of strong interfering tone from

a neighboring band - H′
1

Let us suppose that in addition to the scenario H1, there is a strong tone at

fw + fref. Hence, the spurious sidebands from the strong tone will appear as an

interfering tone to the tone at fw. We define this scenario as H′
1. Then, X [n;H′

1]

is expressed as

X [n;H′
1] = Aej(2πf

′

wnT+θa) +Bej(2πf
′

wnT+θb) + V [n]

= (Aejθa +Bejθb)ej2πf
′

wnT + V [n] (3.41)

where

‖Aejθa +Bejθb‖2 = A2 + B2 + 2AB cos(θa − θb) (3.42)

We can interpret X [n;H′
1] as the sum of two complex sinusoidal signals in Gaus-

sian noise. The amplitude and phase of the interfering tone is B and θb, respec-

tively. We observe that the magnitude of the resultant signal depends on A, B

and the phase-differences θa − θb. Hence, we cannot use the same fixed power ar-

guments we used before for H1 to conclude that the energy detector on X [n;H′
1]

has a normal distribution.

In general, the energy detector on X [n;H′
1] does not have a normal distri-

bution. Assuming that θa and θb are independent, we can model their phase-

difference as uniformly distributed between 0 to 2π. Let the phase-difference be

denoted by α = θa − θb and denote (3.42) by

P1(α) = A2 +B2 + 2AB cos(α) (3.43)

When α is fixed, P1(α) is fixed and the energy detector will have a normal dis-
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tribution with mean and variance parameters given by:

E[TL[X ];H′
1, α] = σ2

v + P1(α)

= µ1(α) (3.44a)

var[TL[X ];H′
1, α] =

σ2
v

L
(σ2

v + 2P1(α))

= (σ1(α))
2 (3.44b)

Note that the mean and variance values are functions of α. Hence, the distribution

of the energy detector can be expressed as a mixture of normal distribution:

fTL[X](y) =
1

2π

∫ 2π

0

fN
(
y;µ1(α), (σ1(α))

2
)
dα (3.45)

where fN(.) is the normal distribution function:

fN
(
y;µ, σ2

)
=

1√
2πσ2

exp

(

−(y − µ)2

2σ2

)

(3.46)

Hence, we can derive the probabilities of false alarm (in the presence of noise and

interference) and detection using the Q-function as follows:

PFA,H′

1
= Q




γ − σ2

v − B2

√
1
L
σ2
v (σ

2
v + 2B2)



 (3.47a)

PD,H′

1
=

∫ ∞

γ

fTL[X](y)dy

=

∫ ∞

γ

1

2π

∫ 2π

0

fN
(
y;µ1(α), (σ1(α))

2
)
dα dy

=
1

2π

∫ 2π

0

∫ ∞

γ

fN
(
y;µ1(α), (σ1(α))

2
)
dy dα

=
1

2π

∫ 2π

0

Q




γ − σ2

v − P1(α)
√

1
L
σ2
v (σ

2
v + 2P1(α))



 dα (3.47b)

where γ is a threshold value. PFA,H′

1
occurs when only the interfering tone and

noise is present. Hence, the distribution of the detector in the absence of the
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desired signal is normal. PD,H′

1
follows from (3.45) and is obtained by integrating

(3.45) from γ to ∞. The PD,H′

1
can be approximated by discretization:

PD,H′

1
≈ 1

N

N−1∑

k=0

Q




γ − σ2

v − P1(
2πk
N

)
√

1
L
σ2
v

(
σ2
v + 2P1(

2πk
N

)
)



 (3.48)

3.3.4 Unknown white signals - H2 and H′
2

Let us suppose the signal of interest is an unknown zero-mean signal and only

the signal power is known. Also, consider the case when the primary user of the

spectrum has complete freedom to choose its waveforms (as long as it satisfies its

power and bandwidth constraints) and the spectrum sensing detector does not

know what waveforms the primary user is going to transmit. A challenging signal

to be detected is a zero-mean white signal in the frequency band of interest [47].

We define this scenario as H2. Then, X [n] can be expressed as

X [n;H2] = Wa[n] + V [n] (3.49)

where the signal is Wa[n]; it is white with average power σ2
wa. The distribution

of the energy detector in H2 can be approximated as a normal distribution with

mean and variance:

E[TL[X ];H2] = σ2
v + σ2

wa (3.50a)

var[TL[X ];H2] =
1

L
(σ2

v + σ2
wa)

2 (3.50b)

Hence, we can derive the probability of false alarm and the probability of detection

using the Q-function:

PFA,H2 = Q




γ − σ2

v
√

1
L
σ4
v



 (3.51a)

PD,H2 = Q




γ − σ2

v − σ2
wa

√
1
L
(σ2

v + σ2
wa)

2



 (3.51b)
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where γ is a threshold value.

In the case of an interfering white signal (denoted as H′
2), if the signals are

independent, then the energy detector will also have a normal distribution and its

statistical properties will be similar to (3.50) and (3.51) except that σ2
v is replaced

by the power of the noise and interference. Define the power of the interference

as σ2
wa′ .

E[TL[X ];H′
2] = σ2

v + σ2
wa′ + σ2

wa (3.52a)

var[TL[X ];H′
2] =

1

L
(σ2

v + σ2
wa′ + σ2

wa)
2 (3.52b)

Hence, we can derive the probability of false alarm and the probability of detection

using the Q-function:

PFA,H′

2
= Q




γ − σ2

v − σ2
wa′

√
1
L
(σ2

v + σ2
wa′)

2



 (3.53a)

PD,H′

2
= Q




γ − σ2

v − σ2
wa′ − σ2

wa
√

1
L
(σ2

v + σ2
wa′ + σ2

wa)
2



 (3.53b)

where γ is a threshold value.

3.4 Simulations

The previous sections discuss how the distorted ADC samples affect spectrum

sensing and propose a solution to estimate and correct the samples before spec-

trum sensing. In the next subsection, we first simulate the proposed solution

to verify that spurious sidebands can be removed. Next, we setup a simulation

where we simulate the different scenarios (H1, H′
1, H2 and H′

2 ) as described in

Section 3.3. We verify that the simulation results match well with the analyti-

cal expressions. The simulations also show that the proposed solution is able to

remove the spurious sidebands and improve the detection performance.
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3.4.1 Sideband suppression

The simulation parameters are as follows. The sampling frequency fs is 500 MHz

and the reference leakage in the PLL is assumed to be a triangular wave with

fundamental frequency fref of 20 MHz. C0 is set to 6.32× 10−3 so that the power

ratio of the spurious sideband at fs±fref to the signal at fs is -50 dB. The Fourier

series representation of the triangular wave is truncated to the first 4 coefficients.

Since the coefficients decrease rapidly, the effects of the 3rd and above coefficients

are not observable in both the training signal in Fig. 3.2 and even when the input

signal frequency is high (see Fig. 3.11 ahead). The frequency of the training tone,

fw, is 45 MHz. We first estimate the spurious sidebands that are 20 MHz and

60 MHz from the distorted training signal. Then, we switch to sample the input

signal and compensate the sampled data to obtain the dejittered samples. The

input signal is simulated as a sinusoidal tone ranging from 25 MHz to 200 MHz

in steps of 25 MHz and the distortion suppression performance are averaged over

50 runs. The amplitude of the training signal and the input signal is set to 0.9

and white Gaussian noise with standard deviation of 1 × 10−3 is added to the

input of the ADC. Finally, the STFT uses a 1024-pt FFT with a Blackman-Harris

windowing function and the length of the data dp[m], M , is chosen from the set

{64, 128, 256, 512, 1024}.

Figure 3.11 shows a realization where the desired input signal’s frequency is

200 MHz. The left plot shows the PSD of the signal before compensation and

the right plot shows the result using the proposed method. It can be seen that

the spurious sidebands are reduced by 11 to 34 dB.

Figure 3.12 shows the spurious sideband suppression performance using the

proposed solution. From Fig. 3.11, the PLL sideband induces sidebands that

are 20 MHz and 60 Mhz away from the input tone. The left plot in Fig. 3.12
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Figure 3.11: The plot shows the PSD of a 200 MHz input signal (a) before and (b)

after compensation.

shows the the reduction of the sideband power at 20 MHz and 60 MHz away

from the input signal using M=1024 samples of dp[m]. The right plot shows

the average sideband performance when M is varied. The simulations show that

when M=1024, the algorithm reduces the sideband distortions at 20 MHz and

60 MHz from the input tone by an average of 35 dB and 8 dB respectively.

3.4.2 Detection performance - H1 and H′
1

To analyze the detection performance, the following simulation is done. Recall

from Fig. 3.3 that the training signal is fed directly into the ADC. Hence, the

noise during the training phase is small. In the simulation, we used the same

noise and training signal parameters as the previous simulation. Also, recall

that the TFT algorithm uses M samples of dp[m] to estimate the parameters.

In the simulation, we fix M to 448, which corresponds to 0.91 ms of integration

time. After estimating the distortion parameters, the input signal is compensated
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Figure 3.12: The plots show the sideband suppression performance at 20 MHz and 60

MHz away from the input frequency signal and when M is varied.

before spectrum sensing.

During spectrum sensing, we assumed there are strong and weak tones in

the presence of additional noise (e.g., receiver noise). We assume the signals

lie in some frequency bins of the STFT. We set the signal-to-noise ratio (SNR)

of the strong signal and weak signals (in the frequency bin) to 40 dB and -20

dB, respectively. We also set the strong and weak signals at fref = 20 MHz

apart in the frequency domain. Let us denote the frequency of the strong and

weak signal by fa and fb, respectively. Then, we can relate the frequencies as

fb = fa + fref. For example, suppose fa is 100 MHz, then fb is 120 MHZ. Due to

the distortions in the ADC, spurious sidebands from the strong signal are created

in the sampled data. Although the strong and weak signals do not overlap in the

frequency domain, the most dominant spurious sideband does overlap with the

weak signal. From (3.18), we know that the amplitude of the spurious sidebands

76



increases proportionally to frequency. Using the same distortion parameters (C0

and fs) as in the previous simulation, and supposing fa is 100 MHZ, 150 MHz or

200 MHz, the SNR of the dominant spurious sideband is -24 dB, -20 dB or -18

dB, respectively. An energy detector (3.33) is used to detect the weak signal and

the performance before and after using the proposed solution is analyzed. In the

simulation, we fix the length L in the energy detector to 22400. This corresponds

to 45.9 ms of sensing time. The simulation results are averaged over 300 runs.

Figure 3.13 shows the detection performance in terms of PD and PFA when

fa = {100, 150, 200} MHz. The legend is the same for all the plots. We can make

2 observations from the receiver operating characteristics (ROC) curve. First,

the plots show that the theoretical and experimental performance before com-

pensation (H′
1) match well. Also, the ROC curve before compensation changes

for different fa. This is due to the fact that the SNR of the dominant spurious

sideband increases with fa and, hence, affects the performance. Note that in the

ideal case (H1), the curve is independent of fa. Second, the proposed solution

improves the detection performance and approaches the ideal case.

We note that there is a crossover point at the lower PFA, which is dependent

on the sensing time. When we increase the sensing time, the ROC curve of the

undistorted case (H1) will shift upwards and the crossover point will move further

to the left. For example, see Fig. 3.19 of Section 3.C where we double the sensing

time and plot the ROC curve.

3.4.3 Detection performance - H2 and H′
2

The simulation setup is similar to the previous section using sinusoidal tones.

The main difference is that the tones are replaced by QPSK signals. In this case,

the frequencies fa and fb represent the carrier frequency of the signals. Similarly,
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Figure 3.13: The plots show the PD vs PFA of the weak signal when fa is (a) 100

MHz, (b) 150 MHz or (c) 200 MHz. The plots show the theoretical and simulated

performance before (H′
1) and after using the proposed solution. The ideal solution is

H1. The legend is the same for all plots.

we first compare detection performance in terms of PD and PFA. Figure 3.14

shows the ROC curve before and after compensation. In the simulation settings,

the noise power dominates over both the desired signal and the interfering signal.

As such, the ROC curve is almost the same for all cases. The benefits of the

proposed solution is revealed when we examine the threshold γ used in the PD

and PFA for the different cases.
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Figure 3.14: The plots show the PD vs PFA of the weak signal when the carrier fre-

quency fa is (a) 100 MHz, (b) 150 MHz or (c) 200 MHz. The legend is the same for

all plots.

3.4.4 Impact of threshold during sensing

We can derive the threshold γ that corresponds to different PD and PFA through

analysis (using the PFA and PD expressions) or through simulations. Here, we

generate the plots using the simulated results from the previous sections. The

threshold is normalized to the noise power.

Recall that the frequency of the strong signal is selected to be 100 MHz, 150

MHz or 200 MHz. Before using the proposed solution, for a desired constant PD

or PFA, the threshold must vary with the frequency. This can be seen in Fig.

3.15 and Fig. 3.16, which represent the case for sinusoidal tone H1 and QPSK
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signal H2, respectively.
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Figure 3.15: The plots show the normalized threshold used to obtain the various pairs

of PD amd PFA for sinusoidal signals H1.

The curves denoted by fa show the required threshold when the strong signal’s

frequency is fa. The black line with inverted triangle markers shows the threshold

required after using the proposed solution. Note that after compensation, the

required threshold for a fixed detection performance is constant and independent

of fa. Hence, the proposed solution reduces the complexity of finding an adaptive

threshold. Moreover, even when an adaptive threshold is used to obtain a fixed

PFA, the resultant PD may degrade significantly (for example, in H1).
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Figure 3.16: The plots show the normalized threshold used to obtain the various pairs

of PD amd PFA for QPSK signals H2.

3.5 Conclusion

In this chapter, we showed how spurious tones are created in the distorted ADC

samples. We also described a way to use the STFT block to estimate the dis-

tortions and then compensate the samples. Simulations show that the sideband

tones can be estimated and suppressed using the proposed algorithm. The sim-

ulation results show that by increasing the data length, the suppression can be

as much as 35dB. The chapter also investigated the effects of spurious sidebands

on the detection performance in spectrum sensing. Simulations were performed

to analyze the detection performance and theoretical results are derived for ver-

ifications. The results show that compensating for the presence of the spurious

sidebands improves the detection performance in spectrum sensing in a tangible
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way.

3.A Energy detector for signals with fixed power

This section shows that when the energy detector is used on signals with a fixed

power, the statistics of the detector can be modeled with a normal distribution.

The first part defines a sequence where each element is a circular complex normal

random variables; all elements are independent and have the same variance.

3.A.1 Noncentral chi-square for circular complex variables

Let z[n] = zR[n] + jzI [n] be independent and circular complex normal random

variables. We assume that the variance of z[n] is the same for all n. That is,

z[n] ∼ CN(µz[n], σ
2
z) (3.54)

with µz[n] = µzR[n]+ jµzI [n] and σ
2
z = σ2

zR+σ2
zI , where σ

2
zR = σ2

zI =
1
2
σ2
z . Define

GL(z) ,
2

σ2

L−1∑

i=0

|z[i]|2

=

L−1∑

i=0

(√
2

σ
zR[i]

)2

+

L−1∑

i=0

(√
2

σ
zI [i]

)2

(3.55)

and

λ ,
2

σ2
z

L−1∑

i=0

|µz[i]|2

=

L−1∑

i=0

(√
2

σz
µzR[i]

)2

+

L−1∑

i=0

(√
2

σz
µzI [i]

)2

(3.56)
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where
√
2

σz
zR[i] ∼ N

(√
2

σz
µzR[i], 1

)

and
√
2

σz
zI [i] ∼ N

(√
2

σz
µzI [i], 1

)

. From [60], the

mean and variance of GL(z) are

E[GL(z)] = 2L+ λ (3.57a)

var[GL(z)] = 4(L+ λ) (3.57b)

When L is large, GL(z) can be approximated as a normal distribution.

3.A.2 Energy detector for signals with a fixed power

We define a class of deterministic signals where each member has the same power,

i.e.

Pzs =
1

L

L−1∑

i=0

|zs[i]|2 (3.58)

Suppose an energy detector is used to detect this class of signals in the presence

of circular complex white Gaussian noise:

z[n] = zs[n] + zv[n] (3.59)

where zs[n] is a signal in the above class and zv[n] ∼ CN(0, σ2
zv) is noise. Then,

we see that

z[n] ∼ CN(zs[n], σ
2
zv) (3.60)

Also, note that z[n] has the same form as (3.54) when zs[n] = µz[n] and σzv = σz.

Using an energy detector on z[n] and (3.55) yields

TL(z) =
1

L

L−1∑

i=0

|z[i]|2

=
σ2
zv

2L
GL(z) (3.61)
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When L is large, TL(z) has a normal distribution. Using (3.56) to (3.58), the

mean and variance are:

E[TL(z)] = σ2
zv + Pzs (3.62a)

var[TL(z)] =
σ2
zv

L
(σ2

zv + 2Pzs)

=
1

L
[(σ2

zv + Pzs)
2 − P 2

zs] (3.62b)

3.B Comparison of various compensation schemes

In this work, the proposed signal compensation algorithm, FOT, is based on a

first-order Taylor series approximation (3.32). Other useful compensation tech-

niques have been proposed [57–59]. This section compares the performance of

the proposed algorithm with these other algorithms. The evaluation is done by

comparing the suppression performance of the spurious sidebands as described in

Section 3.4.1.

Reference [57] proposed the DMC structure based on a Taylor series expres-

sion. Using Taylor series, it shows that the distorted signal can be represented

as the true signal and higher order error terms. The proposed DMC has 3 stages

and removes up to the third-order errors. It is noted that when the derivative

filter is applied on the distorted signal, additional error components are created

and the DMC solution removes them as well. The first stage of the DMC has

the same form as our proposed FOT solution in Fig. 3.9. The second and third

stages, however, use more derivative filters, multipliers and adders. It should

be noted that all the derivative filters have the same filter coefficients. In this

simulation, we implement the DMC using the same filter coefficients we used in

our proposed solution.

84



Reference [58] modifies the conventional Lagrange interpolator to handle ban-

dlimited signals. The interpolator is called the functionally weighted (FW) in-

terpolator and it is of the form

sB(t) ≈
1

γ(t)

N∑

k=1

sB(t
′
k)γ(t

′
k)

L(t)

L′(t′k)(t− t′k)
(3.63)

where sB(t
′
k) and t

′
k are given. The FW interpolator assumes that the signal sB(t)

is bandlimited and its frequency spectrum lies in [−B/2, B/2]. The algorithm

also assumes that t′k = (p + δp)Ts and |δp| < 1/2, where p = −P + k − 1 and

N = 2P +1. Therefore, the true signal value at t = 0 is estimated as sB(0). The

rest of the functions in (3.63) are defined as

γ(t) =
wap(t)Lo(t)

sin(πt/T )
(3.64a)

L(t) =

N∏

k=1

t− t′k (3.64b)

L′(t′k) =
dL(t)

dt

∣
∣
∣
∣
t=t′

k

(3.64c)

where

wap(t) =
sinc

(

Bw

√
t2 − T 2

w

)

sinc(jBwTw)
(3.65a)

Lo(t) =
P∏

p=−P

t− pTs (3.65b)

and

Bw =
1

Ts
− B (3.66a)

Tw = Ts(P + 1) (3.66b)

Hence, given a set of N distorted sampled data {w̌[n], · · · , w̌[n+N−1]} and time

instants {tn, · · · , tn+N−1}, we can estimate w((n− P )Ts) (denoted as ŵ[n − P ])
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by defining

t′k = tn+k−1 − (n + P )Ts (3.67a)

sB(t
′
k) = w̌[n + k − 1] (3.67b)

and, therefore,

ŵ[n− P ] = sB(0) (3.68)

In the simulation, we set B = 0.8/Ts and P = 12. It is noted that the functions

in the FW interpolator includes evaluations of γ(t) and L′(tk). In [58], there are

details on how to reduce the complexity of evaluating these functions.

In our first simulation, we use the same settings as described in Section 3.4.1,

with two differences. Firstly, we assume that the distorted sampling offsets are

known. Secondly, we fix the frequency of the input sinusoidal signal to 200 MHz.

We assume that the distorted sampling offsets are known because we are only

interested in comparing the various signal compensation algorithm. Also, we fix

the frequency of the input signal to 200 MHz because we know that the magnitude

of the spurious sidebands increases with the input frequency, and hence it is

easier to compare the suppression performance of the various techniques. In this

experiment, we use the proposed FOT algorithm, the DMC algorithm and FW

algorithm.

Figure 3.17 shows a realization of the distorted signal’s spectrum before and

after using the 3 compensation algorithms. From the figure, we see that the

distorted signal contains some spurious sidebands around its input frequency

(200 MHz). The figure also shows that the 3 algorithms are able to remove the

spurious sidebands. The average suppression of the sidebands at 20 MHz away

from the input frequency for FOT, DMC and FW are 40 dB, 40 dB and 42 dB,

respectively. This shows that under the current simulation settings, our proposed
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Figure 3.17: The plots show the spectrum of the distorted signal and the compensated

signal using the various methods. The distorted signal is generated based on the same

settings in Section 3.4.1. FOT, DMC and FW denote the resulting spectrum after using

the proposed compensation method, [57] and [58], respectively. In these simulations,

the distortion sampling offsets are at most 0.1% of Ts.

compensation algorithm works as well as the techniques in [57,58]; albeit at much

lower computational complexity.

The reason why the advanced techniques do not have a more significant im-

pact on performance than the simpler proposed architecture, is because of the

magnitude of the jitter/sampling offsets. Under the current simulation settings,

the distorted sampling offsets are at most 0.1% of the sampling period (0.1% of

Ts). In the next simulations, we increase the distorted sampling offsets to 1% of

Ts and repeat the experiment. A realization of the new simulation is shown in

Fig. 3.18. The top-left plot shows the frequency spectrum of the distorted signal
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Figure 3.18: The plots are created using the same settings as the settings in Fig. 3.17,

except that the sampling offsets is 1 order of magnitude larger (i.e. up to 1% of Ts).

before compensation. It can be seen that increasing the sampling offsets creates

additional spurious sidebands. These additional spurious sidebands come from

the higher order error terms in the distorted signal. In this case, we find that

the techniques in [57, 58] can be helpful. The top-right plot of Fig. 3.18 shows

the spectrum of the signal after using our proposed FOT solution. At shown, the

spurious sidebands are not removed completely. The bottom plots in Fig. 3.18

show that the techniques in [57, 58] remove more spurious sidebands. Therefore,

the simulations show that if the sampling offsets increase, then one can use more

advanced techniques to remove the spurious sidebands.
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3.C Increasing sensing time

The below ROC curve is obtained by doubling the sensing time (L) used in Fig.

3.13. It illustrates that increasing L shift the crossover point further to the left.
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Figure 3.19: The plots show the PD vs PFA of the weak signal when fa is (a) 100

MHz, (b) 150 MHz or (c) 200 MHz. The plots show the theoretical and simulated

performance before (H′
1) and after using the proposed solution.
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CHAPTER 4

Clock Jitter Compensation in High-Rate ADC

Circuits

Certain applications of modern radios, such as cognitive radios and UWB radios,

require a high signal-to-noise ratio (SNR) in order to detect the presence of

the desired signal from noisy measurements. Unfortunately, signals with high-

frequency content, either due to high bandwidth or high carrier frequencies, are

very sensitive to jitter at the ADC. Clock jitters arise from noise in the clock

generating crystal and phase-locked-loop (PLL). The jitters cause the ADC to

sample the input signal at non-uniform sampling times and introduce distortion

that limits the signal fidelity and degrades the SNR [62]. While the effects of

jitter noise can be neglected at low frequencies, applications requiring enhanced

performance at higher frequencies [32,33,41,63,64] demand higher SNR from the

sampling circuit.

There has already been considerable work in the literature on modeling clock

jitter and understanding its effects [9, 62, 65, 66]. Most models assume the jitter

is Gaussian-distributed with zero mean and with a standard-deviation that is

represented as a percentage of the sampling interval [67]. The models also assume

that clock-jitter (as opposed to aperture jitter) is correlated. This is because the

PLL incorporates a low-pass filter that correlates the jitter. Expressions for

the power-spectral-density (PSD) of the phase-noise output by the PLL appear
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in [9, 62].

Various approaches have been proposed to treat sampling-clock jitters. Some

approaches interleave several ADCs in order to produce an effective higher sam-

pling rate. This technique, however, introduces other challenges such as mis-

matches in the delays of the clocks fed into the ADCs, mismatches in the gain

of each ADC, and the DC offset between the ADCs (we discuss some of these

problems later in Chapter 5). The works [14–16,68–70] propose techniques to ad-

dress such mismatches in order to allow time-interleaved ADCs to serve reliably

as high-speed ADCs. In [57, 71], alternative approaches for signal compensation

are presented; these approaches, however, assume full knowledge of the jitter it-

self. We do not make this assumption in this work and assume the system must

estimate and compensate for the jitter and its effects. Other approaches [72]

transform the signal into the wavelet domain and use linear least-mean-squares

estimation (LLMSE) techniques to recover the original signal. This approach

assumes that the signal has small support in the wavelet domain, which sim-

plifies the estimation of the covariance matrix used in the LLMSE step to a

diagonal representation. This approach, however, is computationally intensive to

implement—especially at high sampling rates.

Some recent work has focused on the recovery of the jitter through the in-

jection of training tones and on the subsequent compensation of the distorted

data [32, 41, 64, 73]. The schemes proposed in [32, 73] assumed that the input

signal is narrow-band, which is an impractical assumption for ultra-wide-band

and cognitive radio applications. Here, in section 4.1, we first examine the effect

of the clock time jitter on the SNR of the sampled signal [19]. Subsequently, in

sections 4.2 and 4.3, we propose compensation methods based on a signal injec-

tion architecture for direct downconversion architectures. Next, in sections 4.4
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and 4.5, we analyze the performance of estimation architectures such as those

studied in [32, 41, 64, 73] and of the proposed schemes in some detail. Finally,

section 4.6 shows our simulations results.

In this chapter, we will be using capital letters to denote matrices, small let-

ters to denote vectors and scalars. We will also use boldface notation to denote

random quantities and normal font to denote deterministic (non-random) quan-

tities. We will use the notation x(t) and x[n] , x(nTs) to denote, respectively,

a continuous-time signal and a discrete-time signal sampled with period Ts. A

complex signal x(t) with in-phase and quadrature-phase components xI(t) and

xQ(t), respectively, is modeled with the equivalent notation x(t) , xI(t)+ jxQ(t)

where j ,
√
−1 is the imaginary unit.

4.1 Problem formulation

The key challenge in this work is to compensate for clock jitters in ADCs with

already small jitters. As explained in the introduction, jitter errors arise when

the input signal is not sampled exactly at multiples of the sampling period, Ts,

but rather at perturbed versions, say, at time instants nTs+e(nTs), where e(nTs)

denotes the amount of random jitter occurring at nTs. An ADC with a clock jitter

of 1% means that the standard-deviation of the jitter e[n] is equal to 0.01Ts (1%

of Ts). Although apparently small, this amount of jitter is problematic when the

sampled signal contains high frequency components due to either having wide

bandwidth or a high carrier frequency; in this work, we concentrate on the case

where the ADC operates at 1GHz in order to sample a wide-bandwidth signal

that resides at baseband. Our objective is to propose filtering and estimation

techniques that would compensate for the effect of the jitter in the sampling

clock and reduce it to the equivalent of operation at about 0.5% jitter for a 10-
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Figure 4.1: The in-phase and quadrature phase components of a random complex-

valued signal r(t) are sampled by a pair of ADCs triggered by a clock signal generated

by a phase-locked-loop. The complex-valued random noise v[n] represents additive

noise sources such as quantization noise.

bit ADC—see Fig. 4.3 further ahead, which illustrates the benefit of such jitter

reduction on the output SNR. We accomplish this task by devising processing

algorithms in the discrete-time domain, rather than focusing on perfecting the

hardware. The latter option is usually costly and effective DSP techniques are

desirable alternatives. We take this route in this chapter. We consider the general

radio architecture described in Fig. 4.1, where the in-phase and quadrature-

phase components of the down-converted input signal r(t) are denoted by rI(t)

and rQ(t), respectively. These signals are sampled by two ADCs triggered at

the rising edge of the same jittered sampling clock, s(t), generated by an analog

phase-locked-loop. Before discussing compensation methods, we first discuss the

cause of the jitter noise as well as the jitter’s stochastic properties. Following this

presentation, we will examine the effects of the jitter noise on the signal-to-noise-

ratio of the sampled signals and then describe our proposed estimation methods.
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4.1.1 Stochastic properties of the clock jitter

We start by describing the statistical properties of the clock jitter. To do so, we

comment on the connection between the PLL phase-noise and the clock jitter.

Once this connection is defined, and since the statistical properties of PLL phase

noise are well understood and documented in the literature, we can then arrive at

useful expressions for the power spectral density (PSD) of the clock jitter. This

PSD will be helpful in designing estimation and compensation methods for the

jitter.

We model the sampling-clock signal that is generated by the PLL as a sinu-

soidal signal with frequency fs, say,

s(t) = sin(2πfst + φs(t) + θs) (4.1)

In (4.1), the term φs(t) denotes the phase-noise that corrupts the sampling clock,

and θs is some deterministic phase-offset. We model φs(t) as a zero-mean random

process, If the phase-noise is not zero-mean, it is possible to rewrite (4.1) such that

the new phase-noise is zero-mean for a different θs value. Modeling the phase-

noise in this manner is consistent with phase-noise models used in conjunction

with second-order PLL models [74]. We are able to simplify the expression for s(t)

by changing the time reference. To this end, consider setting the time variable in

(4.1) to t = t′ − θs
2πfs

. In this case, the equations are similar except that θs = 0.

For this reason, and without loss of generality, we set θs = 0.

We now let the discrete-time random process e[n] denote the jitter that per-

turbs the sampling instants. We denote the actual sampling time instants by tn

and, therefore, write

tn = nTs + e[n] (4.2)
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When the phase-noise process φs(t) is small and varies slowly relative to the

sampling frequency, it can be verified that the jitter random process e[n] is related

to the phase-noise process φs(t) as follows (see App. 4.A):

e[n] ≈ −φs(nTs)

2πfs
(4.3)

Assume the phase-noise has an effective bandwidth of 2πfe radians/second. Then,

it can be shown that the power spectral density (PSD) of the jitter can be ap-

proximated by (see App. 4.A and [75])

Se(e
jω) ≈ 1

(2πfs)2Ts

∞∑

k=−∞
Sφ

(
ω − 2πk

2πTs

)

(4.4)

where

Sφ(f) =
βφf

2

(f 2 + f 2
e )

2
(4.5)

over 0 ≤ ω ≤ 2π and for some constants βe and σ2
e = πβe/2fe; the variable σ2

e

denotes the variance of the clock jitter and j is the imaginary unit j ,
√
−1. The

PSD given by (4.4) is low-pass and decays as ω approaches π. The corresponding

autocorrelation function of the jitter process is given by the sampled inverse

discrete-time Fourier transform of (4.4) (See App. 4.A)

Re(m) ≈ σ2
e(1− 2πfe |m|Ts)e−2πfe|m|Ts (4.6)

Moving forward, we express the root-mean-square (RMS) jitter value, σe, as a

percentage of the sampling interval Ts by writing σ2
e = (αTs)

2. For example, if

α = 1
100

, then the RMS value of the jitter would be 1% of Ts. The jitter will

be modeled as a Gaussian random process with zero-mean and autocorrelation

function Re(m). Figure 4.2(a) plots the PSD of the jitter as given by (4.4).

At this point, we explore up to what frequency the jitter must be recovered in

order to reduce the jitter standard-deviation to a certain level. This computation
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amount of jitter reduction as a function of ωcut.

allows us to evaluate which jitter recovery goals are feasible with digital recovery.

Assume our recovery methods are able to recover well the frequency content of the

jitter up to some frequency ωcut – see Figure 4.2(a). Denote the estimated jitter

by ê[n] and the remaining jitter by ẽ[n] = e[n]− ê[n]. This means that the data

samples will still contain contributions from the jitter components at frequencies

above ωcut. The power of the remaining jitter can be found by integrating the

PSD of the original jitter from ωcut up to 2π−ωcut and normalizing the result by

2π. We find the RMS value by taking the square root of the result and divide by

the original RMS value in order to get the jitter recovery ratio:
√

E [ẽ(t)2]

σe
=

1

σe

√

1

2π

∫ 2π−ωcut

ωcut

Se(ejω)dω (4.7)

The difficulty for digital recovery methods can be seen from a plot of (4.7).

Assume the numerical values fs = 1GHz and fe = 5MHz. As seen in Figure

4.2(b), in order to reduce the jitter by a factor of 2 (i.e., for the ratio in (4.7)
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to evaluate to 0.5), the jitter must be perfectly estimated up to a frequency of

25MHz; the reduction of jitter by a factor of 10 (ratio of 0.1) requires the jitter

to be perfectly estimated up to a frequency of ≈ 350MHz. Although halving the

jitter standard-deviation may be possible in the digital domain, reducing it by

a factor of 10 is generally not feasible due to the presence of interfering signals.

We will see in the next section (specifically Fig. 4.3) how halving the jitter

standard-deviation will improve the SNR of the incoming signal significantly.

Throughout the remainder of the article, we use the following assumptions:

Assumption 4.1. The jitter e[n] is zero-mean Gaussian with standard-deviation

σe = αTs.

Assumption 4.2. The jitter e[n] is small in comparison to the sampling interval

Ts (i.e, α≪ 1).

Assumption 4.3. The jitter e[n] is slowly varying (i.e, fe ≪ fs).

Assumption 4.4. The jitter e[n] is independent of the incoming signal and any

noise in the system.

As noted in App. 4.A, Assumption 4.1 is reasonable when the PLL is locked

with small error [76]. When the PLL is not locked, or when the PLL model is

not well-approximated as a linear system, then Assumption 4.1 will not hold.

Assumption 4.2 also reflects the fact that the jitter is relatively small in practice

in comparison to the sampling period; in fact, it is usually less than 1% of the

sampling period using current technologies for high-speed sampling systems [77].

Assumption 4.3 assumes that the jitter is slowly varying. This assumption can

be controlled by the design of the loop filter of the PLL, which dictates the

bandwidth of the phase-noise at the output of the PLL—see App. 4.B. Finally,

Assumption 4.4 states that the jitter noise is independent of the incoming signal
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and noise sources in the system, including quantization noise. The jitter may

be weakly dependent with the thermal noise present in the system (since the

phase-noise of the free-running oscillator in the PLL is also affected by thermal

noise). However, it is usually assumed that such dependence is sufficiently weak

and that thermal noise at the input of the ADC is small in comparison to the

incoming signal and other noise in the system.

4.1.2 Effects of the clock jitter

In this section, we investigate the effect of the clock jitter on the sampled data.

We quantify by how much the random shifts in the sampling instants reduce the

signal-to-noise ratio (SNR) at the output of the ADC. We consider two mod-

els for the incoming signal: (1) a complex-sinusoidal tone and (2) a complex

band-limited random signal. We will use the latter case for analysis of signal

degradation in UWB and cognitive radio scenarios. The case of a sinusoidal tone

allows us to analyze the effect of the jitter on training tones that we inject into

the ADC. When other noise sources are ignored, this analysis was previously con-

ducted in, for example, [78] and [79, p.68]. The analysis of the SNR due to only

jitter for band-limited random signals was conducted in [78]. Here we include

other noise sources such as front-end noise and quantization noise, as well as

jitter. The purpose of the discussion below is to highlight the benefit of reducing

the jitter standard deviation in terms of the SNR of the incoming desired signal.

It may not be clear, otherwise, how reducing the jitter by a factor of two would

improve performance.
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4.1.2.1 Complex Exponential Input Signal

We consider first the case of a deterministic complex-sinusoidal incoming signal

r(t) with amplitude Ar and frequency fr:

r(t) = Are
j(2πfrt+θr) (4.8)

The samples of r(t) corrupted by the jitter and additive noise source v[n] can be

written as (see Fig. 4.1 and (4.66) in App. 4.A):

ž[n] ≈ r

(

t− φs(t)

2πfs

)∣
∣
∣
∣
t=nTs

+ v[n] (4.9)

where v[n] denotes complex-valued noise, such as quantization and front-end

noise. Note that we are denoting ž[n] with boldface notation as this signal is

random due to the presence of the jitter e[n] and the random noise v[n]. The

signal r[n] with no distortion is denoted by normal font. By using the first order

Taylor series, we have

r

(

t− φs(t)

2πfs

)∣
∣
∣
∣
t=nTs

= r

(

nTs −
φs(nTs)

2πfs

)

≈ r(nTs)−
φs(nTs)

2πfs
ṙ(nTs)

≈ r[n] + e[n]ṙ[n] (4.10)

where ṙ(t) denotes the derivative of r(t) evaluated at time t, and e[n] ≈ −φs(nTs)
2πfs

by (4.3). Substituting (4.10) into (4.9), we have:

ž[n] ≈ r[n] + e[n]ṙ[n] + v[n] (4.11)

where the notation ṙ[n] denotes

ṙ[n] ,
d

dt
r(t)

∣
∣
∣
∣
t=nTs
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Figure 4.3: In (a), (b), we show the relationship between SNR and σe for complex-

sinusoidal signals and bandlimited signals, respectively. The parameters include: Br =

fr = 200MHz, Ar = 1, σr = 0.548, Ts = 1ns, and σ2
v = 2

3·410 . This noise variance

corresponds to the quantization noise power for a 10-bit ADC.

Expression (4.11) reveals how jitter and and other noise sources distort the sample

value. Using the fact that the power of the complex tone r(t) is A2
r , the resulting

SNR at the output of the sampler is:

SNR ≈ A2
r

(2πfrArσe)
2 + σ2

v

(4.12)

Expression (4.12) was derived in [78] and [79, p.68] when σ2
v = 0. Figure 4.3(a)

plots the SNR degradation vs. σe. Observe that the SNR degrades quickly with

σe and the jitter becomes the dominant noise source as (2πfrArσe)
2 becomes

larger than σ2
v . Observe that a reduction of the jitter standard deviation from

1% of the sampling period to 0.5% of the sampling period yields approximately

6dB in SNR improvement for a complex sinusoid with the listed parameters.
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4.1.2.2 Band-limited Random Signal

We now examine the effect of jitter on a zero-mean wide-sense-stationary (WSS)

random process, r(t), with auto-correlation function Rr(τ) where Rr(0) = σ2
r .

Again, similar to (4.11), we get

ž[n] ≈ r[n] + e[n]ṙ[n] + v[n] (4.13)

The SNR after sampling is given by

SNR ≈ σ2
r

σ2
e · E |ṙ[n]|2 + σ2

v

(4.14)

In order to evaluate the power of the derivative we assume that r(t) is mean-

square continuous, i.e.,

E |r(t)|2 <∞, lim
s→t

E |r(s)− r(t)|2 = 0.

For such a process, it holds that [80]:

Rṙ(τ) = − d2

dτ 2
Rr(τ) (4.15)

in terms of the auto-correlation function of the process r(t). From this result, it

follows that

E |ṙ[n]|2 = Rṙ(0) = − d2

dτ 2
Rr(τ)

∣
∣
∣
∣
τ→0

(4.16)

so that (4.14) becomes

SNR ≈ σ2
r

−σ2
e · d2

dτ2
Rr(τ)

∣
∣
τ→0

+ σ2
v

(4.17)

For illustration purposes, consider a bandlimited signal r(t) with box-car power

spectral density (PSD) and sinc autocorrelation function:

Sr(f) =
σ2
r

2Br

rect

(
f

2Br

)

(4.18)
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where

rect(a) =







1, |a| < 1
2

1
2
, |a| = 1

2

0, otherwise

(4.19)

and 2Br is the passband bandwidth of the signal r(t) in Hz. Then

Rr(τ) =







σ2
r
sin(2Brπτ)

2Brπτ
, τ 6= 0

σ2
r , τ = 0

(4.20)

which is derived by taking the inverse Fourier transform of the PSD Sr(f). It

follows that

− d2

dτ 2
Rr(τ)

∣
∣
∣
∣
τ→0

=
4

3
π2B2

rσ
2
r (4.21)

and the SNR expression (4.17) gives

SNR ≈ σ2
r

1
3
(2πBrσrσe)

2 + σ2
v

(4.22)

Observe that when the jitter noise dominates the noise v[n], the SNR is deter-

mined solely by the variance of the jitter σ2
e and the bandwidth of the incoming

signal Br (σ2
r is eliminated). Expression (4.22) was derived in [78] when σ2

v = 0.

The effect of jitter on the SNR is illustrated in Figure 4.3(b). We choose

the per-channel standard-deviation of the signal r(t) by assuming the signal is

Gaussian and the probability of exceeding an absolute-value amplitude of each

channel of one is less than 1% since it is assumed that the ADC has a range of

±1. That is, we select the single-channel standard-deviation σSC
r such that:

Q

(
1

σSC
r

)

≤ 1

200
=⇒ σSC

r ≤ 1

Q−1
(

1
200

) ≈ 0.388 (4.23)

where

p = Q(x) ,
∫ ∞

x

1√
2π
e−

u2

2 du

102



is the standard Q-function and x = Q−1(p) is the inverse Q-function. Assuming

the data on each channel is independent, the total signal standard-deviation σr

becomes σr =
√
2σSC

r . Figure 4.3(b) again shows that the clock jitter reduces

the SNR considerably if left uncompensated. Also notice that a reduction of the

jitter standard deviation from 1% of the sampling period to 0.5% of the sampling

period yields approximately 5.5dB in SNR improvement for a bandlimited signal

with the listed parameters. In the next section, we derive methods for estimating

the jitter e[n] that will be used for the compensation of the jittered samples.

4.2 Estimation of clock jitter

As illustrated in the previous section, the sampling jitter has an adverse effect

on the SNR of the ADC. In this section, we propose methods to estimate the

jitter sequence, e[n]. We propose a signal injection algorithm for wideband re-

ceivers similar to the technique we proposed earlier in [41,64] and independently

by [32,33,73]. There is however a fundamental difference between our techniques

and other related works such as [32, 33]. While our approach and the approach

taken in [32,33] rely on the use of a reference signal injection outside the received

signal band (we explain why it is useful to inject such training tones in App. 4.C.),

the problem studied in this paper is not the same as the one discussed in [32,33].

In these references, the receiver sub-samples the incoming narrow-bandwidth RF

signal and a reference tone using a low sampling rate. The incoming signal then

folds down to an intermediate frequency and is subsequently digitally processed.

We do not assume that the incoming signal has a narrow bandwidth; in fact, we

assume that the incoming signal has a wide bandwidth. This is a key difference

between the two approaches and this fact presents new challenges and difficulties

in the signal injection step. First, it is not possible to inject a low-frequency
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signal anymore along with the down-converted signal since the down-converted

signal now has a wide bandwidth and will interfere with the reference tone (and

vice versa). It is also challenging to generate a clean sinusoid (with negligible

phase-noise) at high-frequencies. For this reason, we must propose a signal in-

jection architecture that is able to produce a relatively clean sinusoid outside the

desired signal bandwidth. Second, the jitter estimation algorithm from [32, 33]

requires the use of tan−1(·) blocks. Such blocks generally consume considerable

power and introduce delay in the system. We avoid this problem by performing

some processing off-line (at the system start-up) and proceed with low-complexity

estimation in real-time. Finally, the compensation method proposed in [32, 33]

effectively only compensates the carriers of the bandpass signals, and not the sig-

nals themselves, since it is assumed that the signals are narrowband and thus the

dominant jitter effects act on the carriers and not the signals. Since we assume

that the incoming signal is wide-band, we must compensate the signal itself for

the jitter effects.

For all these reasons, we replace the radio architecture of Fig. 4.1 with Fig.

4.4 where a training signal y(t) is generated inside the radio and injected along

with the downconverted received signal r(t). The samples at the output of the

ADCs constitute the in-phase and quadrature-phase components of the perturbed

signal ž[n]. We focus our discussion on “Direct Downconversion Receivers1”. We

will describe a direct recovery method and an optimal jitter recovery scheme

based on the minimization of a mean-square-error cost.

1ADirect-Downconversion Receiver performs an analog quadrature down-conversion to base-
band of the signal of interest. The base-band signal is then sampled at a rate at least twice the
bandwidth of the signal per channel. [79, p.43]
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Figure 4.4: Proposed signal injection architecture used for jitter estimation.

4.2.1 Direct downconversion receiver

When the received radio signal r(t) is a wide-band radio signal at baseband

(downconverted in the circuit), it is not possible to inject the training signal y(t)

in the low-frequency region as it will interfere with r(t). For this reason, we

must inject y(t) at high-frequency. Unfortunately, it is generally not practical to

generate a noise-free training signal y(t) at high-frequency. It is, however, feasible

to up-convert a low-frequency training signal with a high-frequency carrier. To

choose the carrier signal, we rely on a frequency-halved sampling-clock. Thus, let

s(t) denote the sampling clock signal that is generated by the PLL–recall (4.1):

s(t) = sin (2πfst+ φs(t)) (4.24)

where fs is the sampling frequency and φs(t) is the phase-noise. Now a scaled,

frequency-halved clock signal, which we shall denote by p(t), will have the form

p(t) = Ap sin

(

2π
fs
2
(t− τp) +

φs (t− τp)

2

)

(4.25)

where τp models some constant delay implemented in the circuit and Ap is a scal-

ing factor. The frequency division is a low-noise, simple integer frequency divider

that preserves the time jitter e[n] and halves the phase-noise φs(t) [40, p.159].
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When τp is relatively small, we can say that the delayed signal φs (t− τp) is ap-

proximately the same as φs(t) since we have assumed earlier in Assumption 4.3

that the phase-noise is relatively slow compared to the sampling time. Sampling

p(t) with s(t) gives p̌[n] = p (nTs + e[n]) where e[n] is given by (4.3). Thus, we

can write the samples p[n] as

p̌[n] = Apsin

(

2π
fs
2
(nTs+e[n]−τp)+

φs (nTs+e[n]−τp)
2

)

≈ Ap sin

(

2π
fs
2
(nTs + e[n]− τp) +

φs[n]

2

)

= ej2π(
fs
2 )nTs (4.26)

where the first equality is due to (4.67), the second approximation is a con-

sequence of (4.3) and the fact that the jitter is small (Assumption 4.2) and

slow (Assumption 4.3) and the last equality is a consequence of choosing Ap =

− csc
(
2π fs

2
τp
)
where csc(x) , 1/ sin(x). Thus, we observe that the samples of

the signal derived by frequency-halving the sampling-clock and with negligible

delay will have no jitter; it is approximately deterministic. Notice that p̌[n] is

a real signal that we represented as a complex signal, which will be used for

convenience in (4.28)-(4.30).

We now modulate p(t) by a low-frequency, low-noise training tone w(t) in

order to up-convert w(t) to become a high-frequency training signal without the

difficulty of generating it as a high-frequency signal directly. Thus, we choose the

training signal for the direct-downconversion receiver to be:

y(t) = w(t)p(t) (4.27)
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and the corresponding samples of the training signal become

y̌[n] , y(nTs + e[n])

= w (nTs + e[n]) p̌[n]

≈ w (nTs + e[n]) e
j2π( fs

2 )nTs (4.28)

We chose the tone w(t) to be a low-frequency complex-sinusoid:

w(t) , Awe
j(2πfwt+θw) (4.29)

Then, by substituting (4.29) into (4.28), we can show that the sampled injected

signal y̌[n] will be a complex-sinusoid located at fs
2
+ fw:

y̌[n] ≈ w (nTs + e[n]) e
j2π( fs

2 )nTs

= Awe
j(2π( fs

2
+fw)nTs+2πfwe[n]+θw) (4.30)

Figure 4.5 illustrates the tone injection scheme. The training tone y(t) is injected

along with the desired signal r(t) to form the complex-valued signal z(t):

z(t) , r(t) + y(t) (4.31)

The composite signal z(t) is then sampled by the ADC to yield the complex-

valued discrete-time signal ž[n]:

ž[n] , z(nTs + e[n]) + v[n] (4.32)

where v[n] is noise introduced at the ADC, which includes quantization noise.

4.2.2 Direct jitter estimation

We assume that we are able to estimate θw as θ̂w say, by using a digital PLL

technique [81] up to an ambiguity term that is a multiple of 2π (see App. 4.D). A

107



Figure 4.5: High-frequency injection model. The received signal r(t) is sampled along

with a training signal y(t) generated by multiplying by a frequency divided and delayed

sampling clock by a low-frequency complex-oscillator. The complex-valued noise v[n]

represents other noise sources such as quantization noise.

good estimate for Aw is also assumed to be available through a calibration routine

since Aw is a design parameter and is expected to remain relatively constant.

Then, we can introduce the following filtered signal, obtained by down-converting

y̌[n] and low-pass filtering the result:

x[n] , LPF

{
1

Aw

ž[n]e−j(2π( fs
2
+fw)nTs+θ̂w)

}

= LPF
{

ej(2πfwe[n]+θw−θ̂w)

+
1

Aw

(r (nTs+e[n])+v(nTs+e[n])) e
−j(2π( fs

2
+fw)nTs+θ̂w)

}

= LPF
{

ej(2πfwe[n]+θw−θ̂w) + ud[n]
}

(4.33)

where we combined all the noise and interfering signals into ud[n]. By utilizing

Assumption 4.2, it is possible to recover the jitter as:

ê1[n] ,
sin−1 (Im {x[n]})

2πfw
(4.34)
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where sin−1(·) returns the angle in either the first or fourth quadrant and Im{x}
returns the imaginary part of the complex number x. When Im {x[n]} is small,

we can use a small-angle approximation for sin(·) to have:

ê2[n] ≈
Im {x[n]}

2πfw
(4.35)

A CORDIC algorithm may be used to evaluate the arcsin in (4.34). Alternatively,

it is possible to examine the effect of using a series expansion for sin−1(·) to an

arbitrary number of terms. We perform this analysis later for a single term in the

series expansion. It can be shown that when the jitter is small, the single term

analysis is sufficiently accurate due to the linearity of sin(·) for small angles. Fig.

4.6 illustrates the algorithm when (4.35) is used as the estimator for the jitter.

Figure 4.6: Jitter recovery structure based on (4.35).

4.2.3 Adaptive jitter estimation

We wish to recover the jitter e[n] from the samples ž[n]. In order to accomplish

this, we introduce a processed complex-valued signal d[n] that is the result of

shifting the perturbed training tone y̌[n] in (4.30) down to baseband and nor-
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malizing its amplitude by dividing by the factor Aw:

d[n] ,
1

Aw

ž[n]e−j2π( fs
2
+fw)nTs

= ej(2πfwe[n]+θw) + ua[n] (4.36)

where the complex-valued noise ua[n] is defined as

ua[n] ,
1

Aw

(ř[n] + v(nTs + e[n]))e
−j2π( fs

2
+fw)nTs

We now write down a stochastic optimization problem that allows us to recover

the jitter e[n]. We note that the data signal d[n] in (4.36) is a complex-sinusoid

at baseband and we assume that the jitter e[n] is slowly varying and that most

of its power lies at low-frequencies (as assumed in Assumption 4.3). We let the

phase of the complex sinusoid in (4.36) be denoted by θ:

θ , 2πfwe[n] + θw (4.37)

We estimate θ by solving the following minimum mean-square-error problem: [42,

p.163].

JMSE (θ) = E

[

LPF
{∣
∣d[n]− ejθ

∣
∣
2
}]

(4.38)

The low-pass filter removes the out-of-band noise caused by the incoming signal

ř[n] , r(nTs+e[n]) and the broadband noise v(nTs+e[n]) while retaining most

of the power of the jitter process. In order to minimize (4.38) iteratively, we

implement a stochastic gradient-descent algorithm that moves along the opposite

direction of the gradient of (4.38) at each iteration. Thus, we compute the

gradient as:

∇JMSE(θ) = E
[
LPF

{
jd[n]e−jθ

}]
+ E

[
LPF

{
−jd∗[n]ejθ

}]

= −2E
[
LPF

{
Im
{
d[n]e−jθ

}]}
(4.39)
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and the algorithm is given by:

θ̂[n+ 1] = θ̂[n] + µE
[

LPF
{

Im

{

d[n]e−jθ̂[n]
}}]

(4.40)

where µ is a small positive step-size and θ̂[n] is the estimate for θ at iteration n. It

is possible to use an instantaneous approximation for the gradient by eliminating

the expectation operation in (4.40) [42, p.165]:

E

[

LPF
{

Im

{

d[n]e−jθ̂[n]
}}]

≈ LPF

{

Im

{
1

Aw

ž[n]e−j(2π( fs
2
+fw)nTs+θ̂[n])

}}

(4.41)

where ž[n] denotes the actual realization of the random process ž[n]. Also, since

we are only interested in the imaginary part, we compute the expression for it

directly as:

E

[

LPF
{

Im

{

d[n]e−jθ̂[n]
}}]

≈ 1

Aw

LPF

{

žQ[n] cos

(

2π

(
fs
2
+ fw

)

nTs + θ̂[n]

)

−

žI [n] sin

(

2π

(
fs
2
+ fw

)

nTs + θ̂[n]

)}

(4.42)

where žI [n] and žQ[n] are the in-phase and quadrature phase components of ž[n].

Since the training signal will have some constant phase shift due to θw, we recover

the instantaneous jitter from θ̂[n] (4.37) as:

ê3[n] =
θ̂[n]− θ̄[n]

2πfw
(4.43)

The running average θ̄[n] can be estimated using a forgetting factor filter such

as:

θ̄[n+ 1] = λθ̄[n] + (1− λ)θ̂[n] (4.44)

where λ is a forgetting factor close to one. The block diagram for the adaptive

jitter recovery method is presented in Fig. 4.7.
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Figure 4.7: Adaptive jitter recovery structure based on (4.40)–(4.43)

4.3 Compensation of clock jitter

Once the jitter, e[n], has been estimated through (4.34), (4.35), or (4.43), it is still

necessary to process ř[n] to recover a cleaner signal r̂[n]. Many different methods

have been proposed to accomplish this task, such as in [57, 71]. In this section

we use a simple compensator based on a first-order approximation like the one

proposed in [57] due to its simplicity in implementation. As we will see through

simulations, the use of a single derivative compensator is sufficient to provide

near-theoretical SNR performance as predicted in Sec. 4.1.2. More sophisticated

differentiators, however, can have benefits when the noise variance is lower. We

motivate the compensation step via a Taylor expansion of the realization of the

process ř[n] by noting that

r[n] = r(nTs + e[n]− e[n])

≈ r(nTs + e[n])− e[n] ṙ(t)|t=nTs+e[n]

= ř[n]− e[n] ṙ(t)|t=nTs+e[n] (4.45)

The above approximation can be extended to include higher-order derivatives to

improve the accuracy of the compensation step, as was done in [57]. In general,

however, the noise in the estimation of the jitter reduces the benefit of using
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higher derivatives (the work in [57] assumes that the jitter is perfectly estimated).

The derivative of the realization r(t) is not available after sampling. However,

consider the derivative of r
(

t− φs(t)
2πfs

)

evaluated at t = nTs:

dr(t− φs(t)
2πfs

)

dt

∣
∣
∣
∣
∣
t=nTs

= ṙ(t)|t=nTs+e[n]

(

1− φ̇s(t)

2πfs

∣
∣
∣
∣
∣
t=nTs

)

where − φs(t)
2πfs

∣
∣
∣
t=nTs

≈ e[n] due to (4.3). If φs(t) is assumed to be small and

slowly varying (in comparison to the sampling frequency), as effectively assumed

in Assumptions 4.1, 4.2 due to (4.3), it is possible to ignore the term φ̇s(t)
2πfs

∣
∣
∣
t=nTs

and write
dr(t− φs(t)

2πfs
)

dt

∣
∣
∣
∣
∣
t=nTs

≈ ṙ(t)|t=nTs+e[n] (4.46)

It is then possible to create a discrete differentiator [56] in order to approximate

the derivative. A simple example that was used in the simulations is the central

difference differentiator [82]:

dr
(

t− φs(t)
2πfs

)

dt

∣
∣
∣
∣
∣
∣
t=nTs

≈ − ř(n− 5)

1260Ts
+

5ř(n− 4)

504Ts
− 5ř(n− 3)

84Ts
+

5ř(n− 2)

21Ts
− 5ř(n− 1)

6Ts
+

5ř(n+ 1)

6Ts
−

5ř(n+ 2)

21Ts
+

5ř(n + 3)

84Ts
− 5ř(n + 4)

504Ts
+

ř(n+ 5)

1260Ts
(4.47)

A more sophisticated differentiator design may yield the same results as a long

impulse response filter with fewer taps [56, 83]. In practice, a low-pass filter is

placed prior to the derivative filter to suppress noise at high-frequencies. We first

recover the signal ř[n] as

ř[n] ≈ LPF {ž[n]} (4.48)
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We then apply (4.45) by replacing e[n] by its estimate ê[n] found using any of

the methods in the previous section and the derivative approximation (4.46) to

recover the estimate r̂[n] of the signal r[n]:

r̂[n] , ř[n]− ê[n]
dr
(

t− φs(t)
2πfs

)

dt

∣
∣
∣
∣
∣
∣
t=nTs

(4.49)

The architecture for a single derivative reconstruction is illustrated in Fig. 4.8.

Figure 4.8: Proposed compensation algorithm (4.49).

4.4 Mean-square-error analysis

In this section, we analyze the mean-square-error (MSE) performance of the si-

nusoidal tone injection methods described in Sec. 4.2. The analysis will be

performed in the following subsection for the direct jitter estimation method

described in section 4.2.2 and in the next subsection for the adaptive jitter esti-

mation method described in section 4.2.3.

4.4.1 Direct estimation method

Although the analysis in this section is performed for the estimator in (4.35), the

derivation can be extended to a higher number of terms used in the approximation
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of the sin−1(·) function in order to extend the analysis to the estimator in (4.34).

To begin with, we substitute (4.33) into (4.35) to obtain

ê2[n] =
1

2πfw
LPF

{

sin
(

2πfwe[n] + θ̃w

)

+ ud[n]
}

(4.50)

We wish to compute the error:

ẽ[n] , e[n]− ê2[n]

= e[n]− 1

2πfw
LPF

{

sin
(

2πfwe[n] + θ̃w

)

+ ud[n]
}

(4.51)

We illustrate the above system in Fig. 4.9(a), where F (z) represents the response

of the low-pass filter. We note that this system is not a linear system. For this

reason, we use a common approximation method frequently used in the analysis of

PLLs where we assume that the argument of the sin(·) function is small, and thus

we can linearize the model by using a small angle approximation, as illustrated

in Fig. 4.9(b).

Assuming all input signals are independent of each other, it is possible to

use superposition to evaluate the average power of the output ẽ[n]. We take

advantage of Parseval’s theorem for discrete-time Fourier transforms to write the

mean-square-error as shown in (4.52).

σ2
ẽ ≈ 1

2π

∫ π

−π

∣
∣1− F (ejω)

∣
∣
2
Se(e

jω)dω

+
1

(2πfw)2
1

2π

∫ π

−π

∣
∣F (ejω)

∣
∣
2 (
Su(e

jω) + Sθ̃(e
jω)
)
dω (4.52)

In (4.52), Su(e
jω) and Sθ̃(e

jω) are the PSDs of ud[n] and θ̃w[n], respecively. The

MSE is dominated by terms that are dependent on the design of the phase-

recovery method and on the low-pass filter F (z) used in the final step of the

recovery method, respectively. Thus, if the noise terms dominate the rest, then

it is unnecessary to invest the computational power in computing the sin−1(·)
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(a) Nonlinear system to model jitter error ẽ[n] as function of input jitter

e[n] and noise ud[n].

(b) Approximate linear system to model jitter error ẽ[n] as function of input

jitter e[n] and noise ud[n].

Figure 4.9: (a) shows the nonlinear system model while (b) shows the linearized time-

invariant system.

operation as suggested by (4.34) and expression (4.35) would be sufficient. Care

must be taken during the design of the PLL as discussed in Sec. 4.1.1 since

the loop-bandwidth of the PLL can determine upper limits on the estimation

capability of any recovery method. Thus, some investment in the PLL can be

beneficial as it allows the bandwidth of the low-pass filter to be reduced and

relaxes the demands on the analog circuit that generates the training tone.

4.4.2 Adaptive estimation methods

In this section, we analyze the performance of the adaptive estimation method

in Fig. 4.7 presented in section 4.2.3. The recovery algorithm closely mirrors the

equations of a digital PLL [84]. Thus, we can analyze the tracking performance

of the loop by considering the equivalent phase-domain model presented in Fig.
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Figure 4.10: Phase domain model of adaptive jitter recovery algorithm

4.10. In the figure, F (z) represents the transfer function of the low-pass filter

while J(z) represents the transfer function of the accumulator:

J(z) =
µ

1− z−1
(4.53)

The noise g[n] in this context is taken to be all interfering noise:

g[n] , Im{ua[n]e
−jθ̂[n]} (4.54)

It is important to note that the model in Fig. 4.10 is not an LTI system due to

the presence of the sin(·) operator. During steady-state operation, however, it is

possible to assume that the estimated angle θ̂[n] is close to the true angle θ[n]

listed above. The condition that θ̂[n] is close to θ[n] roughly implies that the

average value of the process θ̂[n] is θw. When this condition is satisfied, we can

approximate the sin(·) operator using the small angle approximation:

sin(θ[n]− θ̂[n]) ≈ θ[n]− θ̂[n] (4.55)

This is a common approximation made to study the steady-state performance

of phase-locked-loops [9, 84, 85]. We let θw = 0 for simplicity and we can model

the loop under such conditions as the linear system illustrated in Fig. 4.11 with

inputs: noise g[n] and phase-noise θ[n]. The closed-loop transfer function of the

system from the point of view of either input can be written as:

H(z) =
F (z)J(z)z−1

1 + F (z)J(z)z−1
(4.56)
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Figure 4.11: Linear system model for adaptive jitter recovery during jitter-tracking

operation.

Since the noise and the phase-noise are independent, we use the superposition

property of linear time-invariant systems to evaluate the error PSD as [9, 85]

Sθ̃[n](e
jω)=|1−H(ejω)|2Sθ(e

jω)+|H(ejω)|2Sg(e
jω) (4.57)

where Sθ(e
jω) is the PSD of the phase-noise input θ[n] determined by the PSD

of the jitter in (4.4) and Sg(e
jω) is the PSD of the noise. θ̃[n] is the estimation

error θ̃[n] , θ[n]− θ̂[n]. The mean-square-error is found using the integral:

σ2
ẽ =

1

(2πfw)2
1

2π

∫ π

−π

Sθ̃[n](e
jω)dω (4.58)

4.5 SNR analysis

In this section we analyze the performance of the compensation with jitter recov-

ery as described in Sec. 4.2. We once again assume that the signal r (nTs + e[n])+

v(nTs + e[n]) is obtained by filtering the incoming samples ž[n] and removing

y(nTs+e[n]) as described in (4.48). We further assume that the remaining noise

v(nTs + e[n]) is independent of r[n] and that the signal y(t) is sufficiently far
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away from r(t). In this case, we describe the recovered samples as

r̂[n] = r (nTs + e[n]) + v(nTs + e[n])−
N∑

i=1

(ê[n])i

i!

di

dti
r(t+ e[n])

∣
∣
∣
∣
t=nTs

= r[n] +
∞∑

i=1

(e[n])i

i!

di

dti
r(t)

∣
∣
∣
∣
t=nTs

+ v(nTs + e[n])

−
N∑

i=1

(ê[n])i

i!

di

dti
r(t+ e[n])

∣
∣
∣
∣
t=nTs

(4.59)

We subtract r[n] from the above expression to find:

r̂[n]− r[n] ≈ v(nTs + e[n]) +
N∑

i=1

(e[n])i − (ê[n])i

i!

di

dti
r(t)

∣
∣
∣
∣
t=nTs

+

∞∑

i=N+1

(e[n])i

i!

di

dti
r(t)

∣
∣
∣
∣
t=nTs

≈ v(nTs+e[n]) + (e[n]− ê[n]) d

dt
r(t)

∣
∣
∣
∣
t=nTs

(4.60)

where the first approximation follows our argument in Sec. 4.3 regarding the

derivative of r
(

t− φs(t)
2πfs

)

and the second approximation is due to the fact that

the first term in the summation has the highest magnitude in comparison to the

rest. From this, we can compute the MSE in the recovery of r[n] as

E
[
(r̂[n]− r[n])2

]
≈ σ2

v + σ2
ẽ · E

[(
d

dt
r(t)

∣
∣
∣
∣
t=nTs

)2
]

(4.61)

where σ2
ẽ can be computed using the analysis in Sec. 4.4. Thus, the SNR can be

written as

SNR ≈ σ2
r

σ2
v + σ2

ẽ · E
[(

d
dt
r(t)

∣
∣
t=nTs

)2
] (4.62)

If we assume that r[n] has the auto-correlation function defined by (4.15), we

can use the result of App. 4.E to find that

E

[∣
∣
∣
∣

dN

dtN
r(t)

∣
∣
∣
∣
t=nTs

∣
∣
∣
∣

2
]

=
(π2Br)

2N

2N + 1
σ2
r , (4.63)
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which allows us to conclude that the SNR in the compensation can be written as

SNR ≈ σ2
r

σ2
v +

1
3
(2πBrσrσẽ)

2 (4.64)

4.6 Simulation results

We assume a sampling period of Ts = 1ns. The jitter e[n] is modeled as described

in Sec. 4.1.1 and is Gaussian with mean zero and standard deviation σe = αTs.

The jitter is correlated and has bandwidth of fe. The default parameters are listed

in Table 4.1. We simulate the recovery methods for sinusoidal signal injection

Table 4.1: Table listing the default values for parameters in the simulation

Parameter α fe σ2
v At ft fs λ Br

Default Value 1
100

5MHz 1
3·410 2−4 100MHz 1GHz 255

256
200MHz

described under Sec. 4.2.1. Central-derivative filters are used throughout the

simulation (specifically, the 11-tap filter listed in (4.47)). For the simulation of

the band-limited signal, a cut-off bandwidth of Br = 200MHz is chosen and the

signal is generated by filtering white Gaussian noise with the use of a 256-tap

FIR low-pass filter designed using the FIRLS function in MATLAB. The band-

limited signal was jittered by including ten terms of the Taylor series expansion

by adding e[n]i

i!
r(i)[n] for the i-th term and the derivative signal r(i)[n] is generated

by applying a central-difference discrete derivative filter to the signal r[n].

In this section, we evaluate the performance of the sinusoidal tone injection

methods discussed in Sec. 4.2. The normalized PSD of the input signal r[n] is

illustrated in Fig. 4.12. Figure 4.13(a) shows the performance of the estimators.

Both algorithms utilize a 4-th order Butterworth IIR low-pass filter designed with
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Figure 4.12: Normalized PSD of input signal r[n] used in the simulation.

appropriately chosen bandwidths and for the case of the adaptive methods, an

appropriately chosen gain µ to minimize the MSE. The bandwidth of the low-

pass-filter must be reduced as the initial jitter standard-deviation σe is decreased

in general. We fix the low-pass filter in this work to provide smooth theoretical

and simulation curves. The cut-off of this low-pass filter will inherently limit the

performance of the filter to the performance illustrated in Fig. 4.2(b) even as the

low-pass filter becomes ideal. It can be seen from Fig. 4.13(a) that there is a clear

improvement in the MSE by using either of the proposed compensation methods

for moderate values of σe. We also note that the adaptive algorithm in (4.43)

outperforms the direct method in (4.35). We also compare to the estimation

algorithm used in [32,33] that used a tan−1(·) operation to recover the jitter from

(4.33). We notice that the simple estimator in (4.35) performs at the same level

as the estimation algorithm that utilizes the tan−1(·) operation.

We use (4.64) in order to plot the theoretical SNR curves that correspond to

the compensation of a box-car PSD random signal with simulation parameters

listed in Table 4.1 and for a 10-bit ADC. Fig. 4.13(b) illustrates the relative
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(a) Figure illustrating the MSE in estimating

the jitter e[n] vs. σe tradeoff for the direct

estimation method in (4.35) and the adaptive

method in (4.43). The uncompensated jitter

e[n] is also displayed.

(b) Figure illustrating the SNR after compen-

sation vs. σe tradeoff for the direct estimation

method in (4.35) and the adaptive method in

(4.43). The SNR for the uncompensated sig-

nal is also displayed.

Figure 4.13: In (a), we illustrate the simulated and theoretical MSE in the estimation

of the jitter using the direct and adaptive techniques. In (b), we illustrate the expected

SNR as a result of jitter compensation.

performance of the estimators and the compensation algorithm described in Sec.

4.3 for varying values of σe. It can be seen from the figure that there is a clear

improvement in the SNR by using either of the proposed compensation methods.

We also note that the adaptive algorithm in (4.43) outperforms the direct method

in (4.35). In general, the shape of the PSD of the signal r(t) dictates the slope of

the SNR curve as seen by the difference in the SNR curves for complex-sinusoidal

signals and box-car signals in Sec. 4.1.2. The discrepancy between the theory

and simulation can be explained by the fact that we use a small jitter assumption

in the analysis, which is violated as σe increases and by leakage of jitter from r(t)

onto the training signal band. The latter effect is also amplified as the initial

RMS jitter increases.
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4.7 Concluding remarks

We illustrated the effect of sampling jitter on the spectrum of the sampled signal.

We showed that the jitter can be estimated in the digital domain up to some limits

and we derived bounds for the estimation accuracy. We also proposed algorithms

that can estimate the jitter in direct-downconversion receivers at high-sampling

rates. In addition, we proposed a compensation algorithm that was shown to be

sufficient when the jitter is small. Simulations illustrate the performance of the

digital jitter recovery schemes and that they can reduce the RMS jitter by half

from 1% to approximately 0.53% of the sampling period and improve the SNR

by 5dB over the uncompensated samples under given conditions for a box-car

signal.

4.A Stochastic properties of jitter

In an ADC circuit, the sampling time instants are the random times tn at which

the clock signal s(t) crosses zero on either the positive or negative edge. In this

work, we will consider sampling on the positive edge without loss of generality.

This happens at the values of tn satisfying:

2πfstn + φs(tn) = 2πn (4.65)

for all integers n; or equivalently:

tn = nTs −
φs(tn)

2πfs
(4.66)

where Ts =
1
fs

is the sampling period. Notice that tn is random as it is affected

by the random process φs(t). When the PLL is treated as approximately a

linear system during normal tracking behavior, it is reasonable to assume that

the distribution of the phase-noise φs(tn) is Gaussian [40, pp.135-136], [76]. For
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this reason, we assume that the sampling offsets −φs(tn)
2πfs

are Gaussian distributed

with zero-mean and standard-deviation αTs where α parameterizes the value of

the RMS jitter as a percent of the sampling period Ts. In general, small values

are chosen for α such as 1/100, which implies that the sampling offset has an

RMS value of approximately 1% of the sampling period. In addition, since the

phase-noise is shaped by the PLL, it is generally low-pass in nature [9] and, in

high-speed sampling systems, the bandwidth of the phase-noise is generally much

smaller than the sampling frequency of the ADC itself. We model the actual

sampling times tn as random perturbations away from the sampling instants

nTs:

tn = nTs + e[n] (4.67)

where the random process e[n] represents these random perturbations. We sub-

stitute (4.67) into (4.66) to find that e[n] can be written as:

e[n] = −
φs

(

nTs − φs(tn)
2πfs

)

2πfs
(4.68)

From our Gaussian assumption regarding the distribution of the sampling time

offsets −φs(tn)
2πfs

above, it is possible to verify that the probability that the pertur-

bations exceed a magnitude of βTs are bounded by:

Pr

(∣
∣
∣
∣

φs(tn)

2πfs

∣
∣
∣
∣
≥ βTs

)

= 2Q

(
β

α

)

(4.69)

where Q(z) , 1√
2π

∫∞
z
e−

t2

2 dt denotes the Q-function. It is easy to see that when

α = 1
100

and β = 1
10
, the probability that the perturbation exceeds Ts/10 is smaller

than 1.524× 10−23. This implies that in practice, −φs(tn)
2πfs

is small in comparison

to the sampling time and since we also assume that the PSD of phase-noise decays

for large frequencies (as we will see later in this section), we may conclude that
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the phase-noise is also slowly-varying in comparison to the sampling rate. These

facts allow us to approximate the jitter random process e[n] as

e[n] = −
φs

(

nTs − φs(tn)
2πfs

)

2πfs
≈ −φs(nTs)

2πfs
(4.70)

We therefore note that the relation between the PLL phase-noise and the clock

jitter is linear (one is a scaled multiple of the other) [86]. The PSD of the

continuous-time phase-noise process φs(t) is known to be given by [9,62,87]—see

App. 4.B :

Sφ(f) =
f 4

f 4 + f 4
e + 2f 2f 2

e (2ζ
2 − 1)

· βφ
f 2

(4.71)

for some constant βφ that scales the power of the process φs(t) and damping

factor 0 ≤ ζ ≤ 1 (for our purposes, it is sufficient to assume ζ = 1 and this will

simplify the expression for the jitter PSD). When ζ = 1, we can simplify Sφ(f):

Sφ(f) =
βφf

2

(f 2 + f 2
e )

2
(4.72)

Notice that although Sφ(0) = 0 for the above PSD, this fact does not limit

our analysis or our recovery algorithms as long as the PSD decays for large

frequencies. We then conclude from (4.3) that the PSD of the clock jitter (which

is approximated by the sampled process −φs(nTs)/(2πfs) by (4.3)) has the form:

Se(e
jω) ≈ 1

(2πfs)2Ts

∞∑

k=−∞
Sφ

(
ω − 2πk

2πTs

)

(4.73)

over 0 ≤ ω ≤ 2π and where βe = βφ/(2πfs)
2 and σ2

e = πβe/2fe. Note that the

above PSD is low-pass and will decay when ω is large.

Now consider a continuous-time WSS process x(t) and its sampled process

x[n]. It can be shown that the autocorrelation function of x[n], denoted by Rs(m)

is related to the autocorrelation function of x(t), denoted by R(τ), by:

Rs(m) = R(τ)|τ=mTs
(4.74)
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Figure 4.14: PLL phase model used to derive PSD of PLL output phase-noise

Therefore, the autocorrelation function of the jitter random process is given by

the sampled inverse Fourier transform of (4.72) [75, p.1119]:

Re(m) ,
∫ ∞

−∞

1

(2πfs)2
Sφ(f)e

j2πfτdf

∣
∣
∣
∣
τ=mTs

= σ2
e(1− 2πfe |m| Ts)e−2πfe|m|Ts (4.75)

where any proportionality constants are absorbed into σ2
e .

4.B Derivation of phase-noise PSD

In this appendix, we motivate the phase-noise PSD listed in (4.71) and derived

in [62]. We start with the block diagram of a PLL in Fig. 4.14 where θi(t)

indicates the input phase, φs(t) indicates the phase-noise, and θo(t) indicates the

output phase by the PLL. In this appendix, we set the DC component of the

input phase θs in (4.1) to zero, and consider θi(t) to be the phase-noise due to

the input free-running oscillator. In this way, the phase-noise φs(t) will represent

the shaped phase-noise of the free-running oscillator due to the PLL. Notice that

the closed-loop transfer function can be written as:

H(s) =
KF (s)

s+KF (s)
(4.76)

where K = KfKo is the total gain through the loop and F (s) is the frequency

response of the low-pass filter. The phase error transfer function from θi(t) to

φs(t), denoted by He(s), can be found as:
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He(s) = 1−H(s)

=
s

s+KF (s)
(4.77)

The phase error PSD can be found by squaring the magnitude response of

He(j2πf), where j is the imaginary unit j ,
√
−1, and multiplying the re-

sult by the PSD of the input generated by the free running oscillator. A free

running oscillator’s phase-noise is a Wiener process with PSD proportional to

1/f 2. Therefore, the shaped PSD of the output phase-noise can be written as:

Sφ(f) = |He(j2πf)|2
βφ
f 2

(4.78)

It is now possible to substitute the transfer function of a low-pass filter into (4.77)

in order to find the PSD of the phase-noise output by the PLL in (4.78). We

choose a low-pass filter characterized by

F (s) ,
1 + τ1s

τ2s
(4.79)

Note that F (s) listed in (4.79) is the equivalent transfer function of the phase/frequency

detector/charge-pump/filter cascade presented in Fig. 9.30 in [62, p.618]. There

is nothing particularly special about choosing a low-pass filter of this form, but

is only used here as an example. Substituting (4.79) into (4.77), we have:

He(s) =
s

s+K 1+τ1s
τ2s

=
s2

s2 + τ1
τ2
Ks+ K

τ2

(4.80)

We now make the identifications:

ωe , 2πfe =

√

K

τ2
, ζ ,

√

K

τ2

τ1
2

(4.81)

and then we have that

He(s) =
s2

s2 + 2ζωes + ω2
e

(4.82)

Notice that (4.82) is consistent with (9.51) from [62, p.639] for the analysis of

phase-noise in PLLs. Finally, substituting (4.82) into (4.78) yields (4.71).
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4.C Effective signal-to-noise ratio (ESNR)

To illustrate why a training signal is useful, consider the estimation of the jitter

e[n] from the model

ř[n] ≈ r[n] + e[n]ṙ[n] + v[n] (4.83)

using linear least-mean-squares estimation techniques. Assume we collect data

samples of ř[n] into a vector ř and use the data to estimate the corresponding

vector of jitter samples, e. The linear least-mean-squares estimator of e given ř

is given by the expression below in terms of the covariance matrix of ř and the

cross-covariance matrix between e and ř [42]:

ê = ReřR
−1
ř ř ≈ Rediag (Dř)R

−1
ř ř (4.84)

where D is a differentiation matrix such as 1
2Ts

toeplitz{[−1, 0, 1]}.

Note, however, from (4.83) that the jitter signal that we are interested in

recovering appears in the term e[n]ṙ[n] and r[n] represents a strong interferer.

We can assess the power in e[n]ṙ[n] relative to the other terms (which can be

treated as added disturbances in the problem of recovering e[n] from ř[n]) by

defining the Effective-Signal-To-Noise-Ratio (ESNR) as

ESNR ,
E
[
|e[n]ṙ[n]|2

]

E |r[n]|2 + E |v[n]|2
=

σ2
eσ

2
ṙ

σ2
r + σ2

v

(4.85)

The above expression can be bounded for a band-limited signal r[n] (having

frequencies up to Br) through the use of Parseval’s relation – see App. 4.F:

ESNR ≤ σ2
e(2πBr)

2σ2
r

σ2
r + σ2

v

(4.86)

Observe that even when σ2
v ≪ σ2

r , the ESNR is still bounded from above by

(2πγrα)
2 where γr <

1
2
is a factor that parameterizes the bandwidth of the signal
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r[n] as Br = γrfs. For small jitter, such as 1% of Ts, the ESNR is bounded from

above by −30dB and is too small for effective estimation of e[n]. For this reason,

we pursue an alternative approach to recovering the jitter from the distorted

data ř[n]. Rather than pursue a direct least-mean-squares estimation problem,

we instead inject auxiliary tones along with the input signal. By examining the

effect of the jitter on these embedded tones, we can then devise techniques to

estimate the jitter and compensate for it.

4.D Clock recovery

The jitter estimation algorithms of Sec. 4.2 require the recovery of the phase of

a sinusoid. This recovery can be done before the start of operations since the

phase of the injected tones does not depend on the incoming signal r[n]. Phase-

locked-loops can be used for this purpose [81, 88]. Consider a sequence of the

form x[n] = cos (2πfcnTs + θ), and introduce the objective function:

J
(

θ̂
)

= 2 · LPF
{

x[n] cos(2πfcnTs + θ̂)
}

= LPF
{

cos(θ − θ̂) + cos(4πfcnTs + 2θ)
}

≈ cos(θ − θ̂)

Thus, a steepest-ascent algorithm that maximizes J(θ̂) will force θ̂ → θ:

dJ
(

θ̂
)

dθ̂

∣
∣
∣
∣
∣
∣
θ̂=θ̂(k)

= 2 · LPF
{

x[n]
d

dθ̂
cos
(

2πfcnTs + θ̂
)
∣
∣
∣
∣
θ̂=θ̂[n]

}

= 2 · LPF
{

−x[n] sin
(

2πfcnTs + θ̂[n]
)}

An adaptive update of the following form can be used to estimate θ recursively:

θ̂(n+ 1) = θ̂[n]− µLPF
{

x[n] sin
(

2πfcnTs + θ̂[n]
)}

(4.87)
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Figure 4.15: Block diagram of the phase-locked-loop

Fig. 4.15 illustrates the algorithm. Other adaptive schemes can be constructed

in order to estimate θ [42].

4.E Power of N-th derivative of box-car random signal

In this appendix, we give an expression for the power of the N -th derivative of

a random signal r(t) with auto-correlation function given by (4.20). We assume

that the random process is mean-square integrable and that the auto-correlation

function of the derivative process can be computed using (4.15), which can be

extended to

Rr(N)(t)(τ) = (−1)N
d2N

dτ 2N
Rr(τ) (4.88)

where we use the notation r(N)(t) , dN

dtN
r(t). It is possible to find E

∣
∣ d

N

dtN
r(t)|t=nTs

∣
∣2

by finding the autocorrelation function of the discrete-time process and evaluating

it at lag m = 0. It is known that the autocorrelation function of the discrete-time

process dN

dtN
r(t)

∣
∣
∣
t=nTs

is the sampled autocorrelation function of the continuous-

time process dN

dtN
r(t) given by Rr(N)(τ) [80]. This can be shown by considering a

continuous-time random process x(t) , dN

dtN
r(t) with auto-correlation Rx(τ) and

the discrete-time process y[n] defined by y[n] , x(nTs). The auto-correlation

of the discrete-time process y[n] can be found as Ry(m) , E [y[n]y[n+m]] =

E [x(nTs)x(nTs +mTs)] = Rx(mTs). Thus, the two auto-correlation functions

coincide at m = 0 and it is sufficient to find the power of the continuous-time
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process dN

dtN
r(t). Moreover, we can compute the power in the derivative process

using:

σ2
r(N) = Rr(N)(0) =

1

2π

∫ ∞

−∞
Sr(N)(jΩ)dΩ

(a)
=

(−1)N

2π

∫ ∞

−∞
(jΩ)2NSr(jΩ)dΩ

=
1

2π

∫ ∞

−∞
Ω2NSr(jΩ)dΩ

where (a) is a consequence of (4.88). We now substitute in the PSD associ-

ated with the signal with auto-correlation (4.15) – thus we substitute Sr(jΩ) =

σ2
r

2Br
rect

(
Ω

2π2Br

)

where rect(a) is defined in (4.19):

σ2
r(N) =

1

2π

∫ ∞

−∞
Ω2NSr(jΩ)dΩ

=
σ2
r

2π2Br

∫ 2πBr

−2πBr

Ω2NdΩ

=
σ2
r

2πBr

(2πBr)
2N+1

2N + 1

=
(2πBr)

2N

2N + 1
σ2
r

Thus, we conclude that

E

∣
∣
∣
∣

dN

dtN
r(t)

∣
∣
∣
∣
t=nTs

∣
∣
∣
∣

2

=
(2πBr)

2N

2N + 1
σ2
r (4.89)

4.F Bounding the power of the derivative of a random

signal

We bound the power of the derivative of a band-limited, zero mean, mean-square

differentiable WSS Gaussian random process r(t) with variance σ2
r , autocorrela-

tion function Rr (τ), and PSD function Sr(jΩ). We define the continuous time

signal x(t) = dN

dtN
r(t) with autocorrelation function Rx(τ). The auto-correlation
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Rx(τ) can be found as an extension of (4.15) to be:

Rx(τ) = (−1)N
d2N

dτ 2N
Rr(τ) (4.90)

and PSD function Sx(jΩ):

σ2
x = Rx (0)

(a)
=

1

2π

∞∫

−∞

(−1)N(jΩ)2NSr (jΩ) dΩ

(b)

≤ (2πfmax)
2N 1

2π

∞∫

−∞

Sr (jΩ) dΩ = (2πfmax)
2N σ2

r

where (a) is a consequence of (4.15) and (b) is a consequence of r(t) being ban-

dlimited to fmax. Thus, we have shown σ2
x ≤ (2πfmax)

2N σ2
r .

We note that this power bound is still valid even for a sampled process y[n] ,

x(nTs) since the auto-correlation function of y[n] can be found as Ry(m) ,

E [y[n]y[n+m]] = E [x(nTs)x(nTs +mTs)] = Rx(mTs). Thus the two auto-

correlation functions coincide at m = 0 and it is sufficient to find the bound on

the power of the continuous-time process x(t) as we have done above.
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CHAPTER 5

Compensating Mismatches in Time-Interleaved

A/D Converters

An M-channel time-interleaved analog-to-digital converter (ADC) uses M ADCs

to sample an input signal to obtain a larger effective sampling rate. However,

in practice, combining ADCs introduces mismatches between the various ADC

channels [68]. There is also the possibility of frequency response mismatches

[70,89–91]. Several techniques have been advanced in the literature to ameliorate

the effect of mismatches on the performance of time-interleaved ADC (TI-ADC)

implementations. For example, in [92, 93] a reference ADC is used alongside the

TI-ADC structure. In [94], the input signal is assumed to have some empty

frequency band and compensation for the mismatches is formulated in terms of a

nonlinear least-squares problem. In [95, 96], the timing and gain mismatches are

estimated by enforcing some empty frequency band constraints. In [1,15,97,98], it

is assumed that the distortions appear in an out-of-band region where no signal

components are present. In [99], the input signal is assumed to be sparse to

enhance estimation of the mismatch parameters.

While most of these prior works rely on exploiting the existence of some empty

frequency bands where no signal components occur, there are other works that

pursue alternative routes. In [14], the offset, gain, and timing errors are estimated

by optimizing certain loss functions. In [100, 101], an auto-correlation method is
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used to detect and estimate timing errors. In [102–104], a two-step approach is

implemented. First, the timing mismatch is compensated for and the residual

error is computed by means of an approximate Hilbert filter. Subsequently, the

residual error is used to reduce the timing error. In [2], a pseudo aliasing signal

is generated using the Hadamard transform to compensate for the timing and

gain mismatches in the distorted signal. The distortion parameters are estimated

by re-generating the pseudo aliasing signal from the compensated signal and

correlating it with the compensated signal.

In this work, we propose two solutions for the compensation of time and gain

mismatches that eliminate some of the limitations of the existing approaches

[20, 21]. One solution technique is implemented in the time-domain and the

other solution technique is implemented in the frequency domain. The latter is

shown to have significantly superior performance. The time-domain approach

has some similarities with the solution methods of [1, 2] and therefore suffers

from similar limitations. We explain these difficulties in the body of the chapter.

In comparison, the frequency-domain approach addresses the limitations and is

able to deliver enhanced performance over existing methods, even under more

relaxed conditions. For example, the structure of reference [1] is based on one

key assumption: the input signal needs to be oversampled and an out-of-band

frequency region should be known beforehand where no signal components are

present. In this band, only contributions from the distortions caused by the

mistmatches are assumed to be present. By focusing on this region, adaptation

can be performed to reduce the effect of the distortions. However, it is not

uncommon for the conditions assumed by [1] to be violated. For instance, the

input signal may be wideband and the spectrum of the error signals may not be

limited to separate frequency regions that are free of signal contribution. When

these conditions occur, the solution of [1] fails. The time-domain approach of the
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current chapter and that of [2] are able to address some of these limitations in

that they do not assume the pre-existence of an out-of-band region. While this

is an advantage, it nevertheless degrades the performance of the solution relative

to [1] when an out-of-band region happens to be present.

The frequency-domain approach removes this drawback altogether because it

employs a structure that is able to automatically locate and exploit out-of-band

regions when they are present. In this approach, we transform the data into the

frequency domain by means of an N−point FFT operation. The data across

each FFT channel then amounts to data around a certain frequency bin. In this

way, the frequency space is sliced into N adjacent frequency bins. Adaptation is

performed over each channel to estimate the mismatch parameters. By tracking

the signal power over the various channels, the structure is able to learn which

channels have more or less reliable estimates of the mismatch parameters. These

estimates are then fused using an adaptive strategy [42] to obtain an enhanced

final estimate for the parameters. The frequency-domain approach can therefore

adapt to the input signal; it has accelerated convergence and comparable perfor-

mance to [1] when the input signal contains known empty frequency bands, and

is still able to mitigate the timing and gain mismatches in cases where [1] cannot,

including situations when the input signal contains unknown empty frequency

bands or does not contain any empty frequency band.

There are additional advantages for the frequency-domain structure. Adap-

tation is performed across each channel to estimate the parameter mistmatches.

Interference cancelation by means of such adaptive constructions is aided by an

implicit assumption of uncorrelatedness between the signal and the interference.

There are a couple of steps in the frequency-domain implementation that help

reduce the effect of correlation between the signal and the interference; (a) first,
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data are processed in the frequency domain and not in the time domain. By means

of the FFT, the signal is split into small frequency bands. Over these smaller

bands, the signal component and the interference component are generally more

likely to be uncorrelated with each other [105,106]; (b) second, the solution com-

bines the estimates of the mismatch parameters from across all channels and the

combination weights are chosen in a manner that gives more relevance to esti-

mates arising from bands where there is less frequency overlap between signal

and interference (and, hence, less correlation); (c) third, the frequency structure

employs a succession of two adaptation stages; the second stage exploits any

correlation that is left in the data after processing by the first stage in order

to further enhance the estimation accuracy of the mismatch parameters. The

analysis and simulations illustrate the superior performance of this construction.

5.1 Problem formulation

The structure of the TI-ADC model in the presence of imperfections across the

multiple ADC branches is already well-presented in the literature (see, e.g., [1,

68]). We briefly review the model here. Figure 5.1 shows the block diagram

representation of an M-channel TI-ADC with gain and timing mismatches. Let

us denote the gain and timing mismatches in the m-th channel by gm and rmTs,

where rm represents the timing mismatch relative to the overall sampling period

Ts. The input signal x(t) is spilt into M channels and the m−th branch is

multiplied by gm and sampled at (ℓM+m+rm)Ts; the resulting sequence is zm[ℓ].

A multiplexer (MUX) is used to combine the sampled data from all channels into

the output sequence y[n]. The effective sampling period for y[n] is seen to be Ts.

In the ideal scenario, where the ADCs are perfect data converters, gm and rm

will be 1 and 0, respectively.
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Figure 5.1: The figure shows an M -Channel TI-ADC with linear mismatches (gain and

timing).

From [1], it is already known that the discrete-time Fourier transform (DTFT)

of the sequence y[n] can be expressed as

Y (ejω) =

M−1∑

k=0

X
(

ej(ω−
2πk
M

)
)

Ȟk

(

ej(ω−
2πk
M

)
)

(5.1)

where X(ejω) is the DTFT of the sampled sequence x[n] = x(t)|nTs
and

Ȟk

(
ejω
)
=

1

M

M−1∑

m=0

gme
rmHd(e

jω)e−jk 2π
M

m (5.2a)

Hd

(
ejω
)
= jω, for − π < ω ≤ π (5.2b)

The derivation is shown in Section 5.B. It is clear from (5.1) that when the

TI-ADC has mismatches, the output spectrum contains the original spectrum

X(ejω) multiplied by Ȟ0(e
jω), and frequency-shifted versions of the product

X(ejω)Ȟk(e
jω). Figure 5.2 illustrates the spectrum of the distorted output se-

quence of the TI-ADC for M = 2, 4. The figure shows the magnitude DTFT

of the input sequence (represented by the black triangular curve centered at 0)

and the magnitude DTFTs of the interfering error signals (represented by the

remaining triangular curves).
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Figure 5.2: The figure shows the spectrum Y (ejω) of the TI-ADC for M = 2, 4. The

black triangle centered at 0 is the spectrum X(ejω)Ȟ0(e
jω) and the remaining triangles

represent the interfering error spectra generated by the mismatches. Each frequency-

shifted spectrum X(ejω)Ȟk(e
jω) has a different color.

5.2 Existing techniques and limitations

As already remarked in the introduction, there have been several efforts in the

literature to address the TI-ADC compensation problem with varied degrees of

success and often under varying assumptions on the nature of the data. One

useful approach is proposed in [1] and appears to lead to the best performance

among existing techniques (when its assumptions hold). To facilitate comparison

with [1], we review briefly its main contribution (using our notation) and comment

on some of the limitations of the approach before moving on to develop the

solution method of this work.

5.2.1 Linear approximation

Reference [1] assumes the timing mismatches rm are small and assumes a first-

order Taylor’s series approximation can be applied to the term ermHd(e
jω) in (5.2a)
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as

ermHd(e
jω) ≈ 1 + rmHd(e

jω) (5.3)

Substituting (5.3) into (5.2a) gives

Ȟk

(
ejω
)
≈ Gk +RkHd(e

jω) (5.4)

where

Gk =
1

M

M−1∑

m=0

gme
−j 2π

M
mk (5.5a)

Rk =
1

M

M−1∑

m=0

gmrme
−j 2π

M
mk (5.5b)

The variables {Gk, Rk} contain information about the gain and delay mismatches

across the branches. Observe that Go =
1
M

∑M−1
m=0 gm represents the average gain

mismatch across all channels. It can be assumed, without loss of generality,

that the average value of the timing mismatches is zero, i.e., 1
M

∑M−1
m=0 rm ≈ 0.

Reference [1] further assumes that R0 is small and can be neglected. Under

these conditions, the inverse discrete-time Fourier transform (IDTFT) of (5.1) is

derived

y[n] = G0x[n] + e[n] (5.6)

where all interfering terms are collected into the error signal, e[n]. It is shown

in [1] that, when M is even, the error e[n] can be expressed as the sum of two

inner-product components:

e[n] = cTg xg,n + cTr xr,n (5.7)

where the vectors xg,n and xr,n contain modulated samples of the signal x[n] and

its “derivative” version hd[n] ⋆ x[n]. Specifically, the notation hd[n] denotes the
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impulse response sequence of a derivative filter. Therefore,

xg,n = mn x[n] (5.8a)

xr,n = mn (hd[n] ⋆ x[n]) (5.8b)

where mn denotes the modulation vector of size M − 1.

mn =

















2 cos
(
2πn
M

)

−2 sin
(
2πn
M

)

...

2 cos
((

M
2
− 1
)

2πn
M

)

−2 sin
((

M
2
− 1
)

2πn
M

)

(−1)n

















(5.9)

The vectors {cg, cr} of size M − 1 in (5.7) are defined in terms of the real and

imaginary parts of the gain and delay mismatch parameters {Gk, Rk} as follows:

cg =


















Re{G1}
Im{G1}

...

Re
{

GM
2
−1

}

Im
{

GM
2
−1

}

GM
2


















, cr =


















Re{R1}
Im{R1}

...

Re
{

RM
2
−1

}

Im
{

RM
2
−1

}

RM
2


















(5.10)

In reference [1], when G0 in (5.6) is not equal to one, the recovered signal will

be G0x[n] instead of x[n]; and the estimated cg and cr will be ĉg = 1
G0
cg and

ĉr = 1
G0
cr. Interested readers can refer to reference [1] for the derivations. For

ease of notation, we assume G0 = 1 in this paper, if G0 6= 1, then our recovered

signal will be G0x[n].
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5.2.2 Compensation

The challenge is to recover the samples x[n] in (5.6) from knowledge of y[n].

The error component e[n] in (5.6) is not known because it depends on unknown

gain and delay mismatch parameters. Reference [1] replaces x[n] by y[n] on the

right-hand side of (5.8) and uses the following expression to estimate e[n]:

ê[n] = ĉTg,n−1mny[n] + ĉTr,n−1mn (hd[n] ∗ y[n]) (5.11)

where ĉg and ĉr are estimates for the vectors cg and cr, respectively; these esti-

mates are computed as explained further ahead. Using (5.11), then

y[n]− ê[n] ≈ x[n] (5.12)

This construction leads to the compensation structure shown in Fig. 5.3.

Figure 5.3: The figure shows the compensation and identification structure used in

reference [1].

In order to estimate the vectors {cg, cr}, reference [1] assumes that the input

signal is a low-pass signal and that the TI-ADC oversamples the signal. In this
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way, an empty frequency band in higher frequencies will become available that is

free of signal content. This frequency band will only contain contributions that

arise from the error spectra due to the gain and delay mismatches. This situation

is illustrated in Fig. 5.4 for M = 2, 4. As such, reference [1] uses a high-pass

Figure 5.4: The figure shows the spectrum of the TI-ADC for M = 2, 4 when the input

signal is oversampled. The black triangle centered at 0 is the spectrum of the original

signal x[n], and the remaining triangles represent the error spectra generated by the

mismatches. Note that the original spectrum does not cover the entire band from −π

to π. Hence, there is an out-of-band region that contains only error spectra.

filter f [n] to remove the input signal and concentrates on estimating the vectors

{cr, cg} in order to reduce the distortion that is present in the out-of-band region.

The LMS algorithm [42] is used to estimate the parameters cg and cr as follows.

Referring to Fig. 5.3, the estimated error signal, ê[n] is high-pass filtered by f [n]

and used to generate an error component ǫ[n] to drive the adaptation process.

The estimated vectors x̂g,n and x̂r,n are also filtered through f [n] to generate

{x̄g,n, x̄r,n}. These quantities are then used in adapting {ĉr,n, ĉr,n}:

ĉg,n = ĉg,n−1 + µx̄Tg,nǫ[n] (5.13a)

ĉr,n = ĉr,n−1 + µx̄Tr,nǫ[n] (5.13b)
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5.2.3 Limitations

Three of the main limitations of the approach described so far is that it assumes

that (a) the input signal is oversampled, (b) there exists an out-of-band-region

that is influenced solely by the error spectra, and (c) the location of the out-of-

band region is known beforehand. When this happens, adaptation can run over

this region alone to estimate the gain and delay mismatches. However, it is not

difficult to see that even when the input signal has a limited bandwidth, it does

not necessarily follow that all components of the error spectra will fall into an

out-of-band-region. Cases (a) and (c) in Fig. 5.5 show that it is possible that

some or all distortion components (the red small triangles) lie completely within

the original signal bandwidth (the black large triangle). In case (b), while the

Figure 5.5: The figure shows the spectrum of the TI-ADC for M = 2, 4. For (a) and

(c), the black large triangles centered at ±π
2 are the original spectrum; whereas, for (b),

the original spectrum is centered at 0. The remaining smaller triangles are components

of the error spectra due to mismatches.
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error components do not interfere with the signal bandwidth, only part of them

lie within the out-of-band region. In these scenarios, the algorithm of [1] will not

be able to remove the distortions and recover the desired signal. The techniques

proposed in the current work do not have these limitations. In particular, they

do not rely on the use of any out-of-band region for adaptation. This is achieved

by processing data in the frequency domain and by using adaptation strategies

to combine information from across frequency bins to carry out the desired com-

pensation. When an out-of-band region exists, we will see that our proposed

method performs similarly to [1]. When an out-of-band region does not exist,

our proposed method will continue to perform well while the method of [1] will

not be suitable for such situations.

5.3 Proposed solutions

Two solutions are proposed in this section. One solution is in the time-domain

and is able to address more scenarios than described so far. The second solution

is in the frequency domain and leads to superior performance.

5.3.1 Time-domain solution

Using (5.6) and (5.7), we can write

y[n] =
[

xTg,n xTr,n

]

︸ ︷︷ ︸

,uT
n




cg

cr





︸ ︷︷ ︸

,wo

+ x[n] (5.14a)

= uTnw
o + x[n] (5.14b)

which expresses the output signal y[n] as the sum of two components: the desired

clean signal, x[n], and the linear regression term, uTnw
o. We now refer to the basic
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structure for adaptive interference cancelation shown in Fig. 5.6. In traditional

Figure 5.6: An adaptive structure for interference cancelation.

adaptive filtering, it is customary for the term x[n] to represent the noise com-

ponent when we estimate wo. In the current setting, though, x[n] represents the

signal component that we wish to estimate and retain. This can be accomplished

by using LMS adaptation to estimate wo from knowledge of {y[n], un} (5.14):

wn = wn−1 + µuTn(y[n]− uTnwn−1) (5.15)

The main challenge in running this algorithm is the need to know the regression

data {un}; this data depends on the vectors {xg,n, xr,n}, which in turn depend on

the unknown signal x[n]. In the sequel, we present two methods for estimating

these quantities and replacing un by

un =
[

x̂Tg,n x̂Tr,n

]T

(5.16)

We first describe a time-domain solution. We again substitute x[n] by y[n] in

(5.8) to approximate the vectors {xg,n, xr,n} by

x̂A,g,n = mny[n], x̂A,r,n = mn(hd[n] ∗ y[n]) (5.17)

This is the same approximation that was employed earlier in (5.11). Due to the

approximation, the estimate for x(n) that results from this approximation in Fig.
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5.6 can be refined further. We denote the initial estimate by x̂A[n] in the left-

part of Fig. 5.7. We then use it to feed another similar interference cancelation

structure to refine it into x̂B[n]. The net effect is the cascade structure shown in

Fig. 5.7. We will illustrate the performance of this mechanism in a later section.

We move on to describe the second solution method, which is in the frequency

domain.

Figure 5.7: Block diagram representation of the proposed time-domain solution.

Figure 5.8: Block diagram representation of the frequency-domain solution based on a

first-order compensation stage, where Hd[k] is defined in (5.19).
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5.3.2 Frequency-domain solution

The time-domain solution removes the limitations of the previous work. However,

it ignores the possibility that the input signal may contain out-of-band regions

with only distortion components and that these regions could be exploited for

additional enhancements. This observation motivates an alternative approach

where data are processed in the frequency domain. By partitioning the data

spectrum into smaller frequency bands, it becomes possible to search the fre-

quency content of these bands to detect the existence of out-of-band regions.

The frequency-domain approach assesses the relevance of the various frequency

bands to the estimation task and this information is shared across the frequency

domain filters. Through an adaptive process, the information is aggregated and

exploited to assign more or less relevance to bands that carry more or less infor-

mation about signal content and error content. Bands that help reduce the error

components are given more weight to drive the adaptation process more steadily

towards its aim. Since signals and their frequency contents can change over time,

the adaptive process is able to evolve and track these variations continuously.

The block diagram of the frequency-domain approach is shown in Fig. 5.8.

A block of data of size N is collected and windowed before undergoing an FFT

transformation of size N . This step results in N bins denoted by Yi[k] ≈ Xi[k] +

Ei[k], for k = 0, 1, . . . , N − 1. The subscript i is used to denote successive

blocks of data. For each frequency bin, we employ a structure similar to Fig.

5.7 consisting of a compensation block followed by a cancellation block. The

compensation block is used to estimate the first order error Ei[k] and to generate

an initial estimate for Xi[k] (denoted by X̂A1,i[k]). This information is then fed

into a subsequent cancellation block to generate X̂B,i[k]. In the model shown

in Fig. 5.8 we are including an additional noise variable, denoted by vnoise[n] in
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the time-domain and by Vi[k] in the frequency domain. Recall from (5.3) and

(5.5) that a first-order Taylor series approximation is applied to the model (5.2a).

Therefore, this noise term is useful to model the effect of unmodeled dynamics.

We also use Vi[k] to include the effects of spectral leakage. vnoise[n] and Vi[k]

can also be used to model other sources of noise, for example, thermal noise and

quantisation noise. Observe from Fig. 5.8 that the adaptive compensation and

cancellation tasks across each bin are now performed at a processing rate that is

N times smaller than the rate of the time-domain solution in Fig. 5.7. In this

way, the amount of computations involved per unit time in both implementations

remains essentially invariant.

We now describe the frequency-domain solution in greater detail. First, the

distorted signal y[n] undergoes an N−point FFT after windowing by a Blackman-

Harris function. This step results in N frequency bins or channels, and each bin

is represented by Yi[k], where k = 0, 1, . . . , N = 1 denotes the k−th bin and i

denotes the i-th FFT block or slice. Expanding (5.1) using (5.4), and assuming

R0 = 0 and G0 = 1, the discrete Fourier Transform (DFT) can be obtained by

sampling the DTFT at ω = 2πk
N
:

Y [k] , Y (ejω)|ω= 2πk
N

≈ X [k] +
M−1∑

m=1

{

GmX

[

mod

(

k − mN

M
,N

)]

+RmHd

[

mod

(

k − mN

M
,N

)]

X

[

mod

(

k − mN

M
,N

)]}

(5.18)

where X [k] = X(ejω)|ω= 2πk
N
, Hd[k] = Hd(e

jω)|ω= 2πk
N
. The function r = mod(k,N)

returns integers in the range 0 ≤ r ≤ N−1, and these correspond to the remainder

of dividing k by N . From (5.18), the term N
M

in the modulus function must be

an integer, i.e., N must be some multiple of M . We see that the first term in
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(5.18) is the original signal and the terms in the summation are the distortions.

In (5.18), multiplying Hd[k] with X [k] can be interpreted as finding the discrete-

time derivative of the time-domain signal by modeling the time-domain signal

as a trigonometry polynomial and applying a spectral differentiation approach

in [107, p. 23]. Using (5.2b), Hd[k] is given by:

Hd[k] =







j 2πk
N

if 0 ≤ k ≤ N
2
− 1

0 if k = N
2

j 2π(k−N)
N

if N
2
+ 1 ≤ k ≤ N − 1.

(5.19)

Note that Hd[k] has the conjugate symmetry property Hd[k] = (Hd[N − k])∗.

Using (5.18), we can write Yi[k] as

Yi[k] = Xi[k] + Ei[k] + Vi[k] (5.20)

where Xi[k] represents the output when the original signal x[n] goes through

the N -FFT block with the same windowing function, Ei[k] represents first-order

distortion terms, and Vi[k] contains the spectral leakage due to windowing, un-

modeled higher-order dynamics and other sources of system noise like thermal

noise and quantization noise. We can express Ei[k] compactly as follows: Firstly,

we define the differentiation operator Ẋi[ℓ] on the block of data (for example, on

a block of Xi[ℓ], ℓ = {0, ..., N − 1}) as

Ẋi[k] , Hd[k]Xi [k] (5.21)

where Hd[k] is defined in (5.19). Secondly, we let

αk,m , mod

(

k − (m+ 1)N

M
,N

)

(5.22)

Next, we define the following vectors:

Xg
k,i ,

[

Xi [αk,0] ... Xi [αk,M−2]
]T

(5.23a)

Xr
k,i ,

[

Ẋi [αk,0] ... Ẋi [αk,M−2]
]T

(5.23b)
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We can interpret each element in the vectors Xg
k,i and X

r
k,i as a circular shift of

Xi[k] and Ẋi[k] by multiples of N
M
. Hence, we can write Ei[k] in (5.20) as

Ei[k] =
(
Xg

k,i

)T
CG +

(
Xr

k,i

)T
CR (5.24a)

CG =
[

G1 G2 ... GM−1

]T

(5.24b)

CR =
[

R1 R2 ... RM−1

]T

(5.24c)

Using (5.24), the compensation block (labeled as Stage A1) in Fig. 5.8 esti-

mates the first-order distortion ÊA1,i[k] and subtracts it from Yi[k] to obtain an

estimate for the original signal, X̂A1,i[k]:

X̂A1,i[k] = Yi[k]− ÊA1,i[k] (5.25)

Similar to the time-domain approach, the distortion ÊA1,i[k] is approximated

using Y [k] in place of X [k] in (5.24) as

ÊA1,i[k] =
(

X̂g
A1,k,i

)T

ĈG,i−1 +
(

X̂r
A1,k,i

)T

ĈR,i−1 (5.26)

where X̂g
A1,k,i and X̂

r
A1,k,i are obtained from (5.21) and (5.23) by replacing Xi[·]

by Yi[·].

X̂g
A1,k,i ,

[

Yi [αk,0] ... Yi [αk,M−2]
]T

(5.27a)

X̂r
A1,k,i ,

[

Ẏi [αk,0] ... Ẏi [αk,M−2]
]T

(5.27b)

The terms ĈG,i−1 and ĈR,i−1 are estimates for the vectors Cg and Cr computed at

the (i − 1)−th iteration in a manner described further ahead. In the next stage

(labeled as stage B: interference cancelation) in Fig. 5.8, the estimated regressors

X̂g
B,k,i and X̂

r
B,k,i are generated in a similar manner as X̂g

A1,k,i and X̂
r
A1,k,i in the

first stage. They are obtained from (5.21) and (5.23) by replacingXi[·] by X̂A1,i[·].
The output from stage B is the recovered signal X̂B,i[k]:

X̂B,i[k] = Yi[k]− ÊB,i[k] (5.28)
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where ÊB,i[k] is obtained in a similar manner as (5.26), where we replace X̂g
A1,k,i

and X̂r
A1,k,i by X̂

g
B,k,i and X̂

r
B,k,i, respectively.

ÊB,i[k] =
(

X̂g
B,k,i

)T

ĈG,i−1 +
(

X̂r
B,k,i

)T

ĈR,i−1 (5.29)

We explain further ahead how the regressors X̂g
B,k,i and X̂

r
B,k,i are used to estimate

ĈG,i and ĈR,i from Yi[k] — see (5.33) and (5.34).

We now describe the details of the adaptation process and how estimates

from across different frequency bins are aggregated. We do so by explaining

the analogy with adaptive networks where nodes cooperate with their neighbors

to improve their estimates [108–110]. Adaptive networks deal generally with

arbitrary topologies linking their nodes. In the context of the current problem,

each bin plays the role of an agent and its neighbors are the remaining bins, i.e., in

this case, it is sufficient to assume that we have a fully connected mesh topology

as shown in Fig. 5.9. The adaptation process is described as follows. We adjust

Figure 5.9: Mesh network representing the interactions among all N frequency bins for

k = 0, 1, . . . , N − 1.

the notation to emphasize the role that is played by the different frequency bins.

We now denote Yi[k] in (5.20) by Dk[i], with the subscript k emphasizing that
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we are now examining data collected over time at bin k. We then observe that

we can rewrite the data model for the k−th node (or bin) in the i−th FFT block

as:

Dk[i] , Yi[k] = Ei[k] +Xi[k] + Vi[k]
︸ ︷︷ ︸

Zk[i]

= Uk,iW
o +Zk[i] (5.30)

The linear regression, Uk,iW
o, is the mismatch distortion, Ei[k]. Moreover, Xi[k]

and Vi[k] are combined together as Zk[i]. We assume that Vi[k] is small relative

to Xi[k], therefore Zk[i] ≈ Xi[k]. Hence, if the distortion Ei[k] = Uk,iW
o is

estimated correctly and removed from Yi[k], we can recover our desired signal

Xi[k] at the output of Stage B. From (5.24), we collect the entries of {CR, CG}
into the column vector W o, and {Xg

k,i, X
r
k,i} into the regression row vector Uk,i,

namely,

Uk,i =
[

U a
k,i[0] ... U a

k,i[M − 2]
]

(5.31a)

W o =
[

W a,o[0] ... W a,o[M − 2]
]T

(5.31b)

where the row sub-vector U a
k,i[m] and column sub-vectorsW a,o[m] are constructed

as:

U a
k,i[m] =

[

Xg
k,i[m] Xr

k,i[m]
]

(5.32a)

W a,o[m] =
[

CG[m] CR[m]
]T

(5.32b)

The sub-vectors W a,o[m] are expressed in this manner since we will linearly com-

bine the intermediate sub-vectors ψa
ℓ,i[m] to estimate W a,o[m] in the next step

(see (5.33b) and (5.33c)). Each bin k now uses its own data {Dk[i],Uk,i}, arising
from the k-th frequency bin, and estimates from the other nodes arising from data
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in their frequency bins, to estimate W o in the following cooperative manner:

ψk,i =Wk,i−1 + µk,iU
∗
k,i (Dk[i]−Uk,iWk,i−1) (5.33a)

ψa
k,i[m] =

[

ψk,i[2m] ψk,i[2m+ 1]
]T

(5.33b)

W a
k,i[m]=

N−1∑

ℓ=0

aℓ,k,i[m]ψa
ℓ,i[m] (5.33c)

Wk,i =
[
(
W a

k,i[0]
)T

...
(
W a

k,i[M − 2]
)T
]T

(5.33d)

where m = {0, ...,M − 2}. Similar to the time-domain approach, and since we

do not have the actual Uk,i, we use the estimated regressors X̂g
B,k,i and X̂

r
B,k,i:

Uk,i ≈
[

Û a
k,i[0] ... Û a

k,i[M − 2]
]

(5.34a)

Û a
k,i[m] =

[

X̂g
B,k,i[m] X̂r

B,k,i[m]
]

(5.34b)

During the first step of the implementation in (5.33a), the k-th bin (or node)

starts from its existing vector estimateWk,i−1 and updates it to an intermediate

value ψk,i using solely data from its frequency bin. All other bins are performing a

similar operation and updating their estimates,Wℓ,i−1, to the intermediate values

ψℓ,i. In the remaining steps of (5.33), the k−th bin combines in a convex manner

the intermediate estimates of all other bins to obtain the sub-vector, W a
k,i[m], of

its updated weight vectorWk,i. The scalar coefficients {aℓ,k,i[m]} are nonnegative

values that add up to one; observe that they are allowed to vary with the iteration

index i since we are going to select these weights adaptively as well. Each weight

aℓ,k,i[m] can be interpreted as the amount of trust that bin k places on the weight

estimate from bin ℓ at iteration i. Since some bins may correspond to frequency

bands that are better suited for the compensation task (such as bands that only

contain error spectra), then by allowing the algorithm to identify these bands on

the fly and to adjust the combination coefficients {aℓ,k,i[m]} in real-time, more

or less weight can be assigned to the data from bin ℓ depending on whether the
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data is deemed to be more or less relevant to the estimation task. We explain in

the sequel how these combination weights are adapted.

Recall that the adaptive algorithm (5.33) is estimating the distortion param-

eter W o in (5.30). Moreover, from (5.30), we see that we are estimating W o from

Uk,iW
o under the presence of Zk[i]. In this context, we see that if the magnitude

of Uk,i and Zk[i] is large and small, respectively, the intermediate estimate ψk,i

should be estimated more accurately. Hence, we would like to find a measure that

emphasizes the estimates that originate from bins that have better accuracy. For

this purpose, we first define the average power of the signals Zk[i] and Żk[i] as:

average power of Zk[i] , PZ [k] (5.35a)

average power of Żk[i] , ṖZ [k] = |Hd[k]|2 PZ [k] (5.35b)

Next, we quantify the average power of each element in Uk,i. From (5.31a) and

(5.32a), we see that Uk,i contains Xi[k] and Ẋi[k], which are circularly shifted by

αk.m. We approximate the average power of Xi[k] and Ẋi[k] by PZ [k] and ṖZ [k],

respectively. Then, we can express the average power of each element in Uk,i as

the vector PU,k:

PU,k ,
[

P g
k [0]P

r
k [0]...P

g
k [M − 2]P r

k [M − 2]
]

(5.36a)

P g
k ≈

[

PZ [αk,0] ... PZ [αk,M−2]
]T

(5.36b)

P r
k ≈

[

ṖZ [αk,0] ... ṖZ [αk,M−2]
]T

(5.36c)

We define our initial measure of the power of the regressor components, P g
k [m]

and P r
k [m], versus the power of Zk[i], PZ [k], as the ratio:

PR,k[m] =
P g
k [m] + P r

k [m]

PZ [k]
(5.37)

Using a low-pass input signal as an illustration, we now explain the general form

of PR,k[m] looks like, and why it is problematic to rely on PR,k[m] alone as a
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weighting function. The average power in each bin, PZ [k], is shown in the left

plot of Fig. 5.10. The taller purple blocks represent the input signal. We assume

that due to the presence of noise (e.g., spectral leakage, higher order dynamics,

thermal noise or quantization noise), the average noise power in the bins is non-

zero and is represented by the shorter green block. The right plot shows the sum

PZ [k] + ṖZ [k].

Figure 5.10: Example of PZ [k] and PZ [k] + ṖZ [k] for a low-pass signal in noise.

Continuing with the example from Fig. 5.10, PZ [k] and P
g
k [m]+P r

k [m] are shown

in the top-left and middle-left plots in Fig. 5.11, respectively. The term P g
k [m] +

P r
k [m] can be obtained from the right plot in Fig. 5.10 by frequency-shifting the

spectrum. The two plots show that the lower bins (closer to k = 0) contain large

regressor components P g
k [m]+P r

k [m], and a part of these lower bins (checkerboard

region) has less contribution from the input signal and unmodeled dynamics,

PZ [k]. We expect the checkboard region to provide better intermediate estimates

than the other regions. The ratio PR,k[m], in the bottom-left plot, shows that

more weights are assigned to this particular region.

The main problem with using PR,k[m] can be seen in the same plot. We see

that the higher bins contain smaller P g
k [m] + P r

k [m], and it is less desirable to

use the estimates from these bins. However, using PR,k[m] alone, we note that

it will also emphasize some of the higher bins (i.e., polka-dot region), where the

contributions of both P g
k [m]+P r

k [m] and PZ [k] are small. To resolve this issue, we

need to emphasize regions where the regressor components exists. One indicator
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Figure 5.11: Illustration for the motivation behind the the proposed combination

weights.

is P g
k [m], which is obtained by frequency-shifting PZ [k]. Therefore, the new

measure is the product PR,k[m]P g
k [m]. The top, middle and bottom plots in the

right column of Fig. 5.11 show P g
k [m], PR,k[m] and PR,k[m]P g

k [m], respectively.

Using (5.36b) and (5.37), the combination weight is set as

aℓ,k[m] =
PR,ℓ[m]P g

ℓ [m]
∑N−1

n=0 (PR,n[m]P g
n [m])

(5.38)

where m = {0, ...,M − 2}. The division operations can be implemented using

look-up-table (LUT) or CORDIC algorithms [111]. Observe that aℓ,k[m] is in

terms of PZ [k], which we do not know. One way to estimate it is [112]:

PZ,i[k] =







∣
∣
∣X̂B,i[k]

∣
∣
∣

2

if i = 0

λPZ,i−1[k] + (1− λ)
∣
∣
∣X̂B,i[k]

∣
∣
∣

2

if i > 0

(5.39)

where λ is a forgetting factor close to one (say, λ = 0.95), and X̂B,i[k] is the

recovered signal at the output of stage B in Fig. 5.8. Since we are using (5.39) in
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(5.38) in each iteration, we denote the adaptive combination weight as aℓ,k,i[m],

where we include the index i.

Observe that the combination weights in (5.38) computed in this manner

are independent of k. With reference to (5.33c), this property means that after

combining the intermediate estimates ψa
k,i[m], the estimated sub-vector W a

k,i[m]

for the k-th bin is the same for the sub-vector W a
ℓ,i[m] for all other bins, i.e.,

W a
k,i[m] = W a

ℓ,i[m], ℓ = {0, ..., N − 1}. Therefore, instead of updating Wk,i at

every node, we can update it once as Wi. As such, we will drop the index k

from aℓ,k,i,W
a
k,i[m], andWk,i[m] in (5.33). This configuration is analogous to the

intermediate estimates being fused centrally to determine the aggregate estimate.

In some situations, it may be known that some bins or nodes do not have any

signal content, in that case it is possible to set their weights to zero and remove

them from the aggregation step.

Now, we are left with the stepsize µk,i in (5.33a). The step-size needs to be

sufficiently small to ensure the mean stability of the adaptation process. This

can be assessed as follows (the justification is delayed to Appendix 5.A where

we establish condition (5.95) further ahead). For now, we remark the following.

We denote the covariance matrix of the regression vector Uk,i (assumed to be

wide-sense stationary and zero-mean) by:

RU,k , E
[
U ∗

k,iUk,i

]
(5.40)

We also denote the m-th non-zero eigenvalue of RU,k by λm (RU,k). Further ahead

in (5.62), we will show that RU,k has a block diagonal matrix structure, and each

block is a rank-1 matrix. Hence, RU,k is positive semi-definite. The non-zero

eigenvalue of each such rank-1 matrix is equal to its trace. Therefore, from
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(5.36), each eigenvalue is

λm (RU,k) = P g
k [m] + P r

k [m] (5.41)

The stepsize µk,i has to be bounded using the reciprocal of the maximum eigen-

value. Specifically, let

λmax (RU,k) = max {λ0 (RU,k) , ..., λM−2 (RU,k)} (5.42)

Then, for mean stability, it must hold that

µk,i ≤
2

λmax (RU,k)
(5.43)

Furthermore, recall from (5.30) that each bin is estimating W o from Uk,iW
o in

the presence of Zk[i]. In this sense, Zk[i] is a noisy component in the estimation.

The average power of Zk[i] is defined in (5.35) as PZ [k]. Since, PZ [k] generally

differs across the bins, we are motivated to use a larger or smaller stepsize for bins

that have less or more noise power, respectively. One way to do so is to set the

stepsizes to be inversely proportional to PZ [k]. Together with (5.43), the stepsize

µk,i for the k-th node is then selected to be sufficiently small and to satisfy:

µk,i = β ·min

{
µinit

PZ [k]
,

2

λmax (RU,k)

}

(5.44a)

β ≤ 1 (5.44b)

where µinit is some fixed constant. Again, note that µk,i and λmax (RU,k) are in

terms of PZ [k]. Therefore, similar to the combination weights, we use (5.39) in

(5.44) to set µk,i. A summary of the steps is shown in Algorithm 5.1.

5.3.3 Enhanced frequency-domain solution

Before proceeding to analyzing the performance of the frequency-domain solution,

we first highlight two sources of higher-order approximation errors that have been
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Algorithm 5.1 Summary of frequency-domain solution

Require: Apply N -FFT with windowing (e.g. Blackman-Harris window) on the i−th

block of samples to obtain Yi[k].

Let W−1 = 0, ĈG,−1 = 0 and ĈR,−1 = 0.

repeat

% Stage A1: Compensation

Stage A1(Yi[k], ĈG,i−1, ĈR,i−1)

% Stage B: Interference cancelation

Stage B(Yi[k], X̂A1,i[k], ĈG,i−1, ĈR,i−1,Wi−1)

until end of data blocks

Algorithm 5.1A Stage A1: first-order compensation algorithm

procedure Stage A1(Yi[k], ĈG,i−1, ĈR,i−1)

for k = 0 to N − 1 do

Ẏi[k] = Hd[k]Yi [k]

end for

for k = 0 to N − 1 do

X̂g
A1,k,i =

[

Yi [αk,0] ... Yi [αk,M−2]
]T

X̂r
A1,k,i =

[

Ẏi [αk,0] ... Ẏi [αk,M−2]
]T

ÊA1,i[k] =
(

X̂g
A1,k,i

)T

ĈG,i−1 +
(

X̂r
A1,k,i

)T

ĈR,i−1

X̂A1,i[k] = Yi[k]− ÊA1,i[k]

end for

return X̂A1,i[k]

end procedure
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Algorithm 5.1B Stage B: interference cancelation algorithm

procedure Stage B(Yi[k], X̂A1,i[k], ĈG,i−1, ĈR,i−1,Wi−1)

for k = 0 to N − 1 do

ˆ̇
XA1,i[k] = Hd[k]X̂A1,i[k]

end for

for k = 0 to N − 1 do

X̂
g
B,k,i

=
[

X̂A1,i

[
αk,0

]
... X̂A1,i

[
αk,M−2

]
]T

X̂r
B,k,i

=
[

ˆ̇
XA1,i

[
αk,0

]
...

ˆ̇
XA1,i

[
αk,M−2

]
]T

ÊB,i[k] =
(

X̂
g
B,k,i

)T
ĈG,i−1 +

(

X̂r
B,k,i

)T
ĈR,i−1

X̂B,i[k] = Yi[k]− ÊB,i[k]

PZ,i[k] =







∣
∣
∣X̂B,i[k]

∣
∣
∣
2

if i = 0

λPZ,i−1[k] + (1 − λ)
∣
∣
∣X̂B,i[k]

∣
∣
∣
2

if i > 0

ṖZ,i[k] = |Hd[k]|2 Pi[k]

end for

for k = 0 to N − 1 do

P
g
k,i

=
[

PZ,i

[
αk,0

]
... PZ,i

[
αk,M−2

]
]T

P r
k,i

=
[

ṖZ,i

[
αk,0

]
... ṖZ,i

[
αk,M−2

]
]T

end for

for k = 0 to N − 1 do

for m = 0 to M − 2 do

PR,k,i[m] =
P

g
k,i

[m] + P r
k,i

[m]

PZ,i[k]

ak,i[m] =
PR,k,i[m]P g

k,i
[m]

∑N−1
n=0

(

PR,n,i[m]P g
n,i[m]

)

λm,i

(
RU,k

)
= P

g
k,i

[m] + P r
k,i

[m]

Ûa
k,i

[m] =
[

X̂
g
B,k,i

[m] X̂r
B,k,i[m]

]

end for

λmax,i

(
RU,k

)
= max

{
λ0,i

(
RU,k

)
, ..., λM−2,i

(
RU,k

)}

µk,i = βmin

{

µinit

PZ,i[k]
,

2

λmax,i

(
RU,k

)

}

Uk,i =
[

Ûa
k,i

[0] ... Ûa
k,i

[M − 2]
]

ψk,i =Wi−1 + µk,iU
∗

k,i

(
Yi[k]−Uk,iWi−1

)

for m = 0 to M − 2 do

ψa
k,i[m] =

[

ψk,i[2m] ψk,i[2m+ 1]
]T

end for

end for

for m = 0 to M − 2 do

W a
i [m]=

∑N−1
ℓ=0 aℓ,i[m]ψa

ℓ,i
[m]

[

ĈG,i[m] ĈR,i[m]
]T

= W a
i [m]

end for

Wi =
[

(
W a

i [0]
)T

...
(
W a

i [M − 2]
)T

]T

return X̂B,i[k],Wi, ĈG,i[m], ĈR,i[m]

end procedure
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Figure 5.12: Block diagram representation of the frequency-domain solution based on

a second-order compensation stage.

ignored so far at the input of the interference cancelation block in Fig. 5.8.

To begin with, some higher-order errors exist in Yi[k] since we employed earlier

the first-order approximation (5.3) to arrive at (5.4) and (5.5). The adaptive

filtering algorithm assumes this linear model in (5.20). Similarly, there are higher-

order errors in the signal X̂A1,i[k]; these errors occur when we compensate for

the first-order distortion Ei[k] and ignore the higher order distortions. In this

section, we examine the effect of the second-order errors and propose a scheme to

compensate for them, thus enhancing further the performance of the frequency-

domain solution.

5.3.3.1 Second-order modelling error

Suppose we expand ermHd(e
jω) in (5.3) up to second-order as follows:

ermHd(e
jω) ≈ 1 + rmHd(e

jω) +
1

2

[
rmHd(e

jω)
]2

(5.45)

Then, substituting (5.45) into (5.2a) gives

Ȟk

(
ejω
)
≈ Gk +RkHd(e

jω) +
[
Hd(e

jω)
]2
Qk (5.46)
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where Gk and Rk are defined in (5.5) and

Qk =
1

M

M−1∑

m=0

gmr
2
m

2
e−j 2π

M
mk (5.47)

Repeating the derivations from (5.18) to (5.20) with the higher order error yields

the following expressions. We can rewrite the output from the FFT block as

Y
(2)
i [k] = Xi[k] + Ei[k] + E

(2)
i [k] + V

(2)
i [k]

≈ Xi[k] + Ei[k] + E
(2)
i [k] (5.48)

where Y
(2)
i [k] includes the input signal Xi[k] and the first-order distortion Ei[k]

in (5.20). The second-order distortion term is E
(2)
i [k]. Recall that Vi[k] in (5.20)

represents the spectral leakage and higher order error terms (starting from second-

order and up). Here, V
(2)
i [k] in (5.48) represents the spectral leakage and higher

order error terms (starting from the third-order and up). In a manner similar to

the vector notation in (5.23) and (5.24), E
(2)
i [k] can be expressed as:

E
(2)
i [k] =

(

X
(2),r
k,i

)T

CQ (5.49a)

CQ =
[

Q0 Q1 ... QM−1

]T

(5.49b)

where

X
(2),r
k,i ,

[

Ẍi [k] Ẍi [αk,0] ... Ẍi [αk,M−2]
]T

(5.50a)

Ẍi[k] , (Hd[k])
2Xi [k] (5.50b)

Note that the size of the vectors here is M , while the size of the vectors in

(5.23) and (5.24) is M − 1. Therefore, we see that the input to the interfer-

ence cancelation block includes an additional term E
(2)
i [k], and we expect the

performance to improve if we remove it. We see from (5.49) that E
(2)
i [k] is de-

termined by the {Qk}. From (5.47), we see that Qk is the DFT of the sequence
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of {g0r20, ..., gM−1r
2
M−1} scaled by 1

2M
. Therefore, we can estimate Qk if gmr

2
m is

known.

Recall from (5.33d) and (5.32b) that Wk,i[m] are the estimated CG[m] and

CR[m] for m = 0, ...,M − 2 at time i; and from (5.24), CG[m] and CR[m] are

Gm+1 and Rm+1, respectively. From (5.5), we see that Gk and Rk are the DFT of

the sequences of {g0, ..., gM−1} and {g0r0, ..., gM−1rM−1} scaled by 1
M
. Using

the estimated Gm+1 and Rm+1 and the assumption that G0 = 1 and R0 ≈ 0, we

can estimate gm and gmrm at time i using the inverse discrete Fourier transform

(IDFT) and scaling it by M :

ĝm,i =
M−1∑

k=0

Ĝk,ie
j 2π
M

mk (5.51a)

ĝm,ir̂m,i =

M−1∑

k=0

R̂k,ie
j 2π
M

mk (5.51b)

After estimating gm and gmrm, we can estimate gmr
2
m at time i. Subsequently,

Qk at time i is estimated using (5.47). Therefore, we can obtain a better linear

model for Yi[k] in (5.20) from Y
(2)
i [k] by removing the second order distortion:

Ŷi[k] = Y
(2)
i [k]− Ê

(2)
A2,i[k] (5.52)

where

Ê
(2)
A2,i[k] =

(

X̂
(2),r
A2,k,i

)T

ĈQ,i−1 (5.53a)

ĈQ,i−1 =
[

Q̂0,i−1 Q̂1,i−1 ... Q̂M−1,i−1

]T

(5.53b)

with Q̂m,i−1 denoting the estimated Qm in (5.49b) at time i − 1 and X̂
(2),r
A2,k,i is

obtained by using the estimated X̂A1,i[k], from the compensation block in Fig.

5.8, in place of Xi[k] in (5.50b) as:

X̂
(2),r
A2,k,i ,

[
ˆ̈Xi [k]

ˆ̈Xi [αk,0] ... ˆ̈Xi [αk,M−2]
]T

(5.54a)

ˆ̈Xi[k] , (Hd[k])
2 X̂A1,i [k] (5.54b)
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The resulting structure for removing the higher-order terms from Y
(2)
i [k] is shown

in Fig. 5.12. Comparing with the original solution in Fig. 5.8, a new block is

inserted between the original compensation and interference cancelation blocks.

The top-most path shows how the second-order distortion Ê
(2)
A2,i[k] is generated

and removed from Y
(2)
i [k]. The resultant output Ŷi[k] is fed into the interference

cancelation block.

5.3.3.2 Second-order compensation error

Recall from (5.26) that we are estimating the first-order distortion as ÊA1,i[k]

using Yi[k] in place of Xi[k]. After stage A1 of the compensation block in Fig.

5.12, we can find a better estimate for the first-order distortion using X̂A1,i[k]:

ÊA2,i[k] =
(

X̂g
A2,k,i

)T

ĈG,i−1 +
(

X̂r
A2,k,i

)T

ĈR,i−1 (5.55)

where ÊA2,i[k] is the new estimate for E1[k] and X̂
g
A2,k,i and X̂

r
A2,k,i are obtained

by replacing Xi[·] in (5.21) and (5.23) by X̂A1,i[·]:

X̂g
A2,k,i ,

[

X̂A1,i [αk,0] ... X̂A1,i [αk,M−2]
]T

(5.56a)

X̂r
A2,k,i ,

[
ˆ̇XA1,i [αk,0] ... ˆ̇XA1,i [αk,M−2]

]T

(5.56b)

ˆ̇XA1,i [k] = Hd[k]X̂A1,i [k] (5.56c)

Using ÊA2,i[k] and Ê
(2)
A2,i[k] in (5.55) and (5.53a), respectively, we obtain a better

estimate for Xi[k] as

X̂A2,i[k] = Y
(2)
i [k]− ÊA2,i[k]− Ê

(2)
A2,i[k] (5.57)

The structure for estimating Xi[k] is shown in the middle block of Fig. 5.12. The

resulting output X̂A2,i[k] is fed into the interference cancelation block. A sum-

mary of the enchanced algorithm and the second-order compensation algorithm

are shown in Algorithm 5.2.
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Algorithm 5.2 Summary of enhanced frequency-domain solution

Require: Apply N -FFT with windowing (e.g. Blackman-Harris window) on the i−th

block of samples to obtain Y
(2)
i [k].

Let W−1 = 0, ĈG,−1 = 0 and ĈR,−1 = 0.

repeat

% Stage A1: 1st-order compensation

Stage A1(Y
(2)
i [k], ĈG,i−1, ĈR,i−1)

% Stage A2: 2nd-order compensation

Stage A2(Y
(2)
i [k], X̂A1,i[k], ĈG,i−1, ĈR,i−1)

% Stage B: Interference cancelation

Stage B(Ŷi[k], X̂A2,i[k], ĈG,i−1, ĈR,i−1,Wi−1)

until end of data blocks

5.4 Comparison with prior work

We will compare the proposed solution against [1,2]; both of these works deal with

similar scenarios. We already explained earlier the differences of our approach

in relation to [1]. With regards to [2], this work relies again on a useful time-

domain solution but it does not exploit the various aspects of the frequency-

domain transformations that the proposed solution considers. For this reason,

the approach of [2] suffers from the same limitation as the time-domain solution:

it is not able to exploit fully information from frequency bands that may be free

of signal components.

There are also some differences with respect to the proposed time-domain

approach as well. The block diagram representation of the solution in [2] is

shown in Fig. 5.13. We will give an overview of the algorithm. In [2], the authors

found that the distortions can be estimated by generating some pseudo-signal
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Algorithm 5.2A Stage A2: second-order compensation algorithm

Require: Generate ĈQ,i−1 from ĈG,i−1, ĈR,i−1 using (5.51) and (5.47).

procedure Stage A2(Y
(2)
i [k], X̂A1,i[k], ĈG,i−1, ĈR,i−1)

for k = 0 to N − 1 do

ˆ̈Xi[k] = (Hd[k])
2 X̂A1,i [k]

ˆ̇XA1,i [k] = Hd[k]X̂A1,i [k]

end for

for k = 0 to N − 1 do

X̂
(2),r
A2,k,i =

[
ˆ̈Xi [k]

ˆ̈Xi [αk,0] ... ˆ̈Xi [αk,M−2]
]T

Ê
(2)
A2,i[k] =

(

X̂
(2),r
A2,k,i

)T

ĈQ,i−1

Ŷi[k] = Y
(2)
i [k]− Ê

(2)
A2,i[k]

X̂g
A2,k,i =

[

X̂A1,i [αk,0] ... X̂A1,i [αk,M−2]
]T

X̂r
A2,k,i =

[
ˆ̇XA1,i [αk,0] ... ˆ̇XA1,i [αk,M−2]

]T

ÊA2,i[k] =
(

X̂g
A2,k,i

)T

ĈG,i−1 +
(

X̂r
A2,k,i

)T

ĈR,i−1

X̂A2,i[k] = Ŷi[k]− ÊA2,i[k]

end for

return Ŷi[k], X̂A2,i[k]

end procedure
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Figure 5.13: Block diagram representation of algorithm in reference [2].

and multiply it by some parameters wt and wg. In their solution in Fig. 5.13,

the estimated parameters at n − 1 are denoted by ŵt,n−1 and ŵg,n−1, and the

estimated distortion is êA[n]. In reference [2], the distortion parameters wg and

wt are related to the gain offsets gm and time offsets rm as follows:

wg ,
[

wg1 ... wg(M−1)

]T

(5.58a)

wt ,
[

wt1 ... wt(M−1)

]T

(5.58b)

where wtk and wgk are








wg0

...

wg(M−1)







≈ 1

M
FH








(1− g0)
...

(1− gM−1)








(5.59a)








wt0

...

wt(M−1)







≈ 1

M
FH








r0
...

rM−1








(5.59b)
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and FH denote the Hadamard matrix [2]. Suppose M = 4, then FH is

FH =











1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1











(5.60)

Note that wg0 and wt0 in (5.59) are the average of 1 − gm and rm, respectively.

In [2], both wg0 and wt0 are 0 as the authors assumed that the average of the

gain and time mismatches are 1 and 0, respectively.

The recovered signal x̂A[n] is obtained by subtracting êA[n] from y[n]. The

pseudo-signal is generated using the Hadamard transform. This is similar to the

first-stage of the proposed time-domain solution and frequency-domain solution

in Figs. 5.7 and 5.8, respectively, where we create the distortions and remove

them from the distorted samples. The difference in our solutions is that our

estimated distortions are not from a pseudo-signal as in [2]; the distortions are

estimated by frequency-shifting the signal instead.

Another difference is in the second stage where the parameters are estimated.

In [2], the authors use the recovered signal x̂A[n] from the first stage to generate

a new pseudo-signal and correlate it with x̂A[n]. Their motivation is that if x̂A[n]

is free from distortions, then the new pseudo-signal should be uncorrelated with

x̂A[n]. Adjustments are made to the estimated parameters using the correlator

output. For our proposed solutions, our motivation is to use successive cance-

lation where we use the recovered signal in the first stage as an input to the

interference cancelation block to obtain a cleaner signal, x̂B[n] or X̂B,i[k]. Ob-

serve also that the recovered signal in the first stage of the proposed time-domain

solution uses the same implementation as [1]. In Section 5.6.2, where we com-

pare the previous works using simulations, we calculate the SNR of the recovered
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signal in both stages of our proposed solutions. We find that the SNR from the

final stage is better.

5.5 Performance analysis

This section carries out a mean-square analysis of the behavior of the frequency-

domain solution, and derives expressions that characterize its limits of perfor-

mance. The analysis is carried out under some simplifying conditions on the

data that follow from the fact that the DFT helps decorrelate the frequency bins

for sufficiently large N . For this reason, we shall assume whenever necessary that

the signal components across different frequency bins are largely uncorrelated.

We shall also assume that the input signal is wide-sense stationary and has zero-

mean and is uncorrelated of any measurement noise; the latter is assumed to be

white. It can also be shown that when the DFT length is large, the distribu-

tion of the DFT coefficients become Gaussian, and the DFT coefficients become

independent. Under these conditions, we can derive theoretical performance ex-

pressions that will be shown later in the simulations to match well the simulated

performance of the frequency-domain solution. Two useful measures of perfor-

mance are the mean-square-deviation (MSD), and the excess-mean-square error

(EMSE). The EMSE can be used to quantify the improvement in signal-to-noise

ratio (SNR) of the algorithm. These measures are defined in the sequel.

5.5.1 Assumptions on the signal and its distortions

From (5.30) and (5.31), we observe that for the k-th bin, the noise Zk[i] is defined

in terms of the FFT coefficient Xi[k] + Vi[k] of the current bin, while the regressor

Uk,i is made up of FFT coefficients from other bins. It is well-known that the
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coefficients of the DFT of stationary signals are asymptotically uncorrelated [105].

Therefore, we may assume that when the FFT length N is large, both Xi[k] and

Vi[k] in (5.20) are uncorrelated with Xi[ℓ] and Vi[ℓ], k 6= ℓ, respectively. We also

assume that Xi[k] and Vi[k] are zero mean. Recall further from (5.30) and (5.31)

that the regressor Uk,i contains frequency-shifted components ofXi[k]. Therefore,

we also assume that the Zk[i] and Uk,i are uncorrelated. We also assume that the

Xi[ℓ] and Vi[ℓ] are independent of each other, and Xi[ℓ] and Vi[ℓ] are wide-sense

stationary and zero-mean.

Moreover, in reference [106], it has been shown that for stationary signal,

its DFT coefficients can be assumed to have a Gaussian distribution when the

DFT length is large. Reference [106] also showed that covariance matrix of the

DFT coefficients is nearly diagonal, hence the DFT coefficients are statistically

independent. In our work, we will use this stronger independent assumption (vs

uncorrelated assumption) in some of our analysis (see (5.80), (5.81) and (5.82)).

5.5.2 Statistical properties of data model

Under the assumed statistical conditions, it follows that the variance of Zk[i] in

(5.30) is given by

σ2
Z,k , E|Zk[i]|2 = E|Xi[k]|2 + E|Vi[k]|2

= σ2
X,k + σ2

V,k

(5.61)

where σ2
X,k is the power of the input signal, and σ2

V,k is the power of the unmod-

eled dynamics and spectral leakage in the k-th FFT bin. Moreover, examining

the vector Uk,i in (5.31a), we deduce that its covariance matrix is mainly block
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diagonal, namely,

RU,k = E
[
U ∗

k,iUk,i

]

= diag{ RX,αk,0
, ... , RX,αk,M−2

} (5.62)

where

RX,ℓ = σ2
X,ℓ




1 Hd[ℓ]

(Hd[ℓ])
∗ |Hd[ℓ]|2





=




1

(Hd[ℓ])
∗



 σ2
X,ℓ

[

1 Hd[ℓ]
]

(5.63)

and RX,αk,m
and RU,k are square matrices of size 2 by 2 and 2(M−1) by 2(M−1),

respectively. Note that RX,αk,m
and RU,k have ranks one and M −1, respectively.

It also follows from the assumed uncorrelatedness of Xi[k] and Vi[ℓ], for all k 6= ℓ,

that Zk[i] is spatially white:

EZk[i]Z
∗
ℓ [j] = 0, i, j whenever k 6= ℓ (5.64)

We further assume that Zk[i] is temporally white.

EZk[i]Z
∗
k [j] = 0, i 6= j (5.65)

The temporal whiteness is satisfied when the FFT length N is large so that the

input signal bandwidth can be assumed to have been divided into small narrow

channels where the signal spectrum is almost flat. Recall from (5.31) and (5.32)

that Zℓ[i] contains Xi[ℓ], and Uk,i contains X
g
k,i and X

r
k,i, where X

g
k,i and X

r
k,i are

related to Xi[αk,m] and Ẋi[αk,m] in (5.23). Therefore, there will be correlation

between Xi[ℓ] and Uk,i if the indices of ℓ and αk,m match. Therefore,

EZℓ[i]U
∗
k,j[2m] = σ2

X,ℓ δi,j δℓ,αk,m
(5.66a)

EZℓ[i]U
∗
k,j[2m+ 1] = (Hd[ℓ])

∗ σ2
X,ℓ δi,j δℓ,αk,m

(5.66b)
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where m = {0, ...,M − 2} and αk,m is defined in (5.22). When the input to the

FFT is real, Xi[k] has conjugate symmetry. Therefore, we can also write

EZℓ[i]Uk,j[2m] = σ2
X,ℓ δi,j δℓ,N−αk,m

(5.67a)

EZℓ[i]Uk,j[2m+ 1] = (Hd[ℓ])
∗ σ2

X,ℓ δi,j δℓ,N−αk,m
(5.67b)

where the index αk,m in (5.66) is replaced by N − αk,m.

5.5.3 MSD and SNR measures

The error vector W̃k,i and the a-priori error ea,k[i] are defined as

W̃k,i ,W o −Wk,i (5.68a)

ea,k[i] , Uk,iW̃k,i−1 (5.68b)

The mean-square-deviation (MSD) and the excess-mean-square-error (EMSE) of

each bin are defined as

MSDk , lim
i→∞

E‖W̃k,i‖2 (5.69a)

EMSEk , lim
i→∞

E|ea,k[i]|2 (5.69b)

The overall MSD and EMSE measures are defined as the average values across

all bins:

MSD , lim
i→∞

1

N

N−1∑

k=0

E‖W̃k,i‖2 (5.70a)

EMSE , lim
i→∞

1

N

N−1∑

k=0

E|ea,k[i]|2 (5.70b)

Note that in this work, due to the choice of the combination weights in (5.38),

after combining the intermediate estimates across bins, the error vector W̃k,i is

the same for all k. Therefore, the overall MSD is equal to the MSD of each bin:

MSD = lim
i→∞

E‖W̃k,i‖2 (5.71)
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We can relate the EMSE to the signal-to-noise ratio (SNR) measure as follows.

First, recall the system model for the k-th bin (5.30):

Dk[i] = Xi[k]
︸ ︷︷ ︸

desired signal

+Uk,iW
o + Vi[k]

︸ ︷︷ ︸

distortion

(5.72)

The expected power of the desired signal and the distortion for each bin are σ2
X,k

and (W o)∗RU,kW
o+σ2

V,k, respectively. The recovered signal after the interference

cancelation in (5.28) (see Fig. 5.8) can also be rewritten as

X̂B,i[k] = Yi[k]− ÊB,i[k]

≈Dk[i]−Uk,iŴk,i (5.73a)

= Xi[k]
︸ ︷︷ ︸

desired signal

+Uk,iW̃k,i + Vi[k]
︸ ︷︷ ︸

remaining distortion

(5.73b)

The approximation in (5.73a) arises as ÊB,i[k] from (5.29) is created by estimating

the true regressor Uk,i, whereas in (5.73a), we use true regressor Uk,i instead. The

expected power of Uk,iW̃k,i as i→ ∞, is the EMSEk in (5.69b). Therefore, across

all bins, the overall SNR of the distorted signal, recovered signal, and the SNR

improvement are

SNRdistorted =

∑N−1
k=0 σ

2
X,k

∑N−1
k=0 (W

o)∗RU,kW o + σ2
V,k

(5.74a)

SNRrecovered =

∑N−1
k=0 σ

2
X,k

N EMSE +
∑N−1

k=0 σ
2
V,k

(5.74b)

SNRimprovement =
SNRrecovered

SNRdistorted
(5.74c)

5.5.4 Error recursions

To evaluate the performance measures, we first need to examine how the errors

evolve over time. The error recursions corresponding to the adaptive algorithm
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(5.33) are derived by subtracting W o from them to get

ψ̃k,i =
(
I2M−2 − µk,iU

∗
k,iUk,i

)
W̃k,i−1

− µk,iU
∗
k,iZk[i] (5.75a)

ψ̃a
k,i[m] =

[

ψ̃k,i[2m] ψ̃k,i[2m+ 1]
]T

(5.75b)

W̃ a
k,i[m] =

N−1∑

ℓ=0

aℓ,i[m]ψ̃a
ℓ,i[m] (5.75c)

W̃k,i =
[(

W̃ a
k,i[0]

)T

...
(

W̃ a
k,i[M − 2]

)T ]T

(5.75d)

where m = {0, ...,M − 2}. Recall from (5.38) that aℓ,i[m] = aℓ,k,i[m], ∀ k.

Therefore, we use aℓ,i[m] in place of aℓ,k,i[m] in (5.75c). We are interested in

approximating the MSD and EMSE measures in steady-state after the algorithm

has had sufficient time to converge, i.e., as i → ∞. For this reason, we shall

assume that, at that stage, the step-sizes µk,i and the combination coefficients

aℓ,i[m] would have converged towards steady-state values and drop their time

index i. We now collect the recursions from all channels into a single vector

model as follows:

ψ̃i =
[

ψ̃T
0,i ... ψ̃T

N−1,i

]T

(5.76a)

W̃i =
[

W̃ T
0,i ... W̃ T

N−1,i

]T

(5.76b)

and define the block diagonal matrices M and Ri and vector si:

M , diag{ µ0I2M−2, ..., µN−1I2M−2 } (5.77a)

Ri , diag{ U ∗
0,iU0,i, ..., U ∗

N−1,iUN−1,i } (5.77b)

si , col{ U ∗
0,iZ0[i], ..., U ∗

N−1,iZN−1[i] } (5.77c)
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Using (5.62) and (5.66), it can be verified that

ERi , R = diag{ RU,0, ..., RU,N−1 } (5.78a)

Esi = 0 (5.78b)

Let

S , Esis
∗
i

(5.79)

which is an N by N block matrix with blocks of size 2(M − 1) by 2(M − 1).

Using (5.61) and (5.62), the k-th diagonal block is

Sk,k = σ2
Z,kRU,k, k = {0, ..., N − 1} (5.80)

For the p-th block row and k-th block column in S where p 6= k,

Sp,k , EZp[i]U
∗
p,iUk,iZ

∗
k [i] (5.81)

Using (5.31), (5.32) and (5.23), we note that Zp[i] contains Xi[p], while Zk[i]

contains Xi[k] and Up,i contains Xi[αp,m] and Ẋi[αp,m]. From the assumed spa-

tial independence of Xi[p], we conclude that Zp[i] is independent of Zk[i] and

Up,i. Next, we also see that U ∗
k,i contains X∗

i [αk,m] and Ẋ∗
i [αk,m]. Using the

conjugate symmetry property we have, X∗
i [αk,m] = Xi[N −αk,m] and Ẋ

∗
i [αk,m] =

Ẋi[N − αk,m]. Therefore, Zp[i] is correlated with U ∗
k,i when the indices p and

N −αk,m match. Applying the same reasoning to Zk[i] on U
∗
p,i, we see that Zk[i]

is correlated with U ∗
p,i when the indices k and N − αp,m match. Therefore, it

follows that

Sp,k = E (Zk[i]Up,i)
∗ (Zp[i]Uk,i) , p 6= k

=
([

1 Hd[k]
]

Pk,p

)∗ ([
1 Hd[p]

]

Pp,k

)

= P T
k,p




1

(Hd[k])
∗





[

1 Hd[p]
]

Pp,k (5.82)
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where p and k are in {0, ..., N − 1} and matrix Pp,k is

Pp,k = σ2
X,p

[

I2 δp,N−αk,0
... I2 δp,N−αk,M−2

]

(5.83)

We can rewrite (5.75d) as

W̃k,i =

N−1∑

ℓ=0

Aℓψ̃ℓ,i (5.84a)

Aℓ = diag{ aℓ[m]I2, ..., aℓ[M − 2]I2 } (5.84b)

N−1∑

ℓ=0

Aℓ = I2M−2 (5.84c)

A block matrix representation of (5.84) is shown in (5.85).









W̃0,i

.

..

W̃N−1,i









=
























W̃ a
0,i[0]

.

..

W̃ a
0,i[M − 2]















W̃0,i

.

..

W̃N−1,i
















=



























a0[0]I2

. . .

a0[M − 2]I2









︸ ︷︷ ︸

A0:(2M−2)×(2M−2) diagonal matrix

...









aN−1[0]I2

. . .

aN−1[M − 2]I2









︸ ︷︷ ︸

AN−1

... ...
...

A0 ... AN−1

















































ψ̃a
0,i[0]

..

.

ψ̃a
0,i[M − 2]









..

.








ψ̃a
N−1,i[0]

...

ψ̃a
N−1,i[M − 2]































=









I2M−2

...

I2M−2









[

A0 ... AN−1

] 







ψ̃0,i

...

ψ̃N−1,i









(5.85)
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From (5.85), we define the matrix A for all bins as

AT , KAT (5.86a)

K ,
[

I2M−2 ... I2M−2

]T

(5.86b)

A ,
[

A0 ... AN−1

]T

(5.86c)

Therefore, substituting (5.75a) into (5.85), we conclude that, in steady-state,

the error vectors across all channels evolve over time according to the following

recursion:

W̃i = AT
(
IN(2M−2) −MRi

)
W̃i−1 −ATMsi, i ≥ 1 (5.87)

5.5.5 Combination weights and stepsizes

From (5.30), the interference term is Uk,iW
o. We assume that when the solution

converges, the residual error Uk,iW̃k,i is smaller than the signal component and

unmodelled dynamics (together asZk[i]). Therefore, when the solution converges,

the average power in each recovered bin can be approximated by σ2
Z,k. The

combination weights aℓ[m] in (5.84) are based on (5.38), where we have dropped

the indices k from aℓ,k[m]. Let us examine aℓ[m] for m = 0. In (5.37), we see that

the numerator is P g
ℓ [m] + P r

ℓ [m]. From (5.36), we see that P g
ℓ [0] ≈ PZ [αℓ,0] and

P r
ℓ [0] ≈ ṖZ [αℓ,0]. From (5.35), PZ [αℓ,0] and ṖZ [αℓ,0] are the estimated power of the

recovered signal and its “derivative” in the αℓ,0-th channel, which are σ2
Z,αℓ,0

and

σ2
Z,αℓ,0

|Hd[αℓ,0]|2, respectively. Similarly, in (5.37), we see that the denominator

is PZ [ℓ] = σ2
Z,ℓ. Therefore, the converged combination weights in (5.84b) can be

approximated as:

aℓ[m] ≈ γ̄mγℓ,m (5.88)
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where

γ̄m =

(
N−1∑

k=0

γk,m

)−1

(5.89a)

γℓ,m =
σ4
Z,αℓ,m

σ2
Z,ℓ

(
1 + |Hd[αℓ,m]|2

)
(5.89b)

We assume that σ2
Z,ℓ > 0 for all ℓ and hence, γℓ,m > 0. Therefore, the combination

weight aℓ[m] is always positive.

0 < aℓ[m] < 1 (5.90)

Recall from (5.43) and (5.44) that the stepsizes µℓ are bounded by the eigenvalues

of RU,ℓ. From (5.41) and (5.36), we see that the eigenvalues are estimated as the

sum of PZ [αℓ,m] and ṖZ [αℓ,m]. These quantities can be expressed as σ2
Z,αℓ,m

and

σ2
Z,αℓ,m

|Hd[αℓ,m]|2, respectively. Therefore, the step-sizes satisfy the bound:

µℓ ≤
2

σ2
Z,αℓ,m

(1 + |Hd[αℓ,m]|2)
, m = {0, ...,M − 2} (5.91)

From (5.62) and (5.63), we see that the non-zero eigenvalues of RU,ℓ are the

non-zero eigenvalues of the rank-1 matrix RX,αℓ,m
. The non-zero eigenvalue of

RX,αℓ,m
is the trace σ2

X,αℓ,m
(1 + |Hd[αℓ,m]|2). Since σ2

X,ℓ < σ2
Z,ℓ, the eigenvalues of

µℓRX,αℓ,m
is bounded by

λmax

(
µℓRX,αℓ,m

)
≤

2σ2
X,αℓ,m

σ2
Z,αℓ,m

< 2 (5.92)

5.5.6 Convergence in mean

Taking expectation of both sides of (5.87) and using (5.78) and (5.86), we obtain

EW̃i = (KB)EW̃i−1 (5.93)

where

B , AT
(
IN(2M−2) −MR

)
(5.94)
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Asymptotic mean stability is guaranteed when

ρ (KB) < 1 (5.95)

where ρ(·) denotes the spectral radius of its matrix argument. In appendix 5.A,

we show that conditions (5.90) and (5.92) ensure (5.95) so that stability in the

mean is guaranteed.

5.5.7 Mean square stability

In this section, we derive the MSD and EMSE measures defined in (5.69) and

(5.70). From [109], it is known that

E|ea,k[i]|2 = E‖W̃k,i‖2RU,k
(5.96)

where the notation ‖x‖2A denotes the squared weighted Euclidean norm x∗Ax.

We therefore proceed to evaluating the expression for E‖W̃k,i‖2Σk
for an arbitrary

Hermitian non-negative definite matrix Σk. Setting Σk = RU,k or I2M−2 yields the

MSD or EMSE expressions in (5.69) and (5.70), respectively. First using (5.86),

we re-write (5.87) more compactly as

W̃i = BiW̃i−1 − Gsi, i ≥ 0 (5.97a)

Bi , AT
(
IN(2M−2) −MRi

)
(5.97b)

G , ATM = KATM (5.97c)

From (5.93) and (5.94), we can also denote the mean of Bi as

B , EBi = KB (5.98)

Finally, using (5.79), we introduce the matrices F and Y as

F , BT ⊗ B∗

Y , GSGT
(5.99)
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where ⊗ denotes the Kronecker product. In [109], for small step sizes, it was

argued that if F is stable, then (5.97) is mean-square stable. Moreover, if B is

stable, then F is stable.

5.5.8 MSD and EMSE

Following the same arguments from [109], the MSD and EMSE in (5.70) are given

by the following expressions:

MSD =
1

N

[
vec
(
YT )]T (I − F)−1 vec

(
IN(2M−2)

)
(5.100a)

EMSE =
1

N

[
vec
(
YT )]T (I − F)−1 vec (R) (5.100b)

where the vec operator vectorizes its matrix argument by stacking the columns

on top of each other, and R is defined in (5.78).

Due to the structure of A, where all estimates after the combination step are

the same, we can use (5.86) to reduce (5.97) to a single node recursion. Thus

note first that

KW̃k,i = KAT
(
IN(2M−2) −MRi

)

︸ ︷︷ ︸
Bi

KW̃k,i
︸ ︷︷ ︸

W̃i−1

−KATM
︸ ︷︷ ︸

G

si (5.101)

Multiplying both sides of (5.101) by 1
N
KT and noting that 1

N
KKT = I2M−2, we

obtain the single node recursion as:

W̃k,i = Bnode,iW̃k,i−1 − Gnodesi, i ≥ 0 (5.102a)

Bnode,i , AT
(
IN(2M−2) −MRi

)
K (5.102b)

Gnode , ATM (5.102c)
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Hence, the MSD, EMSEk and EMSE can also be written as

MSD = hTnode vec (I2M−2) (5.103a)

EMSEk = hTnode vec (RU,k) (5.103b)

EMSE =
1

N

N−1∑

k=0

hTnode vec (RU,k)

=
1

N
hTnode vec

(
KTRK

)
(5.103c)

where

hTnode ,
[
vec
(
YT

node

)]T
(I −Fnode)

−1 (5.104a)

Bnode , EBnode,i = BK (5.104b)

Fnode , BT
node ⊗ B∗

node (5.104c)

Ynode , GnodeSGT
node (5.104d)

The advantage of using (5.103) over (5.100) is that the matrices YT
node and Fnode

are much smaller compared to YT and F .

5.6 Simulations results

The simulations in this section are carried out by generating a random Gaussian

signal with variance equal to one. The signal is either low-pass or band-pass

filtered according to the desired simulation settings. This signal is the clean in-

put signal to the ADC. Sinc interpolation is used to create the distorted signal

with some time and gain offsets. The gain and time offsets are randomly gen-

erated; their standard deviation is set to 0.01 and their means are set to 1 and

0, respectively. The time offsets and gain mismatches when M = 4 are {-7.55,
7.60, 9.60, -9.65} × 10−3 and {0.9994, 0.9998, 1.0126, 0.9881}, respectively. The

step-sizes used in the time-domain solution (5.15) and frequency-domain solution
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(5.44) are set to µ = 1.75 × 10−6 and µinit = 2 × 10−4, respectively. The factor

β in (5.44) is set to 1. The FFT length is 210. The FFT windowing function is

the Blackman-Harris window. The number of ADCs M = 4. The λ used in the

averaging of (5.39) is 0.95.

5.6.1 MSD and SNR measures

Recall from (5.30) and (5.33d) that the true and estimated distortion parameter

at the i-th block are W o and Wi, respectively. The estimation error is defined as

W̃i =W o −Wi. The mean-square-deviation (MSD) is defined as

MSD = lim
i→∞

E‖W̃i‖2 (5.105)

In the simulations, the MSD is calculated by averaging ‖W̃i‖2 over some runs. The

signal power to noise power ratio (SNR) of the distorted signal and the recovered

signal can also be calculated from the simulations. From (5.30) and (5.28), at

the i-th block, we denote the power of the input signal, original distortion and

the residual error after the interference cancelation block as:

Psignal =

N−1∑

k=0

|Xi[k]|2 (5.106a)

Pdistortion =
N−1∑

k=0

|Yi[k]−Xi[k]|2 (5.106b)

Presidual =
N−1∑

k=0

|X̂B,i[k]−Xi[k]|2 (5.106c)

Psignal, Pdistortion and Presidual can be averaged over some runs, and the average

SNR of the original distorted signal and the recovered signal is calculated as:

SNRdistorted =
“average” of Psignal

“average” of Pdistortion
(5.107a)

SNRrecovered =
“average” of Psignal

“average” of Presidual
(5.107b)
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5.6.2 Comparing with prior works

Our first set of simulations compare our proposed algorithms with some prior

works [1, 2]. The comparison shows that the frequency-domain approach gives

better performance. Recall in Section 5.4 that we discussed that our solutions

compensate the distorted signal in the first stage, and then use it in the interfer-

ence cancelation block (stage B of Fig. 5.8 and 5.12) to recover a better signal.

As such, in the simulations, we calculate the SNR of the recovered signal from

both stages.

Recall that the distortion parameters in the various solutions are different.

For the frequency-domain solution, the distortion parameters are Gk and Rk in

(5.5). For our proposed time-domain solution and the work in [1], the distortion

parameters are the same cg and cr in (5.10). For [2], the distortion parameters are

wg and wt, defined in (5.58) and (5.59). Therefore, to compare the estimation

errors from the various solutions using the MSD measure defined in (5.105),

we have to convert all the estimates to the distortion parameters used for the

frequency-domain solution. We can convert cg and cr to Gk and Rk:

Gk =







cg[2k − 2] + jcg[2k − 1] if 1 ≤ k ≤ M
2
− 1

cg[2k − 2] if k = M
2

G∗
N−k otherwise

(5.108)

and

Rk =







cr[2k − 2] + jcr[2k − 1] if 1 ≤ k ≤ M
2
− 1

cr[2k − 2] if k = M
2

R∗
N−k otherwise

(5.109)
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For the distortion parameters wg and wt in [2], we first convert them to gm and

rm using (5.58) and (5.59):







g0
...

gM−1







=








1
...

1







−MF−1

H








wg0

...

wg(M−1)








(5.110a)








r0
...

rM−1







=MF−1

H








wt0

...

wt(M−1)








(5.110b)

Once gm and rm are obtained, we can use (5.5) to find Gk and Rk. Therefore, in

the simulations, we can calculate and plot the MSD of the various solutions as

defined in (5.105) and (5.71) and compare their performance.

Similarly, we also compare the SNR measure defined in (5.107) and (5.74) for

the various solutions. For the comparison, we applied the same windowed-FFT

used in the proposed frequency-domain solution on the recovered signals from

the time-domain solutions, and calculate the SNR for each FFT block. The SNR

of the last block is tabulated for comparison purposes.

5.6.2.1 Low-pass input signal

Recall that reference [1] assumes that there exists an out-of-band region, and

uses a high-pass filter to estimate the distortion parameters in that region (recall

Figs. 5.4 and 5.3). Therefore, in this simulation, we simulate a low-pass signal

with a bandwidth of 0.7π, the high-pass filter’s cutoff point is set to 0.8π. We

denote the algorithm in reference [1] as “Vogel’s solution”. We also implemented

the algorithm in reference [2] and denote it as “Matsuno’s solution”. The length

of the input data is 221, the FFT length is 210 and the simulation results are

averaged over 30 experiments.
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Table 5.1: SNR of the distorted and recovered low-pass signal.

Description SNR [dB]

Distorted signal 37.02

Matsuno’s solution [2] 51.28

Time-domain solution (Stage A of Fig. 5.7) 52.27

Time-domain solution (Stage B of Fig. 5.7) 52.32

Vogel’s solution [1] 68.11

Frequency-domain solution (a) (Stage A1 of Fig. 5.8) 69.98

Frequency-domain solution (a) (Stage B of Fig. 5.8) 77.88

Frequency-domain solution (b) (Stage A2 of Fig. 5.12) 78.30

Frequency-domain solution (b) (Stage B of Fig. 5.12) 81.15

Fig. 5.14 shows the simulation results averaged over 30 runs. The aver-

age SNR of the distorted signal and the average SNR of the recovered signal

after using the various algorithms are shown in Table 5.1. The SNR of the dis-

torted signal is 37dB. In this scenario, when all the distortion components are

present in the out-of-band region, Vogel’s solution works very well and the SNR

of the recovered signal is high (68dB). Both our time-domain and Matsuno’s

solution are able to improve the SNR (∼52dB), albeit at a worse performance

level. This is because the algorithms use the entire bandwidth of the data to

estimate the distortion parameters. In this case, the input signal becomes the

“noise”. For Vogel’s solution, the out-of-band region contains only the distortion

signal. Hence, the time-domain and Matsuno’s solutions require more samples.

The frequency-domain solutions (a) and (b) use the structures of Figs. 5.8 and

5.12, respectively. We recall that the proposed frequency-domain solutions exam-

ine the frequency content of the signal and selectively emphasize the estimation
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Figure 5.14: Comparing various algorithms on a low-pass signal at 0.7π. The frequency-

domain solutions (a) and (b) use the proposed structures in Figs. 5.8 and 5.12, respec-

tively.

in regions where there is less “noise” via the combination weights (5.38) and the

stepsizes (5.44). Therefore, the frequency-domain solutions converge faster than

the proposed time-domain solution. Moreover, we see that the frequency-domain

solutions obtain a significant improvement in MSD over all other solutions. The

MSD plot also shows that the frequency-domain solution (b), where the second

order distortion is removed, gives a further 10dB improvement over the frequency-

domain solution (a). The SNR of the recovered signal using the frequency-domain

solutions are also better than the time-domain solutions, i.e., 78dB to 81dB.

When we compare the SNR of the recovered signals in both stages of our

algorithms, we note that stage B of the proposed solutions gives a better SNR.

The averaged spectrum of the distorted signal and the recovered signal using the
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frequency-domain solution is shown in the left plot of Fig. 5.15. Note that the

SNR improvement of the recovered signal is over the entire bandwidth of the

signal. The spectrum plots show the reduction of the distortion spectrum in the

out-of-band region. We noted that, visually, the spectrum of the recovered signal

using the frequency-domain solutions (a) and (b) are similar.
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Figure 5.15: The left and right plots show the spectrum of the distorted and recovered

signals using the frequency-domain solution for the two scenarios of a low-pass signal

(left) and a bandpass signal (right).

5.6.2.2 Band-pass input signal

Now, we change the input signal to a band-pass signal from 0.2π to 0.8π. As

discussed in Section 5.2.3, Vogel’s solution will not work in this scenario as one

of the distortion components is within the input signal’s bandwidth (recall Fig.

5.5c). If the high-pass filter’s cutoff point is set to 0.8π as in the previous simula-

tion, it will fail dramatically since some of the original signal’s bandwidth (from
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0.7π to 0.8π) leaks into the high-pass region, and the SNR of the recovered signal

will be worse than the distorted signal itself. As such, we change the high-pass

filter’s cutoff point to 0.85π. This reduces the leakage and allows the algorithm to

estimate the distortions that are outside the signal’s bandwidth. We will denote

the results when the high-pass cutoff is at 0.8π and 0.85π as Vogel’s solution (a)

and (b), respectively. For the other algorithms, their parameters remain as in

the previous set of simulations. However, as one distortion component is com-

pletely within the signal bandwidth, the algorithms take more time to converge.

Therefore, we increase the input data samples to 221 × 5.

Table 5.2: SNR of the distorted and recovered band-pass signal.

Description SNR [dB]

Distorted signal 35.47

Matsuno’s solution [2] 50.23

Time-domain solution (Stage A of Fig. 5.7) 51.13

Time-domain solution (Stage B of Fig. 5.7) 51.21

Vogel’s solution (a) [1] 27.73

Vogel’s solution (b) [1] 44.08

Frequency-domain solution (a) (Stage A1 of Fig. 5.8) 56.93

Frequency-domain solution (a) (Stage B of Fig. 5.8) 57.26

Frequency-domain solution (b) (Stage A2 of Fig. 5.12) 57.27

Frequency-domain solution (b) (Stage B of Fig. 5.12) 57.28

Fig. 5.16 shows the MSD for the various algorithms and Table 5.2 shows

the SNR of the distorted and recovered signals. The figure and table show that

the frequency-domain solutions perform better than the other algorithms. More

importantly, recall that the algorithms’ parameters used in the low-pass input
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Figure 5.16: Comparing various algorithms on a band-pass signal from 0.2π to 0.8π.

The simulation results for Vogel’s solution (a) and (b) use a high-pass filter cutoff at

0.8π and 0.85π, respectively.

signal case remains the same in the band-pass signal case; However, for the

frequency-domain solution, the stepsizes and combination weights are adaptive

to the input signal, and is able to adapt these algorithm parameters accordingly.

As a result, the convergence rate is adaptively reduced to obtain MSD and SNR

of -60dB and 57dB, respectively. We also noted that in the band-pass signal case,

removing the second-order distortion does not improve performance. As Vogel’s

solution cannot estimate all the distortion components, it gives the worst SNR

and MSD performance. Vogel’s solution (a) performs worse than Vogel’s solution

(b) because the actual signal leaks into the out-of-band region; This breaks the

assumption that the out-of-band region contains only distortions.

For our proposed time-domain solution and Matsuno’s solution, the stepsize
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used in their algorithm is the same as the previous simulation. Hence, unlike

the frequency-domain solutions, they are not able to adapt to the input signal.

Although they converge faster, their MSD and SNR performance is worse. If a

designer were to use either of these two solutions, and would like to get similar

MSD and SNR performance as the frequency-domain solution, then the designer

needs to reduce the stepsize. However, this will further reduce their slow con-

vergence rate for the low-pass input signal scenario in the previous section (see

Fig. 5.14). For the sake of completeness, we emprically reduce the stepsizes of

the proposed time-domain solution and Matsuno’s solution by a factor of 0.2 to

obtain MSD and SNR that are similar to the frequency-domain solution. The

SNR is in Table 5.3 and the MSD curve is in Fig. 5.17.

Table 5.3: SNR of the distorted and recovered band-pass signal after reducing the

stepsizes for the time-domain solution and Matsuno’s solution.

Description SNR [dB]

Distorted signal 35.47

Matsuno’s solution [2] 56.62

Time-domain solution (Stage A of Fig. 5.7) 57.73

Time-domain solution (Stage B of Fig. 5.7) 58.03

Frequency-domain solution (a) (Stage A1 of Fig. 5.8) 56.93

Frequency-domain solution (a) (Stage B of Fig. 5.8) 57.26

The frequency-domain solution tries to exploit the case when the distortion

components leaks into empty frequency bands, and the algorithm detects them

and weighs the estimated distortion parameters more in these frequency bands.

For the band-pass case where it is centered at π
2
, as shown in Fig. 5.5c, we see

that there is at least one distortion component (one of the smaller triangles) lies
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Figure 5.17: Comparing various algorithms on a band-pass signal from 0.2π to 0.8π,

after reducing the stepsizes for the time-domain solution and Matsuno’s solution.

completely in the signal band and does not leak into any empty frequency bands.

This means that at least one of the unknown distortion parameters cannot be

estimated quickly. If the band-pass signal is slightly off-centered from π
2
, then

some parts of all the individual distortion components will leak into some empty

frequency bands. In this situation, the frequency-domain solution will be able

estimate the distortion parameters quickly and more accurately. The averaged

spectrum of the distorted signal and the recovered signal using the frequency-

domain solution is shown in the right plot of Fig. 5.15.

5.6.3 Performance measures using MSD and SNR

In this section, the performance of the frequency domain method is compared

against the approximate theoretical MSD and SNR values in (5.70) and (5.74).
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The algorithm’s settings are the same as before and the FFT length is varied from

29, 210 and 211. The input signal used is either a low-pass signal or a band-pass

signal with some varying bandwidth. Recall that our frequency-domain solution

in Fig. 5.8 can also be extended to remove higher order distortion in Fig. 5.12.

As in the previous sections, we will label the solutions as solution (a) and (b),

respectively. We will show that in some cases, solution (b) improves the MSD

and approaches the theoretical performance.

5.6.3.1 Low-pass input signal

When the input signal is a low-pass signal, the bandwidth is varied from 0.1π,

0.3π, 0.5π, 0.7π to 0.9π radians/sample. The input signal data length for the

first four bandwidth regions and for the last bandwidth region are (218) × 5

and (221) × 5, respectively. The results are averaged over 30 runs. Using the

frequency-domain solution (a), the MSD (left-sided plot) and SNR (right-sided

plot) results are shown in Fig. 5.18. From the MSD plot, we noted that increas-
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Figure 5.18: Performance of solution (a), which removes the first order distortions, as

lowpass signal’s bandwidth varies from 0.1π to 0.9π.
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ing the FFT length did not improve the MSD performance significantly, and the

curves do not match the theoretical performance. We found that the mismatch

is due to the higher order distortions that we have ignored; When we remove

the second-order distortion in solution (b), we found that the simulation results

match with the theory (see Fig. 5.19). However, the SNR plots show that the

SNR performance in both solution (a) and (b) match well with the theoretical

performance. Depending on the input signal’s bandwidth, the distorted signal’s

and recovered signal’s SNR ranged between 35dB to 41dB and 70dB to 90dB,

respectively. From the SNR plot, we see that increasing the FFT length improves

the SNR; especially when the input signal bandwidth is smaller, but not as signif-

icant at larger bandwidth. From the SNR plot, using 1024 FFT, we see that the

SNR of the recovered signal (black line with square marker) varies from 86dB to

79dB as the bandwidth increases, and the SNR improvement from the distorted

signal (green line with diamond) is about 45dB.

Using the frequency-domain solution (b), the MSD (left-sided plot) and SNR

(right-sided plot) results are shown in Fig. 5.19. Now, from the MSD plot,

we noted that the simulation results approach the theoretical performance. We

also noted that doubling the FFT length improves the MSD result by 8dB to

10dB. The SNR plot shows that the simulation performance match well with the

theoretical performance (similar to solution (a)).

5.6.3.2 Band-pass input signal

When the input signal is a band-pass signal (centered at 0.5π), the bandwidth

is varied from 0.2π, 0.4π, 0.6π, 0.8π to 0.94π radians/sample. The input signal

data length is (221) × 10. The results are averaged over 30 runs. The perfor-

mance results using both solutions (a) and (b) are shown in Figs. 5.20 and 5.21,
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Figure 5.19: Performance of solution (b), which removes the first and second order

distortions, as lowpass signal’s bandwidth varies from 0.1π to 0.9π.

respectively. First, we noted that for the band-pass signal, both solutions give

the same performance. The results also show that increasing the FFT length im-

proves the performance. Using 1024 FFT, the SNR of the recovered signal (black

line with square marker) varies from 53dB to 57dB, and the SNR improvement

from the distorted signal (green line with diamond) is about 19dB to 22dB.

5.7 Discussion and conclusion

We proposed time-domain and frequency-domain solutions to mitigate the timing

and gain mismatches in TI-ADC. One of the main advantages of this work over

prior works is that it does not need to assume an out-of-band frequency region. By

spliting the input signal into separate FFT bins and modelling each frequency bin

as a node in a network, we are able to exploit adaptive diffusion strategies [109]

to get better performance over the time-domain approach. Consequently, we

showed that the frequency-domain solution is able to adapt to different scenarios;
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Figure 5.20: Performance of solution (a), which removes the first and second order

distortions,as bandpass signal’s bandwidth varies from 0.2π to 0.94π.

it performs as well as the prior works (which assume out-of-band region), and

also in cases when the prior works fail. Using simulations, we verified that the

derived performance measures match well with the experimental results.

5.A Proof for mean convergence

This appendix proves that conditions (5.90) and (5.92) ensure (5.95) and, hence,

ensure mean stability in the long term regime as i → ∞. To begin with, it

is known that for any two matrices, the products XY and Y X have the same

eigenvalues, counting multiplicity and eigenvalues equal to 0 [113]. Therefore,

ρ(KB) = ρ(BK). Recall that matrix B is defined in (5.94). Using M from

(5.77a), R from (5.78a), Aℓ from (5.84b), AT in (5.86c), and RU,k from (5.62),
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Figure 5.21: Performance of solution (b), which removes the first and second order

distortions, as bandpass signal’s bandwidth varies from 0.2π to 0.94π.

the block representation for B is shown in (5.111).

B , AT
(
IN(2M−2) −MR

)

= AT −
[

µ0A0RU,0 ... µN−1AN−1RU,N−1

]

(5.111)

Multiplying (5.111) by K from (5.86b), and using the property in (5.84c), we

obtain the expression

BK =
N−1∑

k=0

Ak −
N−1∑

k=0

µkAkRU,k

= I2M−2 −
N−1∑

k=0

µkAkRU,k

= diag

{

I2 −
N−1∑

k=0

µkak[0]RX,αk,0
, ...,

I2 −
N−1∑

k=0

µkak[M − 2]RX,αk,M−2

}

(5.112)
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Using (5.112), mean stability holds when

1 > ρ (BK)

= max
m=0,...,M−2

{

ρ

(

I2 −
N−1∑

k=0

µkak[m]RX,αk,m

)}

(5.113)

We note that the matrix sum
∑N−1

k=0 µℓak[m]RX,αk,m
in (5.113) is Hermitian as

RX,αk,m
is Hermitian and the coefficients are real. This means that the matrix sum

has real eigenvalues. Now, we need to verify that (5.113) holds using conditions

(5.90) and (5.92). We establish (5.113) in two steps. The first step is to prove

that the matrix sum has positive eigenvalues,

λmin

(
N−1∑

k=0

µkak[m]RX,αk,m

)

> 0 (5.114)

where λmin(· ) represents the minimum eigenvalue of the matrix argument. The

second step is to prove that the maximum eigenvalue of the matrix sum is bounded

by 2:

λmax

(
N−1∑

k=0

µkak[m]RX,αk,m

)

< 2 (5.115)

The two steps (5.114) and (5.115) imply that the matrix sum contains eigenvalues

between 0 and 2 so that

ρ

(

I2 −
N−1∑

k=0

µkak[m]RX,αk,m

)

< 1 (5.116)

Let us proceed with the first step. Using RX,ℓ from (5.63), and the conjugate

symmetry property of Hd[k],we find that

RX,N−ℓ = σ2
X,N−ℓ




1 Hd[N − ℓ]

(Hd[N − ℓ])∗ |Hd[N − ℓ]|2





= σ2
X,ℓ




1 (Hd[ℓ])

∗

Hd[ℓ] |Hd[ℓ]|2





= conj (RX,ℓ)

(5.117)

197



where the operator conj applies the conjugation operation elementwise. Note

that RX,N−ℓ and RX,ℓ are both rank-1 matrices. Also, note that when ℓ is 0 or N
2
,

RX,ℓ is real. We will show in the next paragraph that combining the conjugate

pairs will make the sum of matrices in (5.114) contain only positive eigenvalues.

We assume that there exists some αk,m-th FFT channel and its conjugate

channel that contain some signal content (i.e., σ2
X,αk,m

> 0). Let us verify that

λmin

(

µkak[m]RX,αk,m
+ µk′ak′[m]RX,αk′,m

)

> 0 (5.118)

where k′ represents the appropriate index that matches the conjugate counterpart

of RX,αk,m
. Using the rank-1 decomposition of the two matrices from (5.63):

µkak[m]RX,αk,m
= µkak[m]σ2

X,αk,m
bαk,m

b∗αk,m

µk′ak′[m]RX,αk′,m
= µk′ak′[m]σ2

X,αk′ ,m
bαk′ ,m

b∗αk′,m

bαk,m
=
[

1 (Hd[αk,m])
∗
]T

(5.119)

Now, we denote

ck,m , µkak[m] (5.120)

Using (5.90), we see that ck,m > 0. We can write the sum in (5.118) as:

ck,mRX,αk,m
+ ck′,mRX,αk′,m

= σ2
X,αk,m

[

bαk,m
bαk′,m

]




ck,m 0

0 ck′,m








b∗αk,m

b∗αk′ ,m





= Γαk,m
Γ∗
αk,m

(5.121)

where

Γαk,m
= σX,αk,m

[

bαk,m
bαk′,m

]





√
ck,m 0

0
√
ck′,m



 (5.122)

It can be verified that bαk,m
and bαk′,m

are linearly independent and, hence, and

Γαk,m
is non-singular and (5.121) is positive-definite. Hence, (5.118) is true. This
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means that at least one pair sum from (5.114) is positive-definite and, therefore,

the sum in (5.114) is positive-definite so that (5.114) holds.

Next, we cover the second step (5.115) of the argument. Using (5.92), we can

bound (5.115) by:

λmax

(
N−1∑

k=0

µkak[m]RX,αk,m

)

≤
N−1∑

k=0

ak[m]λmax

(
µkRX,αk,m

)

< 2
N−1∑

k=0

ak[m]

< 2 (5.123)

5.B Proof for (5.1)

Consider an ideal M-channel TI-ADC with a sampling interval of Ts and a input

signal of x(t). Assume it is band-limited to the Nyquist frequency, i.e. X(jΩ) = 0

for |Ω| ≥ Ωs

2
, Ωs =

2π
Ts
. The sampled signal xs(t) is

xs(t) =

M−1∑

m=0

∞∑

ℓ=−∞
δ(t− ℓMTs −mTs)x(t) (5.124)

Now, consider the M-channel TI-ADC has gain and timing mismatches of gm

and rmTs, respectively. The sampled signal ys(t) becomes

ys(t) =
M−1∑

m=0

∞∑

ℓ=−∞
gmδ(t− ℓMTs −mTs − rmTs)x(t)

=

M−1∑

m=0

∞∑

ℓ=−∞
gmδ(t− ℓMTs −mTs)x(t+ rmTs)

=
M−1∑

m=0

{[ ∞∑

ℓ=−∞
δ(t− ℓMTs −mTs)

]

gmx(t+ rmTs)

}

(5.125)
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First, we state the below well-known Fourier transform (FT) properties (impulse

train, time-delay and multiplication in time):

F
{ ∞∑

n=−∞
δ (t− nTs)

}

= Ωs

∞∑

k=−∞
δ (jΩ− jkΩs) (5.126a)

F {f(t− τ)} = F (jΩ)e−jΩτ (5.126b)

F {f(t)g(t)} =
1

2π
F (jΩ) ∗G(jΩ) (5.126c)

where Ωs = 2π
Ts
. Therefore, when an impulse train (with a sampling interval of

MTs) is delayed by mTs, the FT becomes

F
{ ∞∑

n=−∞
δ (t− (nM +m) Ts)

}

=

[

Ωs

M

∞∑

k=−∞
δ

(

jΩ− j
Ωs

M
k

)]

e−jΩmTs

(5.127a)

=
Ωs

M

∞∑

k=−∞
δ

(

jΩ− j
Ωs

M
k

)

e−j 2π
M

mk (5.127b)

where we use (5.126a) and (5.126b) to obtain (5.127a), and substitute Ω = Ωs

M
k

into e−jΩmTs in (5.127a) to obtain (5.127b). Also, the FT of gmx(t + rmTs) is

F {gmx(t+ rmTs)} = X(jΩ)Hm(jΩ) (5.128a)

Hm(jΩ) =







gme
jΩrmTs if |Ω| < Ωs

2

0 otherwise

(5.128b)

where we use the assumption that the signal is bandlimited and hence Hm(jΩ) is

written as a bandlimited transfer function. Now, recall the following convolution

property (associativity with scalar multiplication):

a[f(t) ∗ g(t)] = [af(t)] ∗ g(t) (5.129)
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Hence, the FT of ys(t) in (5.125) is denoted as Ys(jΩ):

Ys(jΩ) =

M−1∑

m=0

1

2π
X(jΩ)Hm(jΩ) ∗

[

Ωs

M

∞∑

k=−∞
δ

(

jΩ− j
Ωs

M
k

)

e−j 2π
M

mk

]

=
M−1∑

m=0

∞∑

k=−∞

1

MTs
X

(

jΩ− j
Ωs

M
k

)

Hm

(

jΩ− j
Ωs

M
k

)

e−j 2π
M

mk (5.130)

We define H̄k(jΩ) as

H̄k (jΩ) ,







1
M

∑M−1
m=0 Hm (jΩ) e−j 2π

M
mk if |Ω| < Ωs

2

0 otherwise

(5.131)

Now, we can rewrite (5.130) as

Ys(jΩ) =

∞∑

k=−∞

1

Ts
X

(

jΩ− j
Ωs

M
k

)

[

1

M

M−1∑

m=0

Hm

(

jΩ− j
Ωs

M
k

)

e−j 2π
M

mk

]

(5.132)

=
1

Ts

∞∑

k=−∞
X

(

jΩ− j
Ωs

M
k

)

H̄k

(

jΩ− j
Ωs

M
k

)

(5.133)

The relationship between discrete-time Fourier transform (DTFT) of a sampled

signal g[n] and the FT of sampled gs(t) is

G(ejω) = Gs (jΩ) |Ω= ω
Ts

(5.134a)

Gs(jΩ) =
1

Ts

( ∞∑

k=−∞
G(jΩ− jkΩs)

)

(5.134b)

Hence, from (5.133), DTFT of y[n] is related to the FT of ys(t) is

Y (ejω) = Ys (jΩ) |Ω= ω
Ts

=
1

Ts

∞∑

k=−∞
X

(

jΩ− j
Ωs

M
k

)

H̄k

(

jΩ− j
Ωs

M
k

)



Ω= ω

Ts

(5.135)
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From (5.128), we see that the DTFT counterpart of X(jΩ) and Hm(jΩ) are

X(ejω) =
1

Ts

( ∞∑

k=−∞
X(jΩ− jkΩs)

)∣
∣
∣
∣
∣
Ω= ω

Ts

(5.136a)

and

Hm(e
jω) =

1

Ts

( ∞∑

k=−∞
Hm(jΩ− jkΩs)

)∣
∣
∣
∣
∣
Ω= ω

Ts

=
1

Ts
gme

jΩrmTs|Ω= ω
Ts

=
1

Ts
gme

jωrm (5.137)

Therefore, the DTFT counterpart of H̄ℓ(jΩ) in (5.131) is

H̄ℓ(e
jω) =

1

Ts

( ∞∑

k=−∞
H̄ℓ(jΩ− jkΩs)

)∣
∣
∣
∣
∣
Ω= ω

Ts

=
1

Ts

( ∞∑

k=−∞

1

M

M−1∑

m=0

Hm (jΩ− jkΩs) e
−j 2π

M
mℓ

)∣
∣
∣
∣
∣
Ω= ω

Ts

=
1

M

M−1∑

m=0

(

1

Ts

∞∑

k=−∞
Hm (jΩ− jkΩs)|Ω= ω

Ts

)

e−j 2π
M

mℓ

=
1

M

M−1∑

m=0

Hm(e
jω)e−j 2π

M
mℓ (5.138)

The bandlimited property of X(jΩ) and H̄(jΩ) in (5.131) means

X(jΩ− jk1Ωs)H̄ℓ(jΩ− k2ℓΩs) = 0, ∀ k1 6= k2 (5.139)

Therefore, we can derive X (ejω) H̄ℓ (e
jω) as

X
(
ejω
)
H̄ℓ

(
ejω
)
=

1

Ts

( ∞∑

k1=−∞
X(jΩ− jk1Ωs)

)∣
∣
∣
∣
∣
Ω= ω

Ts

1

Ts

( ∞∑

k2=−∞
H̄ℓ(jΩ− jk2Ωs)

)∣
∣
∣
∣
∣
Ω= ω

Ts

=
1

T 2
s

( ∞∑

k=−∞
X(jΩ− jkΩs)H̄ℓ(jΩ− jkΩs)

)∣
∣
∣
∣
∣
Ω= ω

Ts

(5.140)
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Now in (5.135), we let k = k′M + ℓ where ℓ = 0, 1, ...,M − 1, to obtain

Y (ejω) =
1

Ts

∞∑

k′M+ℓ=−∞
X

(

jΩ− j
Ωs

M
(k′M + ℓ)

)

H̄k′M+ℓ

(

jΩ− j
Ωs

M
(k′M + ℓ)

)



Ω= ω

Ts

=
1

Ts

∞∑

k′=−∞

M−1∑

ℓ=0

X

(

jΩ− j
Ωs(k

′M + ℓ)

M

)

H̄k′M+ℓ

(

jΩ− j
Ωs(k

′M + ℓ)

M

)



Ω= ω

Ts

=

M−1∑

ℓ=0

1

Ts

∞∑

k′=−∞
X

(

j

(

Ω− 2πℓ

MTs

)

− jΩsk
′
)

H̄ℓ

(

j

(

Ω− 2πℓ

MTs

)

− jΩsk
′
)




Ω= ω
Ts

(5.141)

where we use Ωs = 2π
Ts

to obtain the term 2πℓ
MTs

in the last expression, and the

observation from (5.131) that H̄ℓ+k′M(jΩ) = H̄ℓ(jΩ). It can be verified that the

above expression (5.141) is the same as the one below (5.142a):

Y (ejω) =

M−1∑

ℓ=0

1

Ts

∞∑

k′=−∞
X (jΩ− jΩsk

′) H̄ℓ (jΩ− jΩsk
′)



Ω= 1
Ts
(ω− 2πℓ

M ) (5.142a)

=

M−1∑

ℓ=0

TsX
(

ej(ω−
2πℓ
M )
)

H̄ℓ

(

ej(ω−
2πℓ
M )
)

(5.142b)

where (5.142b) is obtained from (5.140) by replacing ω by ω − 2πℓ
M

. Now, using

(5.138) and (5.137), we can define

Ȟℓ

(
ejω
)
, TsH̄ℓ

(
ejω
)

=
Ts
M

M−1∑

m=0

Hm

(
ejω
)
e−j 2π

M
mℓ

=
Ts
M

M−1∑

m=0

1

Ts
gme

jωrme−j 2π
M

mℓ

=
1

M

M−1∑

m=0

gme
jωrme−j 2π

M
mℓ (5.143)
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Therefore, from (5.143) and (5.142b), we obtain (5.1) as

Y (ejω) =

M−1∑

k=0

X
(

ej(ω−
2πk
M

)
)

Ȟk

(

ej(ω−
2πk
M

)
)

(5.144)
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CHAPTER 6

Conclusion and Future Research

In this dissertation, we examined the effect of spurious sidebands and random

jitter in ADCs, as well as, timing and gain mismatches in TI-ADCs. We developed

and analyzed adaptive DSP techniques to correct for these circuit imperfections.

Our simulations and theoretical results show that the proposed solutions reduce

the distortions in the sampled data to great effect. There are a couple of issues

that deserve further investigation. We list three of them here.

One future research direction is to estimate the spurious sidebands without

the use of a training signal (as compared to the techniques in Chapter 2 and 3).

Such a possibility would be attractive because it imposes less requirements on

the circuit design process and on the hardware implementation.

Another research direction is to study how random jitter in ADC impacts

applications like spectrum sensing. By examining the impact in terms of its

influence on the probabilities of detection and false alarm, the results can be used

to complement analyses that rely mainly on assessing the SNR of the recovered

signals.

A third research direction is to extend the gain and timing mismatches in

TI-ADC to frequency response mismatches [69, 89, 93]. The gain and timing

mismatches can be modeled as special cases of frequency response mismatches.

These extensions are more demanding and would incorporate a wider range of
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imperfections into the design models.
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