
Adaptive testing of a deterministic

implementation against a nondeterministic

�nite state machine

R�M� Hierons

����

abstract A number of authors have looked at the problem of deriving a
checking experiment from a nondeterministic �nite state machine that mod�
els the required behaviour of a system� We show that these methods can
be extended if it is known that the implementation is equivalent to some
�unknown� deterministic �nite state machine�

When testing a deterministic implementation� the test output provides
information about the implementation under test and can thus guide future
testing� The use of an adaptive test process is thus proposed�

� Introduction

Nondeterministic �nite state machines �NFSMs� are used to model a num�
ber of types of computer system including communications protocols �Tanen�
baum ����	
�� If an NFSM model M � of the required behaviour� exists and
some implementation I has been produced� it is important to verify I against
M � Testing usually forms part of the veri�cation process� When testing it is
normal to assume that the implementation under test �IUT � I behaves like
some �possibly nondeterministic� �nite state machine MI �

As nondeterminism can aid abstraction� many speci�cations are nonde�
terministic� Actual implementations are� however� often deterministic� The
situation� in which M is nondeterministic and MI is deterministic� is thus of
interest�

�



An NFSM M is de�ned by a tuple �S� s�� h�X� Y � in which S is a �nite
set of states� s� is the initial state� X is the �nite input alphabet� Y is the
�nite output alphabet and h is the state transition function� Given an NFSM
M � SM shall denote the state set of M � When M receives an input value
x � X� while in state s � S� a transition is executed producing an output
value y � Y and moving M to some state s� � S� The function h gives the
possible transitions and has type h � S �X � P�S � Y �� where P denotes
the power set operator� Thus� ifM receives input x � X while in state s � S�
the output y � Y and next state s� � S satisfy �s�� y� � h�s� x��

An NFSM� that shall be denoted M� throughout this paper� is given in
Figure �� Here� S � fs�� � � � � s�g� X � fa� bg and Y � f
� �g� If b is input
while M� is in state s�� either 
 is output and M� moves to state s� or � is
output and M� moves to state s�� Thus h�s�� b� � f�s�� 
�� �s�� ��g�

A �nite automaton �FA� N is de�ned by a tuple �S� s�� ���� F �� in which
S is a �nite set of states� s� � S is the initial state� � is the state transition
function� � is the �nite alphabet and F � S is the set of �nal states� The
function � takes a state s � S and a value x � � and gives a set of possible
next states ��s� x�� Let � denote the empty sequence and� given a set ��
�� denote the set of strings consisting of elements of �� Thus � � ��� The
transition function � can be extended� to take values from ��� giving the
function �� de�ned by� ���s� �� � fsg� ���s� yx� � fs�j��s�� � ���s� y� � s� �
��s��� x��g �where x � � and y � ����

FA are used to de�ne languages� a string x � �� is accepted by N � and
thus is part of the language de�ned by N � if and only if ���s�� x� � F �� ��
The FA N is deterministic if for each state s � S and input value x � ��
there is only one possible next state� Given a nondeterministic FA there is
some deterministic FA that de�nes the same language� There are standard
algorithms for �nding such an equivalent deterministic FA �Rabin and Scott
�����
��

An NFSMM can be thought of as a FA F �M� in which the elements of �
are the input�output pairs and all the states are �nal states� The NFSMM is
then characterized by the language de�ned by F �M�� the set of input�output
sequences that M allows� This set shall be denoted L�M��

If L�MI � � L�M�� MI is said to be a reduction of M and this is denoted
MI 	M � One de�nition of conformance is that I conforms toM ifMI 	M �
Testing can thus be characterized as trying to determine whether I conforms
to M � This de�nition of conformance matches the notion of correctness used
in �Dick and Faivre �����
� Hierons �����a
� and will be used throughout the

�



rest of the paper�
A transition is de�ned by its initial state� �nal state� input and output�

Given a sequence t �possibly of length �� of transitions� tin will denote the
input sequence from t� tout will denote the output sequence produced by t�
start�t� will denote the initial state of t and end�t� will denote the �nal state
of t�

From the function h� the next state function h� and output function h�
can be derived� Thus if M receives input x while in state s the next state is
one of those contained in h��s� x� and the output is one of the values from
h��s� x�� The functions h� h�� and h� can be extended� in a similar manner
to �� to take a state and an input sequence giving functions h�� h��� and h��
respectively�

An NFSM M is completely speci�ed if� for each s � S and x � X�
jh�s� x�j 
 � andM is deterministic if for each s � S and x � X� jh�s� x�j 	 ��
If M is deterministic and completely speci�ed the transitions are completely
de�ned by a next state function � and an output function �� A deter�
ministic �nite state machine �DFSM� can thus be de�ned by the tuple
�S� s�� �� ��X� Y ��

It should be noted that� unlike FA� there are NFSM for which there is no
equivalent DFSM� Consider� for example� the response of M� to the input of
a� There are two possible output values� 
 and �� This behaviour cannot be
represented by a DFSM�

For each y � Y � s � S� and x � X� hy�s� x� will denote the set of possible
next states if a transition is executed from s using input x and produces
output y� Again� this can be extended to h�y� An NFSM M is said to be
observable if for every s � S� x � X� and y � Y � jhy�s� x�j 	 �� Consider� for
example� the response of M� to the input value a while in state s�� Although
there are two possible behaviours� they have di�erent output values� Thus�
when the output is known� there is only one possible next state� This reduces
the uncertainty caused by nondeterminism�

An NFSM M is observable if and only if the corresponding FA F �M� is
deterministic� Clearly every DFSM is observable �the converse is not true��
Any �completely speci�ed� NFSMM is equivalent to some observable NFSM
�ONFSM �� Observability will be discussed further in Section ��

An NFSM is said to be connected if for every ordered pair of states �s� s��
there is some input sequence x such that s� � h���s� x�� Two states s and
s� are said to be quasi�equivalent �s �q s�� if for every input sequence x�
h���s� x� � h���s

�� x�� An NFSM M is said to be reduced if M is connected

�



and no two states of M are quasi�equivalent�
It is assumed throughout this paper that an implementation that behaves

like some unknown DFSM MI is being tested against some NFSM M that
is reduced� connected� observable� and completely speci�ed� Related work is
discussed in Sections � and �� In Section � the special case� when it is known
that MI conforms to M if and only if MI is a submachine of M � is discussed
and the results are generalized in Section �� The use of adaptive processes is
explored in Section 	 and �nally conclusions are drawn�

� Testing From a DFSM

Throughout this section it will be assumed that M is a reduced completely
speci�ed DFSM �S� s�� �� ��X� Y � and I behaves like some unknown reduced
DFSM MI � �S�� s��� ��� ���X� Y �� As M is deterministic� I conforms to M if
and only if L�M� � L�MI�� Thus� if I conforms to M � there is a one�to�one
correspondence between the states of M and the states of MI � M and MI

are isomorphic�
An input sequence x is said to distinguish two states s and s� of M if

���s� x� �� ���s�� x�� Similarly� an input sequence x distinguishes between M
and MI if ���s�� x� �� ����s

�

�� x�� The states s and s� of M are distinguishable
if there is some input sequence that distinguishes them� As M is reduced�
each pair of states from M is distinguishable� A set of sequences W is said
to verify a state s of M if for each state s� � S� s �� s�� there is some w � W
that distinguishes s and s�� The set W is said to be a characterizing set for
M if it veri�es every state of M �

While a characterizing set is su�cient for state veri�cation� two alterna�
tive approaches are commonly applied� using a distinguishing sequence or a
set of unique input�output sequences �Sidhu and Leung �����
�� A distin�
guishing sequence for M is an input sequence D that veri�es each state of
M � Thus� if M has a distinguishing sequence D then fDg is a characterizing
set for M � A unique input�output sequence for a state s of M is an input
sequence x that veri�es s� While x can verify the state s of M � it need not
be able to verify any other state of M �

Unfortunately� not every DFSM has either a distinguishing sequence or
a unique input�output sequence for every state� Every completely speci�ed
reduced DFSM has a characterizing set �Chow �����
��

Chow �����
 introduces the assumption that there is some known upper

�



bound m on the number of states of MI � A state cover V is a tree in which
each node corresponds to a state ofM � the branches correspond to transitions
in M � and every state of M has some corresponding node in V � Given a set
A and a natural number k� let Ak denote the set of strings� from A�� that
have length at most k �note� this is not the standard de�nition of Ak�� If V is
a state cover and W a characterizing set for M then the test set V Xm�n��W
will distinguish between M and any nonconforming DFSM with no more
than m states� this test is called a checking experiment�

A sequence of transitions from M is a transition test for a transition t
from M if it consists of t followed by either a unique input�output sequence
for the �nal state of t or a distinguishing sequence for M � A number of
authors �e�g� Chow �����
� Aho et al� �����
� Yang and Ural ����

� Hierons
����	
� Ural et al� �����
� and Hierons �����b
� consider the case where M is
deterministic and m � n� They produce a single test sequence that contains�
for each transition t of M � a transition test� Most work is then based on
trying to �nd the shortest test sequence with this property �e�g� Aho et al�
�����
� Yang and Ural ����

� Hierons ����	
� and Hierons �����b
�� Ural
et al� �����
 instead assume there is a distinguishing sequence and �nd the
shortest sequence that contains both a transition test� for each transition of
M � and a set of subsequences that check the distinguishing sequence� This
test is guaranteed to determine whether MI conforms to M � as long as MI

has no more states than M � and is called a checking sequence�

� Testing from an NFSM

��� Preliminaries

A number of problems are associated with testing nondeterministic systems�
One problem is that it is impossible to be certain whether every possible
response to a particular input sequence has been observed� Luo et al� �����

add the test hypothesis� called the complete testing assumption� that there is
some integer � such that if an input sequence x has been executed � times
from some state s then it is guaranteed that every element of h���s� x� has
been produced� Thus� if a test set contains a number of input sequences�
testing involves executing each � times�

Another problem is that� having executed an input sequence and observed
the output sequence� there may be more than one current valid state for M �

�



A number of authors �e�g� Luo et al� �����
� Petrenko et al� �����
� add the
assumption that M is observable� and note that any unobservable NFSM
can be converted into an equivalent observable NFSM� The advantage of
observability is that� although M may be nondeterministic� the output of a
transition de�nes the next state and thus eliminates one form of uncertainty�
Thus� if an input sequence is executed from some state� by observing the
output sequence the expected �nal state can be determined� As noted� it
will be assumed that any NFSM considered is observable�

In testing it is common to assume that M has reset capability� there is
some special input that will always move M to the initial state s�� This
allows a set of input sequences to be executed� they are simply separated
by resets� Throughout this paper it will be assumed that MI has a reliable
reset�

When considering NFSMs it is necessary to produce a new de�nition
for a characterizing set� Petrenko et al� �����
 say that an input sequence
x r�distinguishes states s and s� if h���s� x� � h���s

�� x� � �� Thus� in any
implementation that conforms to M � x is guaranteed to distinguish between
states that correspond to s and s�� If h���s� x� �� h���s

�� x� but h���s� x� �
h���s

�� x� �� � then the execution of x� from two states of MI corresponding
to s and s�� may lead to the same output�

States s and s� being r�distinguishable shall be denoted s ��r s
�� otherwise

s �r s
�� An NFSM is said to be r�reduced if for every s�s� � S� s �� s��s ��r s

��
A set of sequences W is a characterizing set if for all s�s� � S� s ��r s

�� there
is some input sequence inW that r�distinguishes s and s�� It should be noted
that it is only necessary to distinguish between states that are pairwise r�
distinguishable� An NFSM that is not r�reduced is said to be r�unreduced�

Unfortunately the properties of being observable and r�reduced can con�
�ict since� while any r�reduced unobservable NFSM M can be converted into
an ONFSM M �� M � may not be r�reduced� This is the case in the example
given in Figure �� In fact� the following result shows that the states in M �

correspond to sets of states in M � if any pair of these sets intersect �and
M is completely speci�ed� then M � is r�unreduced� The machine given in
Figure � is an example of this� the initial state of M � corresponds to fs�g�
u� corresponds to fs�� s�g and u� corresponds to fs�g�

Lemma � If M is completely speci�ed� strongly connected� r�reduced� and
unobservable and M � is a strongly connected ONFSM that is equivalent to M
then each state of M � corresponds to a set of states from M �

	



Proof
Let As denote the set of input�output sequences that move M � from its

initial state to state s� Let SAs denote the set of �nal states allowed after the
input�output sequences from As are executed from the initial state of M � As
M � is observable� the input�output sequences in As have no other possible
�nal state in M �� Thus the set of input�output sequences executable from s
must correspond to the union of the sets of input�output sequences allowed
from the states in SAs� Thus s corresponds to the state set SAs� �

This result suggests that examples such as that given in Figure � may be
common� In particular� if M � has more states than M there must be some
intersection and thus M � will be r�unreduced� The example given in Figure
� shows� however� that it is possible for M � to be r�reduced�

��� Test Generation

This section will describe results and algorithms� found in Yevtushenko et
al� �����
 and Petrenko et al� �����
� for generating a checking experiment
from a reduced ONFSM� An initial result given is that if M has n states and
MI has no more than m states then the input sequence Xmn is a checking
sequence�

Both then look at conditions that allow this set to be reduced� They
assume that there is a set V such that for each state si there is some input
sequence vi � V with the property that h���s�� vi� � fsig� the input sequence
vi is guaranteed to bring the NFSM to state si� The set V is called a deter�
ministic state cover� The NFSM M� has� for example� a deterministic state
cover V � f�� b� ba� baa� baaag� They produce a test technique� in the pres�
ence of a deterministic state cover� that utilizes states being r�distinguishable�
but does not require the NFSM to be r�reduced� For each state si � S� the
set Wi denotes the set of input sequences used to distinguish between si and
each sj such that sj ��r si�

Let u� denote the initial state of MI � Yevtushenko et al� �����
 and Pe�
trenko et al� �����
 consider a tree with root �s�� u�� and edges corresponding
to input�output pairs that are allowed by both M and MI � Then a node is
a leaf if one of the following is the case�

�� The state pair has already appeared somewhere else in the tree as an
intermediate node�

�



�� There is some input value such that M and MI do not have matching
transitions�

Then MI 	 M if and only if all the leaves are of type ��
Let P�� � � � � Pk denote the maximal sets of r�distinguished states from M

and� for each si � SM � Q�si� denote the set of states fromSMI
that agree

with si on Wi� If M is r�reduced and MI 	 M � there is only one such set�
P� � SM � By considering the possible pairs and using the fact that each
state si is in some pair in V � the following result is obtained�

� if the states from some Pj are met
P

si�Pj
�jQ�si�j����� times in some

path after a sequence from V then a leaf must have been met�

Thus it is su�cient to stop a path when there is some Pj such that the
path contains this number of instances of states fromPj� While the Q�si�
are not known� this expression is bounded above by m� jPjj� ��

The maximal sets of pairwise r�distinguishable states� P�� � � � � Pk� are
found and the test set is generated in the following manner �Yevtushenko
et al� �����
� Petrenko et al� �����
��

�� For each state si ofM let vi denote the input sequence inV that reaches
si� For each state si a tree Di� starting with si� is constructed� The
nodes represent states of M � while the edges represent possible tran�
sitions� A node is a leaf if there is some Pj such that the states from
Pj are met �m� jPj j� �� times in total on the path to that node �not
counting the root node��

�� Then� for an input�output sequence x�y in Di with �nal state sl� the
test vixWl is included� The empty sequence is included in the set of
sequences fromDi�

�� The test set is the set of all such input�output sequences�

Clearly the size of this test set depends on the number of states that are
pairwise r�distinguished� as the number of r�distinguished states reduces� the
size of the Pj reduces and thus the size of the test set increases� In Sections
� and � ��r will be extended� thus potentially increasing the size of the Pj

and thus reducing the size of the checking experiment produced�

�



� Testing Deterministic Submachines

��� Deterministic Equivalence

An NFSM M � is a submachine of M if it is isomorphic to some NFSM MS

whose state set and transition set are subsets of those of M � It will be
assumed throughout this section that if MI 	 M then MI is a submachine
of M � This condition will be weakened in Section ��

The concept of state distinguishing can be extended in this case� A set
A of input sequences is said to d�distinguish states s and s� of M if for
every deterministic submachineM � of M � and corresponding states u and u�

from M �� there is some x � A that distinguishes u and u�� If s and s� are
d�distinguishable we write s ��d s

� and otherwise s �d s
��

In M� there are states that are pairwise d�distinguishable but not r�
distinguishable� The input sequence aaa will� for example� distinguish be�
tween the states corresponding to s� and s� in any deterministic submachine�
from the state corresponding to s� it will produce output 

� while from the
state corresponding to s� it will either produce 


 or ��
�

In the unobservable case described in Figure �� two input sequences are
required� aa and ab� Each choice for the execution of a from s� will lead to
a following transition that is not allowed after the execution of a from s��

The algorithms given in Petrenko et al� �����
� that use �r� can be
applied using �d instead� As the use of �d can increase the size of the sets of
pairwise distinguished states� it can reduce the size of the test set� Clearly�
si ��r sj � si ��d sj� and thus d�distinguishability can never lead to longer
tests that r�distinguishability�

��� Finding d�distinguishing sets

Suppose si �r sj but si and sj are not quasi�equivalent� Then there may
be some set of input sequences that d�distinguished si and sj � The obvious
approach� to �nding a d�distinguishing set� is to use a breadth �rst search
of a tree starting with �si� sj�� In this tree� edges represent input values�
Each node represents the possible con�gurations� given the input so far�
that are consistent with the same output having been produced from each
state� Thus a node represents a set of tuples� where each tuple contains the
corresponding states s�i and s

�

j and the deterministic choices that are required
in order to allow MI to move from si to s�i and from sj to s�j producing the

�



same output sequence� Given input sequence x� let c�x� denote the set of
tuples corresponding to x and �k denote the projection function that returns
the kth element of a tuple�

A set of choices can be represented by a predicate p� which takes a deter�
ministic submachineM � of M and returns true if and only if M � allows those
choices� Thus a node contains a set of tuples of the form �s�i� s

�

j� p�� The form
of p depends upon the representation of the choices�

What is required is one of�

�� Some input sequence x such that c�x� � ��

�� Some set of input sequences x
�
� � � � xr such that for every p�� � � � pr�

pq � ���cq� for some cq � c�xq�� and every deterministic submachine
M � of M � 
�p��M �� � p��M �� � � � � � pr�M ����

In the �rst case� only one sequence is required� in the second a set of
sequences is required� For pragmatic reasons� limits can be placed on the
size of sets and sequences considered in the search� only those that can
reduce the test e�ort are of interest�

� Deterministic implementations that are not

submachines

��� Extending deterministic distinguishing

Let the states of M be denoted s�� � � � � sn and let V denote a deterministic
state cover of M � In order to generalize the notion of deterministically dis�
tinguishing states it is su�cient to consider all deterministic reductions of
M that have no more than k states that cannot be reached by V � Given two
states� si and sj� we require a set of input sequences that is guaranteed to
distinguish between any pair of corresponding states in the implementation�

Let L�s� denote the set of input�output sequences allowed from the state
s and s 	 s� denote L�s� � L�s��� It is important to note that if MI 	 M
then� for any reachable state s � SMI

� there is some s� � SM such that s 	 s��
We say that states si and sj are deterministically �V� k� distinguished

if there is a set of input sequences A such that� for every DFSM M � �
�U� u�� �� ��X� Y � that conforms to M and has no more than k states that
are not reached by V �

�




� given ui� uj � U with ui 	 si and uj 	 sj there is some input sequence
x � A that distinguishes between ui and uj�

This is written si ���V�k� sj and otherwise si ��V�k� sj � An NFSM M is
said to be deterministically �V� k� reduced if for every si�sj � SM � si ���V�k� sj
and otherwise M is said to be deterministically �V� k� unreduced� Clearly�
��V��� is equivalent to �d and as k ��� ��V�k���r�

The NFSM M� given in Figure � has a deterministic state cover V � f��
b� ba� baa� baaag� where � denotes the empty sequence� Consider the input
of aaa� If MI is in a state s 	 s�� the input of aaa leads to output 

�� If
k � 
 and aaa is input� while MI is in a state s 	 s�� either 


 or ��
 can
be is output� If k � � and a is input while MI is in a state s 	 s�� MI might
output 
 and move to another �non�equivalent� state s� 	 s�� The input of
aaa� from s� then leads to the output of 
��� Thus if aaa is input and MI

is in state s� if s 	 s� then MI outputs 

� and if s 	 s� and k � � then
the output sequence generated is one of� 


� ��
� or 
��� Thus� s� and s�
are deterministically �V� �� distinguished by aaa� It is easy to check that
s� ��V��� s�� s� ��V��� s� and all other state pairs are r�distinguished�

��� Finding the value of k

If there is some upper bound m on the number of states of MI � an upper
bound can be found for k� Suppose S� denotes a maximal �in terms of size�
set of pairwise r�distinguished states of M � Then� for any conforming imple�
mentation� each of these must have a corresponding separate state reached
byV � Thus� an initial upper bound of k � m � jS�j can be used� There
may be further information� about the implementation� that can be used to
reduce this�

The NFSM given in Figure � has maximal sets of pairwise r�distinguished
states P� � fs�� s�� s�� s�g and P� � fs�� s�g� If the value m � n � � is used�
an upper bound of k � � is found� This information helps reduce the required
test size as s� and s� are deterministically �V� �� distinguished and thus the
set P� can be extended to P �

� � fs�� s�� s�g� The set P� is not a�ected and
thus P �

� � P��
In this case� the tree derived from each state has the property that each

leaf represents meeting the states from P �

� m� jP �

�j�� � � times or meeting
the states from P �

� m � jP �

�j � � � � times� The characterizing set is W �
faaag� Input aaa produces output 


 or 
�� or ��
 from s�� 

� from s��

��



�
� from s�� 
�� from s�� and ��
 from s�� This fails to distinguish s� from
either s� or s��

It is now possible to derive a test set� In this case every input sequence
of length �� from any state� will pass through the elements of some P �

i twice�
As an example� we will consider the input sequence bb� From s� this will
reach states s� and then s�� both of which are from P �

�� Similarly� from s�
it goes to s� and then s�� From s� it moves to s� and then s� or s�� in each
case both states are in P �

�� From s� it passes through s� or s� to s� or s�
respectively� In the �rst case both are in P �

� and in the second both are in
P �

�� Finally� from s� it will reach s� and then s� which are both in P �

�� The
checking experiment thus contains the following�

f�� b� ba� baa� baaagf�� a� b� aa� ab� ba� bbgfaaag�

It is also necessary to consider sequences of length � from M�� Any
sequence of length �� such that the �rst two states it meets need not be from
P �

�� must be included� An example is the sequence aba from s�� this might go
to s�� then s� and �nally s�� It is easy to check that no sequences of length
greater than � need be considered� every sequence of length � in M� meets
either at least two states from P �

� or three states from P �

�� The sequences
of length � that must be included �and thus� in the checking experiment�
preceded by the corresponding vi and followed by W � are�

�� From s�� any string starting with either a or bb�

�� From s�� any string starting with b�

�� From s�� none�

�� From s�� any string starting with bb�

�� From s�� any string starting with bb�

The checking sequence generated can be reduced by removing those se�
quences that are contained in the beginning of other sequences�

��



� Adaptive Testing

��� The deterministic state cover

When input sequences are applied to MI � the output provides information
about MI � Clearly� MI has some deterministic state cover V � This can
be developed by using a breadth �rst search� at each step simply executing
candidate values� The output determines the �expected� next state and thus
whether the expected next state is one already included in the tree� Given
an input sequence x that provides a new expected state� and thus will be
used in V � at this point x can be followed by the appropriate Wi�

There are a number of possible orders in which to execute the required
sequences� One possibility is to initially executeW �or the corresponding set
required for s��� This provides information� about MI � which can be used to
provide part of V � The rest of V is developed in an adaptive manner� This
search is continued until a deterministic state cover V has been found�

��� Testing Submachines

Suppose the set W has been produced for any deterministic FSM that is
a submachine of M � The particular IUT� MI � may have properties that
mean that not all of these sequences are required� If two states si and sj
are deterministically distinguished by a set A then in MI one input sequence
� � A will distinguish between the corresponding states� Once � has been
found� A can be replaced by �� or some initial subsequence of �� in W �
Similarly� some other sequences in W may not be required when testing MI �
and thus may be removed� and others may be shortened� Thus� once VW
has been executed� each Wi can be replaced by some subset of �possibly
shortened� sequences drawn from Wi�

��� General deterministic implementations

While it is still always possible to devise a state cover V for M that is
implemented �and deterministic� in MI � this may not reach all states in MI �
If some states of MI may not be reached by executing V � it is not possible to
reduce the size of W using information derived from the execution of VW �

As noted in Section �� the value of k can be derived from an upper bound
m on the number of states of MI � Associated with W and M there is some

��



maximal �in terms of size� set of states S� that are pairwise distinguished by
W � and thus a value of k � m�jS�j can be used� The set S� is based on states
that are guaranteed to be distinguished byW � Once V W has been executed�
it may transpire that there is some larger set of states S�� reached by V that is
pairwise distinguished� in MI � by elements from W � The value k � m� jS��j
can then be used and this reduction in the value of k can potentially further
increase the set of pairwise deterministically �V� k� distinguished states�

The knowledge� of the behaviour of certain instances of states from S� can
also be used to directly reduce the size of the test sequence� This is because�
given some Pj � there may be some state in MI that can be used to extend
Pj � This happens if there is an input�output sequence x�y whose �nal state
in M is si for some si �� Pj but the corresponding state u in MI has the
property that for all s � Pj� u �� Q�s�� Thus it may be possible to extend a
set Pj by some maximal �size� set P j of states fromMI such that the states
in P j are pairwise distinguishable and each is pairwise distinguishable from
each state in Pj � Then�

jP jj�
X

si�Pj

jQ�si�j 	 m

Given Pj � this information gives the following upper bound on the number
of occurrences of states fromPj in a test sequence�

m� jPjj � jP jj� �

As testing proceeds� these values can be updated�
An input sequence x can be seen as a route to some state of MI � It is

possible to update these values by considering the execution of W at the end
of routes� As each sequence from Di is followed by someWl� this �ts the test
technique�

Suppose that� in the example� W � faaag is initially executed from
s�� If this were to produce output 


 then this instance of s� would be
distinguishable from both s� and s�� Thus s� and s� can be included in P �

and s� can be included in P �� Further� as m � � and MI is reduced� the set
faaag must be a characterizing set for MI � Thus the test set can be reduced
to�

f�� b� ba� baa� baaagf�� a� bgfaaag

Again� sequences contained in the beginning of others can be removed�

��



� Conclusions

The problem of testing a nondeterministic implementation against an NFSM
has received much attention but there has been little work on testing from
an NFSM when the IUT is known to be deterministic� When the IUT is
deterministic� it is possible to generalize the notion of r�distinguishing states�
When it is known that if the IUT conforms to M then it is a submachine of
M � it is possible to d�distinguish states� When instead there is some upper
bound k on the number of states in the IUT that are not reached by the
deterministic state cover V � it is possible to consider �V� k� distinguishing
states� In the case where k � 
� this reduces to d�distinguishing states�

When the IUT is deterministic� much can be learnt about the structure of
the IUT during test execution� A test can thus be generated in an adaptive
manner� This guarantees the existence of a deterministic state cover and
allows the test set to be reduced as testing proceeds�

An interesting question� when applying adaptive testing� is how the test
order than maximizes the expected reductions can be found� There is also
the problem of limiting the search for deterministically �V� k� distinguishing
sets� There may be no good upper bound on the size of these� instead limits
can be placed on the size of sets that could reduce the total test e�ort�

� References

�� A�V� Aho� A�T� Dahbura� D� Lee� and M�U� Uyar� ����� An Optimiza�
tion Technique for Protocol Conformance Test Generation Based on
UIO Sequences and Rural Chinese Postman Tours Proceedings of Pro�
tocol Speci�cation� Testing� and Veri�cation VIII� pp�����	� Atlantic
City� North�Holland�

�� T�S� Chow� ����� Testing Software Design Modelled by Finite State
Machines� IEEE Transactions on Software Engineering� � �� March
����� pp���������

�� J� Dick and A� Faivre� ����� Automating the Generation and Sequenc�
ing of Test Cases from Model�Based Speci�cations� FME ���� First
International Symposium on Formal Methods in Europe� Odense� Den�
mark� ����� April ����� pp��	�����

��



�� A�Gill� ��	�� Introduction to The Theory of Finite State Machines�
McGraw�Hill�

�� R�M� Hierons� ���	� Extending Test Sequence Overlap by Invertibility�
The Computer Journal� �� �� pp�������
�

	� R�M� Hierons� ����a� Testing from a Z Speci�cation� Journal of Soft�
ware Testing� Veri�cation� and Reliability� � �� pp�������

�� R�M� Hierons� ����b� Testing from a Finite State Machine� Extending
Invertibility to Sequences� The Computer Journal� �� �� pp���
���
�

�� Z� Kohavi� ����� Switching and Finite State Automata Theory� McGraw�
Hill�

�� G� Luo� G� v� Bochmann� and A� Petrenko� ����� Test Selection Based
on Communicating Nondeterministic Finite�State Machines Using a
Generalized Wp�Method� IEEE Transactions on Software Engineering�
�� �� pp������	��

�
� A� Petrenko� N� Yevtushenko� A� Lebedev� and A� Das� ����� Nondeter�
ministic State Machines in Protocol Conformance Testing� Proceedings
of Protocol Test Systems� VI �C�	�
� pp��	������

��� M�O� Rabin and D� Scott� ����� Finite Automata and Their Decision
Problems� IBM Journal of Research and Development� � �� pp���������

��� D� Sidhu and T� K� Leung� ����� Experience with Test Generation for
Real Protocols� ACM SIGCOMM ��� pp�����	��

��� A�S� Tanenbaum� ���	� Computer Networks� Prentice Hall� Interna�
tional Editions� �rd edn�

��� H� Ural� X� Wu� and F� Zhang� ����� On Minimizing the Lengths of
Checking Sequences� IEEE Transactions on Computers� �� �� pp�������

��� B� Yang and H� Ural� ���
� Protocol Conformance Test Generation
Using Multiple UIO Sequences with Overlapping� ACM SIGCOMM ��

Communications� Architectures� and Protocols� Sept ����� pp���������
Twente� Netherlands� North�Holland�

�	



�	� N�V� Yevtushenko� A�V� Lebedev� and A�F� Petrenko� ����� On Check�
ing Experiments With Nondeterministic Automata� Automatic Control
and Computer Sciences� �� pp�������

��


