Adaptive testing of a deterministic
implementation against a nondeterministic
finite state machine

R.M. Hierons
1998

abstract A number of authors have looked at the problem of deriving a
checking experiment from a nondeterministic finite state machine that mod-
els the required behaviour of a system. We show that these methods can
be extended if it is known that the implementation is equivalent to some
(unknown) deterministic finite state machine.

When testing a deterministic implementation, the test output provides
information about the implementation under test and can thus guide future
testing. The use of an adaptive test process is thus proposed.

1 Introduction

Nondeterministic finite state machines (NFSMs) are used to model a num-
ber of types of computer system including communications protocols (Tanen-
baum [1996]). If an NFSM model M, of the required behaviour, exists and
some implementation [has been produced, it is important to verify I against
M. Testing usually forms part of the verification process. When testing it is
normal to assume that the implementation under test (IUT) I behaves like
some (possibly nondeterministic) finite state machine Mj.

As nondeterminism can aid abstraction, many specifications are nonde-
terministic. Actual implementations are, however, often deterministic. The
situation, in which M is nondeterministic and M; is deterministic, is thus of
interest.

An NFSM M is defined by a tuple (5, s1,h, X,Y) in which S is a finite
set of states, sy is the initial state, X is the finite input alphabet, Y is the
finite output alphabet and h is the state transition function. Given an NFSM
M, Sy shall denote the state set of M. When M receives an input value
x € X, while in state s € 5, a transition is executed producing an output
value y € Y and moving M to some state s’ € 5. The function h gives the
possible transitions and has type h : S x X — P(S x Y), where P denotes
the power set operator. Thus, if M receives input @ € X while in state s € 5,
the output y € Y and next state s’ € S satisfy (s',y) € h(s,).

An NFSM, that shall be denoted My throughout this paper, is given in
Figure 1. Here, S = {s1,...,85}, X = {a,b} and Y = {0,1}. If b is input
while My is in state sy, either 0 is output and My moves to state s5 or 1 is
output and My moves to state s. Thus h(s4, b) = {(s5,0), (s2,1)}.

A finite automaton (FA) N is defined by a tuple (5, s1,7, %, F'), in which
S is a finite set of states, s; € S is the initial state, v is the state transition
function, ¥ is the finite alphabet and F' C S is the set of final states. The
function ~ takes a state s € S and a value x € ¥ and gives a set of possible
next states v(s,z). Let e denote the empty sequence and, given a set I,
'™ denote the set of strings consisting of elements of I'. Thus € € I'*. The
transition function + can be extended, to take values from ¥* | giving the
function ~* defined by: v*(s,¢€) = {s}, v*(s,yx) = {|(Fs" € v*(s,y) 0 ' €
y(s",2))} (where © € ¥ and y € ¥*).

FA are used to define languages: a string x € ¥* is accepted by N, and
thus is part of the language defined by N, if and only if v*(sy,2) N F # 0.
The FA N is deterministic if for each state s € S and input value z € ¥,
there is only one possible next state. Given a nondeterministic FA there is
some deterministic FA that defines the same language. There are standard
algorithms for finding such an equivalent deterministic FA (Rabin and Scott
[1959]).

An NFSM M can be thought of as a FA F/(M) in which the elements of ¥
are the input /output pairs and all the states are final states. The NFSM M is
then characterized by the language defined by F'(M): the set of input/output
sequences that M allows. This set shall be denoted L(M).

If L(M;)C L(M), My is said to be a reduction of M and this is denoted
M; < M. One definition of conformance is that I conforms to M if M; < M.
Testing can thus be characterized as trying to determine whether [conforms
to M. This definition of conformance matches the notion of correctness used

in (Dick and Faivre [1993], Hierons [1997a]) and will be used throughout the

2

rest of the paper.

A transition is defined by its initial state, final state, input and output.
Given a sequence t (possibly of length 1) of transitions, ¢+ will denote the
input sequence from ¢, t°** will denote the output sequence produced by ¢,
start(t) will denote the initial state of ¢ and end(t) will denote the final state
of t.

From the function %, the next state function h; and output function h,
can be derived. Thus if M receives input x while in state s the next state is
one of those contained in hy(s,x) and the output is one of the values from
ha(s,). The functions h, hq, and hy can be extended, in a similar manner
to v, to take a state and an input sequence giving functions h*, k3, and A3
respectively.

An NFSM M is completely specified if, for each s € S and = € X,
|h(s,x)| > 1 and M is deterministic if for each s € Sand @ € X, |h(s,2)| < 1.
If M is deterministic and completely specified the transitions are completely
defined by a next state function 6 and an output function A. A deter-
ministic finite state machine (DFSM) can thus be defined by the tuple
(5,81,6, A, X, Y).

It should be noted that, unlike FA, there are NFSM for which there is no
equivalent DFSM. Consider, for example, the response of M; to the input of
a. There are two possible output values: 0 and 1. This behaviour cannot be
represented by a DFSM.

Foreachy € Y, s € S, and @ € X, hy(s,x) will denote the set of possible
next states if a transition is executed from s using input = and produces
output y. Again, this can be extended to ;. An NFSM M is said to be
observable if for every s € S, x € X, and y € Y, |h,(s,2)] < 1. Consider, for
example, the response of My to the input value a while in state s;. Although
there are two possible behaviours, they have different output values. Thus,
when the output is known, there is only one possible next state. This reduces
the uncertainty caused by nondeterminism.

An NFSM M is observable if and only if the corresponding FA F(M) is
deterministic. Clearly every DFSM is observable (the converse is not true).
Any (completely specified) NFSM M is equivalent to some observable NFSM
(ONFSM). Observability will be discussed further in Section 3.

An NFSM is said to be connected if for every ordered pair of states (s, s’)
there is some input sequence x such that s’ € hi(s,z). Two states s and
s are said to be quasi-equivalent (s =, §') if for every input sequence x,

hi(s,x) = hi(s',x). An NFSM M is said to be reduced if M is connected

and no two states of M are quasi-equivalent.

It is assumed throughout this paper that an implementation that behaves
like some unknown DFSM M7 is being tested against some NFSM M that
is reduced, connected, observable, and completely specified. Related work is
discussed in Sections 2 and 3. In Section 4 the special case, when it is known
that M; conforms to M if and only if M; is a submachine of M, is discussed
and the results are generalized in Section 5. The use of adaptive processes is
explored in Section 6 and finally conclusions are drawn.

2 Testing From a DFSM

Throughout this section it will be assumed that M is a reduced completely
specified DFSM (5, 51,6, A, X, Y) and I behaves like some unknown reduced
DFSM M; = (5,81, 61, A1, X, Y). As M is deterministic, I conforms to M if
and only if L(M) = L(Mj). Thus, if I conforms to M, there is a one-to-one
correspondence between the states of M and the states of M;: M and M;
are isomorphic.

An input sequence x is said to distinguish two states s and s’ of M if
A (s,x) # X*(s',x). Similarly, an input sequence = distinguishes between M
and My if A*(sq1,2) # Ai(s],2). The states s and s’ of M are distinguishable
if there is some input sequence that distinguishes them. As M is reduced,
each pair of states from M is distinguishable. A set of sequences W is said
to verify a state s of M if for each state s’ € S, s # &', there is some w € W
that distinguishes s and s’. The set W is said to be a characterizing set for
M if it verifies every state of M.

While a characterizing set is sufficient for state verification, two alterna-
tive approaches are commonly applied: using a distinguishing sequence or a
set of unique input/output sequences (Sidhu and Leung [1988]). A distin-
quishing sequence for M is an input sequence D that verifies each state of
M. Thus, if M has a distinguishing sequence D then {D} is a characterizing
set for M. A unique input/output sequence for a state s of M is an input
sequence x that verifies s. While x can verity the state s of M., it need not
be able to verify any other state of M.

Unfortunately, not every DFSM has either a distinguishing sequence or
a unique input/output sequence for every state. Every completely specified
reduced DFSM has a characterizing set (Chow [1978]).

Chow [1978] introduces the assumption that there is some known upper

bound m on the number of states of M. A state cover V is a tree in which
each node corresponds to a state of M, the branches correspond to transitions
in M, and every state of M has some corresponding node in V. Given a set
A and a natural number k, let A* denote the set of strings, from A*, that
have length at most & (note, this is not the standard definition of A*). If V is
a state cover and W a characterizing set for M then the test set VX" "1/
will distinguish between M and any nonconforming DFSM with no more
than m states: this test is called a checking experiment.

A sequence of transitions from M is a transition test for a transition ¢
from M if it consists of ¢ followed by either a unique input/output sequence
for the final state of ¢ or a distinguishing sequence for M. A number of
authors (e.g. Chow [1978], Aho et al. [1988], Yang and Ural [1990], Hierons
[1996], Ural et al. [1997], and Hierons [1997b]) consider the case where M is
deterministic and m = n. They produce a single test sequence that contains,
for each transition ¢ of M, a transition test. Most work is then based on
trying to find the shortest test sequence with this property (e.g. Aho et al.
[1988], Yang and Ural [1990], Hierons [1996], and Hierons [1997b]). Ural
et al. [1997] instead assume there is a distinguishing sequence and find the
shortest sequence that contains both a transition test, for each transition of
M, and a set of subsequences that check the distinguishing sequence. This
test is guaranteed to determine whether M; conforms to M. as long as M
has no more states than M, and is called a checking sequence.

3 Testing from an NFSM

3.1 Preliminaries

A number of problems are associated with testing nondeterministic systems.
One problem is that it is impossible to be certain whether every possible
response to a particular input sequence has been observed. Luo et al. [1994]
add the test hypothesis, called the complete testing assumption, that there is
some integer « such that if an input sequence x has been executed a times
from some state s then it is guaranteed that every element of h3(s,z) has
been produced. Thus, if a test set contains a number of input sequences,
testing involves executing each « times.

Another problem is that, having executed an input sequence and observed
the output sequence, there may be more than one current valid state for M.

A number of authors (e.g. Luo et al. [1994], Petrenko et al. [1994]) add the
assumption that M is observable, and note that any unobservable NFSM
can be converted into an equivalent observable NFSM. The advantage of
observability is that, although M may be nondeterministic, the output of a
transition defines the next state and thus eliminates one form of uncertainty.
Thus, if an input sequence is executed from some state, by observing the
output sequence the expected final state can be determined. As noted, it
will be assumed that any NFSM considered is observable.

In testing it is common to assume that M has reset capability: there is
some special input that will always move M to the initial state s;. This
allows a set of input sequences to be executed: they are simply separated
by resets. Throughout this paper it will be assumed that M; has a reliable
reset.

When considering NFSMs it is necessary to produce a new definition
for a characterizing set. Petrenko et al. [1994] say that an input sequence
x r-distinguishes states s and s' if hi(s,x) N A3(s',2) = 0. Thus, in any
implementation that conforms to M, x is guaranteed to distinguish between
states that correspond to s and s'. 1If hi(s,x) # h3(s',x) but hj(s,z) N
hi(s',x) #) then the execution of x, from two states of M; corresponding
to s and s, may lead to the same output.

States s and s’ being r-distinguishable shall be denoted s #, s', otherwise
s =, 8. An NFSM is said to be r-reduced if for every s,s" € S, s # s'es #, s'.
A set of sequences W is a characterizing set if for all s,s' € S| s #, s, there
is some input sequence in W that r-distinguishes s and s'. It should be noted
that it is only necessary to distinguish between states that are pairwise r-
distinguishable. An NFSM that is not r-reduced is said to be r-unreduced.

Unfortunately the properties of being observable and r-reduced can con-
flict since, while any r-reduced unobservable NFSM M can be converted into
an ONFSM M’, M’ may not be r-reduced. This is the case in the example
given in Figure 2. In fact, the following result shows that the states in M’
correspond to sets of states in M: if any pair of these sets intersect (and
M is completely specified) then M’ is r-unreduced. The machine given in
Figure 2 is an example of this: the initial state of M’ corresponds to {s},
uy corresponds to {s1,s2} and us corresponds to {ss3}.

Lemma 1 If M is completely specified, strongly connected, r-reduced, and
unobservable and M’ is a strongly connected ONFSM that is equivalent to M
then each state of M' corresponds to a set of states from M.

Proof

Let A, denote the set of input/output sequences that move M’ from its
initial state to state s. Let S4, denote the set of final states allowed after the
input/output sequences from A, are executed from the initial state of M. As
M’ is observable, the input/output sequences in Ag have no other possible
final state in M’. Thus the set of input/output sequences executable from s
must correspond to the union of the sets of input/output sequences allowed
from the states in S4,. Thus s corresponds to the state set Sy, . 4

This result suggests that examples such as that given in Figure 2 may be
common. In particular, if M’ has more states than M there must be some
intersection and thus M’ will be r-unreduced. The example given in Figure
3 shows, however, that it is possible for M’ to be r-reduced.

3.2 Test Generation

This section will describe results and algorithms, found in Yevtushenko et
al. [1991] and Petrenko et al. [1994], for generating a checking experiment
from a reduced ONFSM. An initial result given is that if M has n states and
M7 has no more than m states then the input sequence X™" is a checking
sequence.

Both then look at conditions that allow this set to be reduced. They
assume that there is a set V' such that for each state s; there is some input
sequence v; € V with the property that h3(s1,v;) = {s;}: the input sequence
v; is guaranteed to bring the NFSM to state s;. The set V' is called a deter-
ministic state cover. The NFSM My has, for example, a deterministic state
cover V = {¢, b, ba,baa,baaa}. They produce a test technique, in the pres-
ence of a deterministic state cover, that utilizes states being r-distinguishable,
but does not require the NFSM to be r-reduced. For each state s; € 5, the
set W, denotes the set of input sequences used to distinguish between s; and
each s; such that s; #, s;.

Let u; denote the initial state of M;. Yevtushenko et al. [1991] and Pe-
trenko et al. [1994] consider a tree with root (sy,u1) and edges corresponding
to input/output pairs that are allowed by both M and M;. Then a node is
a leaf if one of the following is the case:

1. The state pair has already appeared somewhere else in the tree as an
intermediate node.

2. There is some input value such that M and M; do not have matching
transitions.

Then M; < M if and only if all the leaves are of type 1.

Let Py,..., Pr denote the maximal sets of r-distinguished states from M
and, for each s; € Sy, Q(s;)denote the set of states from Sy, that agree
with s; on W;. If M is r-reduced and M; < M, there is only one such set:
P, = Sy By considering the possible pairs and using the fact that each
state s; is in some pair in V, the following result is obtained:

o if the states from some P; are met 3, cp (|Q(s;)] —1) + 1 times in some
path after a sequence from V' then a leat must have been met.

Thus it 1s sufficient to stop a path when there is some P; such that the
path contains this number of instances of states from P;. While the Q(s;)
are not known, this expression is bounded above by m — |P;| + 1.

The maximal sets of pairwise r-distinguishable states, Py,..., P, are
found and the test set is generated in the following manner (Yevtushenko

et al. [1991], Petrenko et al. [1994]):

1. For each state s; of M let v; denote the input sequence in V' that reaches
s;. For each state s; a tree D;, starting with s;, is constructed. The
nodes represent states of M, while the edges represent possible tran-
sitions. A node is a leaf if there is some P; such that the states from
P; are met (m — |P;| 4+ 1) times in total on the path to that node (not
counting the root node).

2. Then, for an input/output sequence x/y in D; with final state s;, the
test v;xW; 1s included. The empty sequence is included in the set of
sequences from D;.

3. The test set is the set of all such input/output sequences.

Clearly the size of this test set depends on the number of states that are
pairwise r-distinguished: as the number of r-distinguished states reduces, the
size of the P; reduces and thus the size of the test set increases. In Sections
4 and 5 #, will be extended, thus potentially increasing the size of the P;
and thus reducing the size of the checking experiment produced.

4 Testing Deterministic Submachines

4.1 Deterministic Equivalence

An NFSM M" is a submachine of M if it is isomorphic to some NFSM Mg
whose state set and transition set are subsets of those of M. It will be
assumed throughout this section that if M; < M then M7 is a submachine
of M. This condition will be weakened in Section 5.

The concept of state distinguishing can be extended in this case. A set
A of input sequences is said to d-distinguish states s and s’ of M if for
every deterministic submachine M’ of M, and corresponding states u and u’
from M’, there is some x € A that distinguishes u and «'. If s and s’ are
d-distinguishable we write s #,; s" and otherwise s =, s'.

In My there are states that are pairwise d-distinguishable but not r-
distinguishable. The input sequence aaa will, for example, distinguish be-
tween the states corresponding to s; and s3 in any deterministic submachine:
from the state corresponding to s, it will produce output 001 while from the
state corresponding to sy it will either produce 000 or 110.

In the unobservable case described in Figure 4, two input sequences are
required: aa and ab. Each choice for the execution of @ from s; will lead to
a following transition that is not allowed after the execution of a from s,.

The algorithms given in Petrenko et al. [1994], that use =,, can be
applied using =, instead. As the use of =; can increase the size of the sets of
pairwise distinguished states, it can reduce the size of the test set. Clearly,
si #y Sj = S; #4 55, and thus d-distinguishability can never lead to longer
tests that r-distinguishability.

4.2 Finding d-distinguishing sets

Suppose s; =, s; but s; and s; are not quasi-equivalent. Then there may
be some set of input sequences that d-distinguished s; ands;. The obvious
approach, to finding a d-distinguishing set, is to use a breadth first search
of a tree starting with (s;,s;). In this tree, edges represent input values.
Each node represents the possible configurations, given the input so far,
that are consistent with the same output having been produced from each
state. Thus a node represents a set of tuples, where each tuple contains the
corresponding states s} and s’ and the deterministic choices that are required
in order to allow M; to move from s; to s; and from s; to 3; producing the

same output sequence. Given input sequence xz, let ¢(xz) denote the set of
tuples corresponding to = and 7w denote the projection function that returns
the kth element of a tuple.

A set of choices can be represented by a predicate p, which takes a deter-
ministic submachine M’ of M and returns true if and only if M’ allows those
choices. Thus a node contains a set of tuples of the form (s}, s%, p). The form
of p depends upon the representation of the choices.

What is required is one of:

1. Some input sequence x such that ¢(z) = 0.

2. Some set of input sequences z,,...x, such that for every py,...p,,
py € 7ws(c,) for some ¢, € ¢(x,), and every deterministic submachine

M’ of M, =(pr(M") A po(M") A ooo A p(M)).

In the first case, only one sequence is required, in the second a set of
sequences is required. For pragmatic reasons, limits can be placed on the
size of sets and sequences considered in the search: only those that can
reduce the test effort are of interest.

5 Deterministic implementations that are not
submachines

5.1 Extending deterministic distinguishing

Let the states of M be denoted sq,...,s, and let V denote a deterministic
state cover of M. In order to generalize the notion of deterministically dis-
tinguishing states it is sufficient to consider all deterministic reductions of
M that have no more than k states that cannot be reached by V. Given two
states, s; and s;, we require a set of input sequences that is guaranteed to
distinguish between any pair of corresponding states in the implementation.

Let L(s) denote the set of input/output sequences allowed from the state
s and s < &' denote L(s) C L(s). It is important to note that if M; < M
then, for any reachable state s € Syy,, there is some s’ € Syr such that s <s'.

We say that states s; and s; are deterministically (V, k) distinguished
if there is a set of input sequences A such that, for every DFSM M’ =
(U,u1,6, X, X,Y) that conforms to M and has no more than k states that
are not reached by V:

10

o given u;, u; € U with u; < s; and u; < s; there is some input sequence
x € A that distinguishes between u; and u;.

This is written s; #(vx) s; and otherwise s; =) s;. An NFSM M is
said to be deterministically (V, k) reduced if for every s;,5; € Sy, si #(v,k) S;
and otherwise M is said to be deterministically (V, k) unreduced. Clearly,
=(v,0)is equivalent to =4 and as k — oo, =y 1)—=,.

The NFSM M, given in Figure 1 has a deterministic state cover V = {¢,
b, ba, baa, baaa}, where ¢ denotes the empty sequence. Consider the input
of aaa. If M; is in a state s < sy, the input of aaa leads to output 001. If
k =0 and aaa is input, while M; is in a state s < sy, either 000 or 110 can
be is output. If £ =1 and «a is input while M7 is in a state s < sy, M; might
output 0 and move to another (non-equivalent) state s’ < s;. The input of
aaa, from s, then leads to the output of 011. Thus if aaais input and M;
is in state s, if s < sy then M; outputs 001 and if s < s; and & = 1 then
the output sequence generated is one of: 000, 110, or 011. Thus, s; and s,
are deterministically (V,1) distinguished by aaa. It is easy to check that
81 =(v,1) 85, 51 =(v,1) 84 and all other state pairs are r-distinguished.

5.2 Finding the value of k

If there is some upper bound m on the number of states of M;, an upper
bound can be found for k. Suppose S” denotes a maximal (in terms of size)
set of pairwise r-distinguished states of M. Then, for any conforming imple-
mentation, each of these must have a corresponding separate state reached
by V. Thus, an initial upper bound of & = m — |S’| can be used. There
may be further information, about the implementation, that can be used to
reduce this.

The NFSM given in Figure 1 has maximal sets of pairwise r-distinguished
states P = {39, 83,84, 85} and Py = {s1,s3}. If the value m =n =5 is used,
an upper bound of & = 1 is found. This information helps reduce the required
test size as s; and sy are deterministically (V1) distinguished and thus the
set P, can be extended to Py = {s1, 85,83}. The set Py is not affected and
thus P| = P;.

In this case, the tree derived from each state has the property that each
leaf represents meeting the states from P/ m — |P/|+ 1 = 2 times or meeting
the states from Py m — |P5| + 1 = 3 times. The characterizing set is W =
{aaa}. Input aaa produces output 000 or 011 or 110 from s1, 001 from s,,

11

101 from sz, 011 from s4, and 110 from s5. This fails to distinguish s; from
either s4 or ss.

It is now possible to derive a test set. In this case every input sequence
of length 2, from any state, will pass through the elements of some P/ twice.
As an example, we will consider the input sequence bb. From s; this will
reach states s, and then sy, both of which are from Pj. Similarly, from s
it goes to sy and then sy. From s3 it moves to s4 and then ss or s3; in each
case both states are in P|. From s4 it passes through s, or ss to s; or sy
respectively. In the first case both are in P; and in the second both are in
P|. Finally, from s5 it will reach s, and then s; which are both in Pj. The
checking experiment thus contains the following:

{¢,b,ba,baa,baaa}{c, a,b, aa,ab,ba,bb}{aaa}.

It is also necessary to consider sequences of length 3 from AM,. Any
sequence of length 3, such that the first two states it meets need not be from
P!, must be included. An example is the sequence aba from s;: this might go
to sy, then sy and finally s4. It is easy to check that no sequences of length
greater than 3 need be considered: every sequence of length 3 in M, meets
either at least two states from P or three states from P;. The sequences
of length 3 that must be included (and thus, in the checking experiment,
preceded by the corresponding v; and followed by W) are:

1. From s;: any string starting with either a or bb.
2. From sy: any string starting with b.

3. From ss3: none.

4. From s4: any string starting with bb.

5. From s5: any string starting with bb.

The checking sequence generated can be reduced by removing those se-
quences that are contained in the beginning of other sequences.

12

6 Adaptive Testing

6.1 The deterministic state cover

When input sequences are applied to M;, the output provides information
about Mj. Clearly, M; has some deterministic state cover V. This can
be developed by using a breadth first search, at each step simply executing
candidate values. The output determines the (expected) next state and thus
whether the expected next state is one already included in the tree. Given
an input sequence x that provides a new expected state, and thus will be
used in V', at this point = can be followed by the appropriate W;.

There are a number of possible orders in which to execute the required
sequences. One possibility is to initially execute W (or the corresponding set
required for s;). This provides information, about M, which can be used to
provide part of V. The rest of V is developed in an adaptive manner. This
search is continued until a deterministic state cover V' has been found.

6.2 Testing Submachines

Suppose the set W has been produced for any deterministic FSM that is
a submachine of M. The particular ITUT, M;, may have properties that
mean that not all of these sequences are required. If two states s; and s;
are deterministically distinguished by a set A then in M; one input sequence
a € A will distinguish between the corresponding states. Once « has been
found, A can be replaced by «, or some initial subsequence of «a, in W.
Similarly, some other sequences in W may not be required when testing M,
and thus may be removed, and others may be shortened. Thus, once VW
has been executed, each W; can be replaced by some subset of (possibly
shortened) sequences drawn from W;.

6.3 General deterministic implementations

While it is still always possible to devise a state cover V for M that is
implemented (and deterministic) in My, this may not reach all states in M.
It some states of M; may not be reached by executing V', it is not possible to
reduce the size of W using information derived from the execution of VW.
As noted in Section 5, the value of k can be derived from an upper bound
m on the number of states of Mj. Associated with W and M there is some

13

maximal (in terms of size) set of states S” that are pairwise distinguished by
W, and thus a value of k = m —|5’| can be used. The set S” is based on states
that are guaranteed to be distinguished by W. Once VW has been executed,
it may transpire that there is some larger set of states S” reached by V that is
pairwise distinguished, in M;, by elements from W. The value k = m — |S”|
can then be used and this reduction in the value of k£ can potentially further
increase the set of pairwise deterministically (V, k) distinguished states.

The knowledge, of the behaviour of certain instances of states from 5, can
also be used to directly reduce the size of the test sequence. This is because,
given some P;, there may be some state in M; that can be used to extend
P;. This happens if there is an input/output sequence x/y whose final state
in M is s; for some s; ¢ P; but the corresponding state u in M; has the
property that for all s € P;, u ¢ Q(s). Thus it may be possible to extend a
set P; by some maximal (size) set P; of states from M; such that the states
in P; are pairwise distinguishable and each is pairwise distinguishable from
each state in P;. Then:

1P|+ Y |Q(si)| <m

5;€P;

Given P;, this information gives the following upper bound on the number
of occurrences of states from P; in a test sequence:

m — |P;| — |P;| +1

As testing proceeds, these values can be updated.

An input sequence x can be seen as a route to some state of Mj. It is
possible to update these values by considering the execution of W at the end
of routes. As each sequence from D; is followed by some W, this fits the test
technique.

Suppose that, in the example, W = {aaa} is initially executed from
s1. If this were to produce output 000 then this instance of s; would be
distinguishable from both s4 and s;. Thus s4 and s5 can be included in P,
and s; can be included in P;. Further, as m =5 and M is reduced, the set
{aaa} must be a characterizing set for M;. Thus the test set can be reduced
to:

{¢,b,ba,baa,baaa}{e,a,b}{aaa}

Again, sequences contained in the beginning of others can be removed.

14

7 Conclusions

The problem of testing a nondeterministic implementation against an NFSM
has received much attention but there has been little work on testing from
an NFSM when the IUT is known to be deterministic. When the IUT is
deterministic, it is possible to generalize the notion of r-distinguishing states.
When it is known that if the IUT conforms to M then it is a submachine of
M, it is possible to d-distinguish states. When instead there is some upper
bound k on the number of states in the IUT that are not reached by the
deterministic state cover V, it is possible to consider (V| k) distinguishing
states. In the case where k£ = 0, this reduces to d-distinguishing states.

When the [UT is deterministic, much can be learnt about the structure of
the TUT during test execution. A test can thus be generated in an adaptive
manner. This guarantees the existence of a deterministic state cover and
allows the test set to be reduced as testing proceeds.

An interesting question, when applying adaptive testing, is how the test
order than maximizes the expected reductions can be found. There is also
the problem of limiting the search for deterministically (V) k) distinguishing
sets. There may be no good upper bound on the size of these: instead limits
can be placed on the size of sets that could reduce the total test effort.

8 References

1. A.V. Aho, A.T. Dahbura, D. Lee, and M.U. Uyar, 1988, An Optimiza-
tion Technique for Protocol Conformance Test Generation Based on
UIO Sequences and Rural Chinese Postman Tours Proceedings of Pro-
tocol Specification, Testing, and Verification VIII, pp.75-86, Atlantic
City, North-Holland.

2. T.S. Chow, 1978, Testing Software Design Modelled by Finite State
Machines, [FEFE Transactions on Software FEngineering, 4 3, March
1978, pp.178-187.

3. J. Dick and A. Faivre, 1993, Automating the Generation and Sequenc-
ing of Test Cases from Model-Based Specifications, FME 93, First

International Symposium on Formal Methods in Europe, Odense, Den-

mark, 19-23 April 1993, pp.268-84.

15

10.

11.

12.

13.

14.

15.

A.Gill, 1962, Introduction to The Theory of Finite State Machines,
McGraw-Hill.

R.M. Hierons, 1996, Extending Test Sequence Overlap by Invertibility,
The Computer Journal, 39 4, pp.325-330.

. R.M. Hierons, 1997a, Testing from a 7 Specification, Journal of Soft-

ware Testing, Verification, and Reliability, 7 1, pp.19-33.

R.M. Hierons, 1997b, Testing from a Finite State Machine: Extending
Invertibility to Sequences, The Computer Journal, 40 4, pp.220-230.

7. Kohavi, 1978, Switching and Finite State Automata Theory, McGraw-
Hill.

G. Luo, G. v. Bochmann, and A. Petrenko, 1994, Test Selection Based
on Communicating Nondeterministic Finite-State Machines Using a
Generalized Wp-Method, IEEFE Transactions on Software Engineering,
20 2, pp.149-161.

A. Petrenko, N. Yevtushenko, A. Lebedev, and A. Das, 1994, Nondeter-
ministic State Machines in Protocol Conformance Testing, Proceedings

of Protocol Test Systems, VI (C-19), pp.363-378.

M.O. Rabin and D. Scott, 1959, Finite Automata and Their Decision
Problems, IBM Journal of Research and Development, 3 2, pp.114-125.

D. Sidhu and T. K. Leung, 1988, Experience with Test Generation for
Real Protocols, ACM SIGCOMM 88, pp257-261.

A.S. Tanenbaum, 1996, Computer Networks, Prentice Hall, Interna-
tional Editions, 3rd edn.

H. Ural, X. Wu, and F. Zhang, 1997, On Minimizing the Lengths of
Checking Sequences, IEEFE Transactions on Computers, 46 1, pp.93-99.

B. Yang and H. Ural, 1990, Protocol Conformance Test Generation
Using Multiple UIO Sequences with Overlapping, ACM SIGCOMM 90:

Communications, Architectures, and Protocols, Sept 24-27 pp.118-125,
Twente, Netherlands, North-Holland.

16

16. N.V. Yevtushenko, A.V. Lebedev, and A.F. Petrenko, 1991, On Check-
ing Experiments With Nondeterministic Automata, Automatic Control
and Computer Sciences, 6, pp.81-85.

17

