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Abstract

The benefit of adaptive meshing strategies for a recently introduced thermodynamic topology optimization is presented.

Employing an elementwise gradient penalization, stability is obtained and checkerboarding prevented while very fine

structures can be resolved sharply using adaptive meshing at material-void interfaces. The usage of coarse elements and

thereby smaller design space does not restrict the obtainable structures if a proper adaptive remeshing is considered during

the optimization. Qualitatively equal structures and quantitatively the same stiffness as for uniform meshing are obtained

with less degrees of freedom, memory requirement and overall optimization runtime. In addition, the adaptivity can be used

to zoom into coarse global structures to better resolve details of interesting spots such as truss nodes.
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1 Introduction

Topology optimization has been introduced several decades

ago and it has been established as a powerful tool during

engineering design processes. Review papers are provided

by Rozvany (2009), van Dijk et al. (2013), and Huang

and Xie (2010). Different target functions can be defined,

among which the optimization of the mechanical stiffness

of a system is probably the most prominent one (Sigmund

and Maute 2013). The goal of this optimization problem is

to find the spatial description of the topology, i.e., a distinct

void/full material distribution. This can be expressed in

terms of the so-called material density χ = χ(x) =

{χmin, 1}, where the spatial coordinate is given by x.

Intermediate configurations, i.e., χ ∈]χmin, 1[, are difficult

to be interpreted (foam) and even more challenging to

be manifactured. Consequently, these “gray” solutions are

to be avoided. A simple yet powerful strategy is the
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multiplication of the compliance energy with a non-linear

function in χ , e.g., � = χ3�0 is a very famous approach

(Sigmund and Maute 2013). The effect of this non-linear

interpolation between void and full material configurations

turns the energy being non-convex, which, of course,

renders the problem inherently ill-posed. A numerical

artifact of the ill-posedness is the phenomenon of patterns of

repeated black/white distributions that represent in average

the gray solution. Due to its appearance, it is referred

to as the checkerboard phenomenon (Diaz and Sigmund

1995). A prominent approach to prevent checkerboarding

are filter schemes of which a huge variety can be found in

literature (e.g., Sigmund and Petersson 1998; Bourdin 2001;

Zhou et al. 2001; Lazarov and Sigmund 2011; Wadbro and

Hägg 2015).

Along with the “pure” optimization of the mechanical

stiffness, the inclusion of the precise material behavior is

an emerging branch in the field of topology optimization

(cf. Zhou and Wang 2007; Klarbring et al. 2017; Petrovic

et al. 2018). It is obvious that accounting for the

correct (non-linear) material behavior allows for using the

potentials of design space and material at its best. In this

regard, the so-called thermodynamic topology optimization

has been introduced (Junker and Hackl 2015; Jantos et al.

2018). It makes use of mathematical schemes known

from the field of material modeling to derive a suitable

equation for the evolution of the material density. The

inclusion of a specific material model is straightforward

since the very same procedures can be employed to derive

Structural and Multidisciplinary Optimization (2021) 63:95–119

/ Published online: 8 October 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-020-02667-4&domain=pdf
http://orcid.org/0000-0002-7429-0667
mailto: a.vogel@rub.de


A. Vogel and P. Junker

the corresponding evolution equations for the material

description. Examples have been presented for anisotropic

materials in Jantos et al. (2017) and systems of tension- and

compression-affine materials, e.g., steel/concrete structures,

in Gaganelis et al. (2019).

One advantage of the thermodynamic topology optimiza-

tion is that the regularization is directly included in the gov-

erning equation, meaning that additional filter techniques

are obsolete. Consequently, the thermodynamic topology

optimization is immediately eligible for advanced numer-

ical treatment. To be more precise, adaptive strategies for

the spatial resolution can be employed which are of par-

ticular importance when large-scale engineering structures

are supposed to be computed within one optimization run:

details of the resultant topology can be resolved directly

which allows to optimize, e.g., a bridge in the dimensions of

meters but simultaneously accounting for details at the sup-

ports or connecting adapters. Since the adapters are usually

problematic for designing, an iteration of large-scale and

small-scale simulations whose respective results are used

for the other computation, demanding a precise inclusion of

boundary conditions, can be avoided: it is replaced by one

single holistic optimization run that makes use of adaptive

meshing.

Adaptive techniques have been used for a variety of

topology optimization strategies to improve the quality

and sharpness of the solution as well as to address

efficiency issues for finely resolved meshes. A popular

approach for optimization based on finite element (FEM)

approaches consists in adaptive mesh refinement (AMR)

that is employed in an h-refinement fashion to increase

the accuracy where needed while saving computational

cost in other regions. One of the earliest works in this

direction has been presented by Maute and Ramm (1995).

Starting with an uniform coarse mesh, they perform a

density-based optimization which is then used to create a

finer mesh with refinement at indicated spots. The new

mesh is employed in a subsequent optimization and the

process iterated until the desired degree of accuracy is

reached. Derose (1996) employs octree data structures to

implement adaptive meshing strategies for optimization.

Lin and Chou (1999) use a two-stage approach to reduce

computational costs. Arantes and Alves (2003) use the

h-refinement topology optimization approach employing

mesh quality and an analysis error estimator as criteria for

refinement. Stainko (2006) employs an adaptive multilevel

approach refining towards the material-void interface and a

multigrid method to efficiently solve the elasticity problem.

De Sturler et al. (2008) (see also Wang et al. 2010) use

a dynamic adaptive mesh strategy with mesh refinements

and coarsening in every optimization step to obtain the

same designs as for a uniformly refined mesh. Guest

and Genut (2010) separate the design variable field from

the analysis mesh and thereby reduced the computational

cost. Nguyen et al. (2010, 2012) employ multiresolution

topology optimization. Bruggi and Verani (2011) present

a fully adaptive algorithm with adaptive coarsening and

refinement based on two goal-oriented error estimators.

Wallin et al. (2012) employ the phase-field method

and adaptive finite element formulations. Wang et al.

(2013, 2014) separate the density field from the FEM-

computed displacements. Using a point-based background

representation of the density and Shepard interpolants, they

can obtain a high resolution of the solid-void interface. Nana

et al. (2016) employ h-adaptivity for tetrahedral meshes.

Nguyen-Xuan (2017) presents topology optimization on

2d polygonal adaptive meshes, which is generalized to

multi-material by Chau-Nguyen et al. (2017). Panesar

et al. (2017) use hierarchical remeshing strategies and

study different mesh adaption techniques. Lambe and

Czekanski (2018) employ a continuous density field and

adaptive mesh refinement to sharply resolve the solid-

void interface. Salazar de Troya and Tortorelli (2018)

use AMR in stress-constrained topology optimization. For

the use of filter techniques during AMR, we exemplary

refer to Nguyen-Xuan (2017) for polytree approaches and

to Lambe and Czekanski (2018) which use a Helmholtz

equation. In addition, the employment of the multigrid

method (Hackbusch 1985) can considerably reduce the

computational cost to solve the finite element analysis. This

is in particular of interest since adaptive mesh refinement

can be directly employed to create a nested mesh hierarchy

that is used for the multigrid algorithm (Bramble et al.

1991; Bastian and Wittum 1994). In this direction, Amir

et al. (2014) employ a multigrid-CG for efficient topology

optimization. Aage et al. (2015) present an open-source

framework based on PETSc employing multigrid. Kennedy

(2015) uses geometric multigrid to solve large-scale multi-

material topology optimization. Chin and Kennedy (2018)

use a parallel geometric multigrid for octree-based AMR

optimization.

The paper is structured as follows: we begin with a

short recall of the thermodynamic topology optimization

for convenience. Afterwards, we present the employed

numerical treatment, including a discretization of the

Laplace term that is particularly useful when dealing with

mesh adaptivity where hanging nodes might appear. As

main contribution, we analyze in detail the numerical

behavior of the thermodynamic topology optimization

approach when used in conjunction with adaptive meshing

techniques. We highlight that a locally chosen regularization

parameter is necessary to avoid checkerboarding and show

that qualitatively the same structures are obtained for

adaptive and full refinement strategies. We show the

difference between mesh adaption in every timestep from

the beginning of the optimization and finer mesh adaption
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only at later stages. Four different test cases are considered

and results in terms of obtained stiffness, stability and

runtime presented.

2 Thermodynamic topology optimization

The fundamentals of thermodynamic topology optimization

are recalled here for convenience. For more details, we

refer to Junker and Hackl (2015) for the general idea

of thermodynamic topology optimization, to Jantos et al.

(2018) for an advanced numerical treatment, and to Jantos

et al. (2019) for a comparison of the method with SIMP.

For the derivation of the thermodynamic topology

optimization, we make use of Hamilton’s principle. It is

formulated for quasi-static, elastic continua as

δG = 0 ∀δu , (1)

where G denotes the Gibbs energy and δu the virtual

displacements. Consequently, the expression δG refers to a

Gâteaux derivative. The Gibbs energy is given by

G =

∫

�

� dV −

∫

�

b · u dV −

∫

Ŵσ

t · u dA , (2)

where the Helmholtz free energy is given by �, the body

forces by b, and the tractions by t . The body’s volume and

surface are denoted by � and ∂� = Ŵu ∪ Ŵσ , respectively,

with the Dirichlet boundary Ŵu and the Neumann bound-

ary Ŵσ .

For inelastic continua, so-called internal variables υ

are introduced that describe the current microstructure.

Examples are plastic strains and damage variables. Then,

Hamilton’s principle is expanded to read

δG = δD ∀δυ , (3)

with the dissipation functional

δD :=

∫

�

p̂ δυ dV (4)

and the non-conservative forces

p̂ := −
∂
diss

∂υ̇
. (5)

The choice of the dissipation potential 
diss = 
diss(υ̇)

determines the character of the Euler and Helmholtz

equation, respectively, which results from (3). A great

benefit of Hamilton’s principle is its character of a

mathematical potential, allowing to account for constraints

by adding further potentials, e.g., δR and δC, viz

δG + δR + δC = δD ∀δυ . (6)

For the case of topology optimization, the internal

variable is the local material density χ = χ(x) for which

the dissipation potential is chosen as


diss =
1

2
η χ̇2 (7)

with the viscosity η. As seen later, this approach yields a

transient term in the final equation for χ .

The Helmholtz free energy is formulated in the

mechanical stresses σ and reads

� =
1

2
σ :

[

χ3
E

]−1
: σ , (8)

where E denotes the elasticity tensor of order four. The

exponent 3 is chosen in accordance to standard approaches

from literature. This exponent, of course, yields on the one

hand distinct void/full material distributions; on the other

hand, it renders the problem ill-posed due to the loss of

convexity. It is thus mandatory to introduce a functional for

regularization, defined by

R :=
1

2

∫

�

β∇χ · ∇χ dV =
1

2

∫

�

β |∇χ |2 dV . (9)

Finally, the constraints are accounted for by the constraint

functional

C := λ

(∫

�

χ dV − ̺�

)

+

∫

�

γ χ dV (10)

with the Lagrange parameter λ ensuring that the mass of the

structure equals the given mass ̺�, and the Kuhn-Tucker

parameter γ for the interval constraint χ ∈ [χmin, 1]:

γ =

⎧

⎨

⎩

γ̄ : (χ̇ > 0) ∧ (χ = 1)

−γ̄ : (χ̇ < 0) ∧ (χ = χmin)

0 : else

(11)

where γ̄ ≡ γ̄ (x) is chosen such that an overhead of

the driving force which would cause χ �∈ [χmin, 1] is

corrected, i.e., the parameter is locally chosen such that

χ remains in the admissible interval. In principal, the set-

valued character of γ complicates the evaluation of the

equations since a coupled system of inequalities has to

be solved. However, instead of computing γ̄ numerically,

this constraint can equivalently be implemented by a min-

max condition applied to a tentative density. The mass

conservation is then ensured by using a bisection approach

(cf. Sigmund 2001), as indicated in Algorithm 1 to find an

appropriate offset for the driving force. More details can be

found in Jantos et al. (2018).

Using these specifications, Hamilton’s principle is

formulated as
⎧

⎨

⎩

δG[ε, χ] = 0, ∀δu,

δG[σ , χ] + δR + δC − δD = 0, ∀δχ,
(12)

where ε = ∇sym
u = 1

2
(∇u + (∇u)T ) denotes the strain.
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The first stationarity condition in (12), δG[ε, χ], gives

the balance of linear momentum in its weak form; the

second condition provides the Helmholtz equation for the

material density:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∫

�

σ : δε dV −

∫

�

b · δu dV −

∫

Ŵσ

t · δu dA = 0, ∀δu,

−p − β
χ + λ + γ + η χ̇ = 0, ∀x ∈ �,

n · ∇χ = 0, ∀x ∈ ∂�.

(13)

Here, the constitutive relation for the stress

σ =
∂�

∂ε
= χ3

E : ε (14)

with the effective stiffness χ3
E has been used and the

driving force

p := −
∂�

∂χ
=

3

2
χ−4

σ : E−1 : σ =
3

2
χ2

ε : E : ε (15)

has been introduced. The Laplace operator is defined by


 := ∇ · ∇ =
∑3

i=1
∂

∂xi
.

3 Numerical treatment

For the numerical treatment of (13), we discretize the

displacements u by linear finite element functions and

the density field χ employing an elementwise constant

approximation. To this end, the domain � is meshed with

quadrilaterals or hexahedrons and we denote the collection

of elements by �h. For two-dimensional approximations,

the plain stress assumption is used. Starting from an initial

mesh, we allow the refinement of individual elements and

thereby also hanging nodes in the mesh. A 2:1 balance is,

however, enforced such that only one hanging node per side

can appear. Displacement degrees of freedom located on a

hanging node are handled by continuity constraints in order

to guarantee an overall continuous solution. The maximal

number of refinements required to create a mesh from an

initially coarse mesh is denoted as the maximal level of

refinement L.

For the computation of the Laplacian for the piecewise

constant density field, we use a fitted stencil method based

on the set of the nearest neighbors of an element e and the

element itself, denoted by Ne, illustrated in Fig. 1. Using

the barycenters x ẽ of elements connected via a mesh node

to the element e, the stencil coefficients are chosen based on

a second-order Taylor expansion, i.e., in the way that

(
hχ)e := (A · χ)e :=
∑

ẽ∈Ne

aeẽχ(x ẽ) (16)

=
∑

ẽ∈Ne

aeẽ

(

χ(xe) + ∇χ |xe
· (xe − x ẽ)

+
1

2
(xe − x ẽ)

T · H |xe
· (xe − x ẽ) + o(‖(xe − x ẽ)‖

3)
)

!
= ∂2

xχ

∣

∣

∣

xe

+ ∂2
yχ

∣

∣

∣

xe

+ o(aeẽ)o(‖(xe − x ẽ)‖
3)

e

Fig. 1 Adaptive mesh hierarchy with hanging nodes: Shown are the

neighbors (orange) of an element e and their barycenters (red cross).

Neumann zero boundary condition are handled via a mirror element at

boundary sides (green)

is fulfilled with a first order error term, where H is the

Hessian matrix. We used the same treatment for a gradient-

enhanced damage model in Vogel and Junker (2020) where

we present a more detailed description. An analogous

treatment has been used in Jantos et al. (2018) employing

a fixed number of neighbors for topology optimization and

similar discretization methods are discussed, e.g., in Coirier

(1994) and Sadat and Prax (1996). Please note that the

matrix A solely depends on the meshing and has to be

recomputed only after a mesh adaption. The Neumann

boundary conditions are incorporated by mirror elements at

the boundary that are forced to posses the same value as the

element inside the domain.

For every optimization step, at first the displacement

u for the current density field χ is computed. We use

a geometric multigrid solver (Hackbusch 1985; Reiter

et al. 2013) on the mesh hierarchy produced by successive

refinement starting from a coarse uniform initial mesh. In

case of adaptivity, an adaptive multigrid approach (Bramble

et al. 1991; Bastian 1996) is employed without smoothing

of the patch rims. All simulations have been carried out with

a symmetric Gauss-Seidel smoother, V-cycle, 3 pre- and

postsmoothing steps, canonical prolongation and restriction,

RAP product for coarse matrices, and LU base solver on the

coarsest mesh level. The multigrid is used in a CG solver

as preconditioner. Residua have been reduced to an absolute

value of 5 · 10−8.

Subsequently, given the displacements, the density is

updated as presented in Algorithm 1. As suggested in

Jantos et al. (2018), we solve a number of inner timesteps

for stability reasons and also use the problem-independent

control parameters η∗ and β∗. In most cases, we employ

the suggested value of β∗ = 2h2
min (Jantos et al. 2018)

which corresponds to an internal length scale (Peerlings

et al. 1996; De Borst and Mühlhaus 1992) and thereby

prescribes the minimal size of representable structures. This

choice and the typically chosen value of η∗ = 15 then imply

a single inner timestep. In order to compute the Lagrange
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parameter λ and fulfill the average density requirement ρ̄ for

χ , a bisection algorithm (Sigmund 2001) is used. Density

constraints are enforced explicitly after computing a trial

density. Most notably, for the adaptive handling, we employ

an elementwise choice for the stabilization parameter β →

βe in the update of the density. This parameter is chosen

at least large enough to ensure a local stability criterion

(βe = pavg2h2
e) or to satisfy a global requirement (βe =

pavgβ
∗). On coarse elements, the local stability criterion

will dominate and ensure stability. For regions with fine

elements, the global criterion will control the minimal

length scale.
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The mesh adaption is controlled based on the updated

density. The employed heuristic treatment is shown in

Algorithm 2. We only allow a refinement up to a prescribed

level of detail L. Elements are selected for refinement,

if the density value χe is still in the gray-zone between

some bounds away from 0 or 1. In addition, elements

are selected for refinement if the density difference of

neighbored elements is large, i.e., if the gradient in the

density field is large. On the contrary, elements are selected

for coarsening, if the difference in density to the neighbors

is small and the density values are sufficiently close to the

black-white solution, i.e., close to 0 or 1. This approach

is motivated by the observation that high resolutions are

required to capture in detail the material-void interfaces

where steep density gradients are present. For parts with

only material or only void, the density is constant and no

high resolution is required there.

4 Numerical results

We provide a detailed study for the behavior of the thermo-

dynamic topology optimization method in conjunction with

adaptive meshing employing the symmetrically reduced

Messerschmidt-Bölkow-Blohm (MBB) beam as a running

example. Subsequently, we present two additional 2d set-

tings and one 3d example to show that the obtained results

carry over to these boundary value problems. If not other-

wise stated, the simulation parameters presented in Table 1

are used. The adaptive topology optimization has been

implemented in the UG4 simulation software (Vogel et al.

2013), meshing is performed with ProMesh (2020) and

visualization employs Paraview (2020).

The main questions to be addressed are as follows: In

Section 4.1.1, we compare different methods to adapt the

mesh for the nonuniform case. A straightforward approach

is to account for the slightly changed mass density after

every optimization step and adjust the mesh accordingly.

Table 1 Simulation parameters. If not otherwise stated, a value of

β∗ = 2h2
min is employed on a mesh with minimal element diameter

hmin

Symbol Quantity Value

ν Poisson’s ratio 0.33

ρ̄ Target average density 0.3

χmin Minimal admissible density 10−10

χmax Maximal admissible density 1.0

β∗ Regularization parameter 2h2
min

η∗ Viscosity 15

dt∗ Timestep size 1.0

ǫdensity Difference to target density 10−12

χ lower
coarsen Lower value to coarsen 0.1

χ lower
refine Lower value to refine 0.25

χ
upper

refine Upper value to refine 0.75

χ
upper
coarsen Upper value to coarsen 0.9

χdiff
coarsen Neighbor difference to coarsen 0.05

χdiff
refine Neighbor difference to refine 0.4

100



Adaptive thermodynamic topology optimization

This approach will be compared with respect to stiffness and

runtime to the full refinement approach. In particular, it will

be of interest if the adaptive meshing restricts the design

space too much in order to allow for finding a suitable

structure compared with the uniform meshing. As a second

approach, we let the density evolve for a certain number

of optimization steps on a coarse mesh refinement, and

then start with adapting to finer resolutions. This way, a

coarse structure is first optimized which can subsequently

be refined by the finer resolution. Since the optimization

path has already evolved towards a certain optimum before

allowing finer meshing, the final result may differ due to the

different initial guess at fine level. In Section 4.1.2, we study

in detail the influence of the stabilization parameter β. In

particular, for the adaptive strategy, the difference between

a locally or globally chosen parameter will be highlighted.

Finally, in Section 4.1.3 we turn our attention to the mesh

independence of the method by fixing the internal length

parameter β and refine fully or adaptively far smaller than

this size.

4.1 MBB beam

The domain specification and boundary conditions for

the symmetrically reduced Messerschmidt-Bölkow-Blohm

(MBB) beam are shown in Fig. 2a. The coarsest meshing

for the domain, the level L = 0, is shown in Fig. 2b

(top). The mesh is either refined uniformly (full refinement)

or employing an adaptive strategy. An exemplary adaptive

mesh occurring during the optimization is presented in

Fig. 2b (bottom).

4.1.1 Adaption strategies and runtimes

We compare different meshing strategies with respect to

their obtained optimal structure, the final stiffness of the

structure, and the required runtime for the result. Motivated

by the empirical finding for fully refined meshes in Jantos

et al. (2018), we will use the choice β = 2h2 for the uniform

meshing and a locally chosen value of βe = 2h2
e on every

mesh element e in order to avoid numerical instabilities

like checkerboarding. In particular, this implies a shrinking

regularization parameter with mesh refinement such that the

regularization is chosen just large enough to ensure stability.

By this, the imposed structural length scale decreases with

finer meshes and finer structures can be resolved.

Mesh adaption in every optimization step In Fig. 3, an

example for a typical optimization run is presented. The full

and adaptive meshing strategy is compared for a finest mesh

level L = 4, i.e., we allow the adaptive elements to be as fine

as the full refinement, however, also to use coarser elements

if this seems appropriate due to the adaption strategy.

Several optimization steps are shown and in all cases the

same density distribution is observed for full and adaptive

meshing. This already provides us with the confidence

that the meshing can be coarsened appropriately at certain

locations while maintaining the design space broad enough

to reach the same optimized structure. Taking a look at

the element sizes for the different optimization steps, we

find a quite large number of small elements at early stages

where the structure cannot be clearly anticipated and thus

fine resolution is required to allow for many possible further

optimization directions. However, at later stages, only the

emerged beams have to be resolved and this is achieved

by quite a few fine elements at boundaries between void

and material. In both meshing strategies, several smaller

structures appear in early stages, but these structures are

later removed resulting in the same computed optimum with

only thick beam structures at the end. This is due to the

relatively large regularization parameter β that imposes a

bound on the minimally resolvable structure as an internal

1

3
f

(a) (b)

Fig. 2 MBB beam: a Domain specification and boundary conditions. b Top: coarse finite element mesh L = 0, bottom: adaptive refinement

during optimization
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Step χ (full mesh) χ (adaptive mesh)

10

20

30

40

50

100

200

Fig. 3 MBB beam: Optimized structure at several optimization steps: Shown are the mesh and density distribution (material in red) for the fully

(left) and adaptively (right) refined case employing a maximal mesh refinement level L = 4

length. In conclusion, mesh adaption in every optimization

step produces qualitatively the same topology as uniform

meshing, i.e., the coarsening only restricts the discrete

design space where nothing interesting takes place.

In Fig. 4, we compare the computed structures between

adaptive and uniform meshing for different levels of

maximal refinement. The density distribution after 500

optimization steps is presented together with the employed

adaptive mesh to resolve the structure. On all refinement

levels, a very similar final structure is computed in both

cases. Even for the very detailed resolutions, there is hardly

seen a difference in the resulting structures. This again

shows that mesh adaption in every optimization step can be

used to obtain an optimization result very close to the fully

refined meshing.

We investigate these findings systematically with respect

to the obtained stiffness in Fig. 5a on different refinement

levels. To the left, the evolution of the structural stiffness

during the optimization is shown for adaptive and full

meshing with a maximal level for refinement up to

level 7. To better visualize the difference at the end of the

optimization, a zoom has been added. In all cases, a quite

steep increase in stiffness is obtained until approximately

100 steps. Subsequently, the stiffness for further mesh
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L χ (full mesh) χ (adaptive mesh) adaptive mesh

3

4

5

6

7

Fig. 4 MBB beam: Mesh adaption in every optimization step: Shown

are the density distribution (material in red) for uniform (left) and

adaptive (center) meshing with the employed adaptive mesh (right)

for the optimized structure at optimization step 500. On every mesh

level, the regularization parameter is chosen according to the mesh size

allowing more detailed structures on finer meshes

refinement is higher for finer meshes since the structures

can be resolved in more detail and the design space is

larger. Comparing the meshing strategies, the results for

adaptive and full refinement are very similar with a slightly

better stiffness for the adaptive case. This can also be seen

in Fig. 5a (right) which shows the finally obtained stiffness

for the different mesh levels. Employing a finer resolution

provides a better stiffness in all cases. Correspondingly, the

amount of the black-white parts in the obtained solutions

increase. To see this, the measure of non-discreteness

(MOD; Sigmund 2007) defined as

MOD =
4

|�|

∫

�

(χ − χmin)(χmax − χ)dV (17)

is presented in Fig. 5b and decreases with every mesh

refinement. For adaptive refinement and full meshing, a

very similar measure of non-discreteness is obtained espe-

cially for the final structure. This is due to the mostly

constant density being full material or void such that only

the transition zones have to be resolved with finer resolu-

tion. In Fig. 5c, we take a look at the evolution of degrees

of freedom and the overall runtime for 500 optimization

steps. All measurements have been performed on the com-

puting cluster at the Department of Civil and Environmental

Engineering of the Ruhr University Bochum employing

one core of a 2.4 GHz Intel Xeon Skylake Gold 6148 pro-

cessor. The required degrees of freedom are less for the

adaptive case for all steps. At the beginning of the optimi-

zation, they are slightly higher to account for the not yet

evolved structure and then decrease towards the end of the

simulation. For the runtime, we see that the density update

requires substantially less time than the solution of the

elasticity problem. Comparing the meshing strategies, the

adaptive case is faster with respect to the overall simula-

tion time. This gap increases with allowed mesh resolution

and is close to an order of magnitude at level 7. The non-

neglectable overhead for mesh adaption is overcompensated

here by the faster elasticity solver due to the reduced num-

ber of degrees of freedom. Since we employ a multigrid

solver with linear complexity w.r.t. the unknowns, a factor of

ten in savings for the degrees of freedom directly translates

into a saving of the same factor in runtime with a small

reduction due to the mesh handling. For other solvers with

suboptimal complexity like conjugate gradient or Gaussian

elimination, this gap might even be larger. For the uniform

case, the simulation runtime is mainly given by the elasticity

solver and the plotted curves therefore coincide.

In Fig. 6a, the iteration counts for the multigrid method to

solve the elasticity problem are shown. While they are pretty

constant over a large range of steps, the required number
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(a) Stiffness over the optimization steps (left) and the final stiffness per mesh level (right)

(b) Measure of non-discreteness per step (left) and the final result per mesh level (right)

(c) Number of degrees of freedom (left) and the runtime (right) for adaptive and full meshing

Fig. 5 MBB beam: Comparing full and adaptive meshing for different maximal levels of refinement using a mesh adaption in every optimization

step in the adaptive case

of iterations increase significantly at certain optimization

steps. A detailed investigation revealed that this is due to

particular density patterns occurring when thin beams are

removed from the structure during the optimization. In these

cases, diagonal density chains of elements can occur that are

only connected via vertices. For such a difficult situation,

the solution is not easily computed which is reflected in

the iteration count. However, such intermediate structures
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(a) Iteration count for the multigrid solver for the optimization steps (left) and the average for

the mesh levels in the adaptive and full refinement (right)

(b) Required bisection steps to find a suitable Lagrange parameter

Fig. 6 MBB beam: Comparing iteration counts for the meshing strategy using either full refinement or mesh adaption in every optimization step

are subsequently removed quickly by the optimization.

The average iteration count increases slightly under mesh

refinement. We attribute this to the density field with

different values on each element which poses a challenge

to the multigrid solver. In Fig. 6b, the required number

of bisection steps is shown for the different mesh levels

and meshing strategies. In all cases, roughly 40 steps are

required which still holds true even under mesh refinement.

Mesh adaption using initially coarse structure In the previ-

ous section, we employed mesh adaption in every optimiza-

tion step right from the beginning of the optimization. As an

important result, it has been shown that the employment of

mesh adaption in every optimization step keeps the design

space broad enough to produce very similar structures as a

full meshing. In contrast, we now ask the question if differ-

ent structures can also be obtained on purpose by a different

remeshing technique. This might be useful, e.g., if a coarse

overall structure is already known or desired, but the details

of this structure are still to be optimized. For example, a

truss structure can be desired as overall structure but the

optimal design of the truss nodes might still be unknown.

Our strategy to address such a setting is to first employ a

couple of optimization steps with a coarse mesh to find a

coarse initial structure. This coarse structure is then used

as initial guess for the subsequent highly resolved adap-

tive meshing strategy as before. This way, the optimization

already starts closer to a certain coarse optimum and we

want to investigate how this strategy changes the obtained

results for fine meshing.

In Fig. 7, such an approach is shown for the final result on

different mesh levels if the optimization is started with 50
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Fig. 7 MBB beam: Starting with an initially coarse guess: Shown is

the density distribution at optimization step 500 (material in red) for

the employment of adaptivity only at a later stage of the optimization,

allowing to find different local minima. The optimization is started

with 50 steps of a coarse (L = 3) fully refined mesh. Subsequently,

the mesh detail is increased to the indicated mesh refinement using

mesh adaptivity in every step. On every mesh level, the regularization

parameter is chosen according to the mesh size allowing more detailed

structures on finer meshes
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χ (full mesh) χ (adaptive, localβ ) (adaptive, globalβ )
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Fig. 8 MBB beam: Comparison of local and global regularization parameter β at optimization step 20. Uniform (left) and adaptive meshing with

locally chosen β (center) show a stable density pattern, while a globally chosen regularization parameter is subject to checkerboarding in the

adaptive case (right)

steps on a coarse mesh resolution to compute a coarse inital

structure and only use fine, adaptively refined meshes for

the remaining optimization steps. Comparing these results

with Fig. 4, where mesh adaption in every timestep has

been employed from the beginning, we see that the overall

coarse structure remains the same for all mesh levels and

the optimization algorithm is indeed not capable to leave

the already approached local optimum even if fine meshing

is added by adaptivity at the later stages. However, the

structure is altered in the details. A zoom to such a finer

substructuring of the material in a truss node has been added

together with the adaptive mesh. Such a strategy can thus

be used if the global overall structure should be close to

a coarse structural resolution but the details in truss nodes

have to be further known in detail.

4.1.2 Influence of locally varying regularization parameter

For all previous results, the regularization paramater has

been chosen as β = 2h2 for the uniform meshing and

a local value of βe = 2h2
e on every mesh element e for

the adaptive case. For the uniform meshing case, it has

been reported in Jantos et al. (2018) that smaller values

lead to checkerboarding solutions. Here, we investigate the

choice of the regularization parameter for the adaptive case.

Intuitively, the regularization parameter penalizes steep

gradients in the density function and larger values of β

smear out the interface between void and material. For

stability reasons, however, the regularization should at least

enforce a transition of the density within the range of

one finite element or more. On the other hand, it should

not be much larger to allow for a sharp representation

of the obtained structure. In particular, adaptive meshing

is employed to better resolve the solution at the material

boundaries and a large value of β, although clearly

stable, would be counterproductive since it would limit the

obtainable structures to a large internal length and render

adaptivity useless. Therefore, we have used the elementwise

chosen regularization parameter that enforces a gradient of

the solution only for the locally seen mesh size. As an

alternative, one could opt for a globally chosen regulari-

zation that is as small as suggested by the smallest element

of the mesh. This allows to maintain very thin structures

at the material-void boundaries, however, is too small for

larger elements encountered on other parts of the domain.

In Fig. 8, we present the obtained density field at step 20

of the optimization for all three cases: full refinement

as well as adaptive refinement with local stabilization

and with a globally chosen value of β. While there

is no checkerboarding observed for the full refinement

and the adaptive meshing with local βe = 2h2
e , a

significant checkerboarding is observed for the globally
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Fig. 9 MBB beam: Comparison of local and global regularization

parameter β at optimization step 500. In all cases, a checkerboard-free

material distribution is observed at the end of the optimization steps.

On every mesh level, the regularization parameter is chosen according

to the mesh size allowing more detailed structures on finer meshes

chosen small regularization β = 2h2
min in the adaptive

case. These patterns are mainly observed for regions where

the density is still in the gray regime between material

and void.

In contrast, the finally obtained structures after 500 opti-

mization steps are pretty similar as shown in Fig. 9. While it

is interesting that the same structures are computed although

a checkerboarding instability is encountered during the

optimization path, the absence of checkerboarding for the final

structure is intuitively reasonable: the regularization only

has to enforce its gradient penalization purposes where gra-

dients are actually present. In the given density fields, the

solution is constant (0 or 1) in a coarsely resolved region.

These are the spots where the regularization—although too

small in principle—is not required at all. For regions with

a non-zero gradient in the density function, the mesh is

Fig. 10 MBB beam: Adaptive meshing with a globally chosen regularization parameter. While the bisection count (right) remains bounded, the

iteration counts for the multigrid solver (left) increase drastically due to checkerboarding
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L χ (full mesh) χ (adaptive mesh) adaptive mesh
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Fig. 11 MBB beam: The obtained density field after 500 optimiza-

tion steps employing a fixed regularization parameter β = 9.74 · 10−4

on all refinement levels. By fixating the regularization, the internal

length scale of the model is fixated and fine meshing can not resolve

more detailed structures. Thus, mesh independence is empirically

demonstrated

adapted to a very fine resolution and the small regulariza-

tion matches with the mesh resolution. In conclusion, for the

final structure without almost no intermediate values for the

solution, the regularization is either not required for coarsely

resolved regions with a constant density field or the mesh

is adequately resolved for the global regularization at spots

with steep density gradients.

The unphysical density with a checkerboarding pattern

can also be observed in the iteration counts for the solvers

in Fig. 10. While the bisection count is not affected, the

multigrid count increases dramatically at early optimization

steps since the highly jumping coefficients pose a severe

challenge to the geometric multigrid. Towards the end of the

optimization this effect is mitigated as the checkerboarding

disappears.

4.1.3 Mesh independence

Finally, we take a look at the mesh independence of

the obtainable structures for the adaptive meshing. We

therefore computed an optimized density field for a fixed

regularization parameter β = 9.74 · 10−4 with different

levels of mesh refinement for the full and adaptive case. The

results at the end of the optimization are shown in Fig. 11

and all show qualitatively the same structure regardless of

the mesh resolution. This highlights that the stabilization

parameter enforces the minimally resolvable structure sizes

and that the obtained solution is independent of the mesh

size as long as the mesh size is equal or smaller than

the stable mesh resolution βe = 2h2
e . In Fig. 12, the

corresponding stiffness and measure of non-discreteness

Fig. 12 MBB beam: Stiffness and measure of non-discreteness for a fixed regularization parameter β = 9.74 · 10−4
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is shown for the mesh refinement levels. They are quite

constant as expected from the qualitatively same structure.

4.2 L-shaped cantilever

The next example is the 2d L-shaped cantilever (see

Fig. 13). Here, all displacements at the upper part of the

cantilever are fixed and a force at the top of the L-tip

is pointing downwards. The resultant optimized structure

is presented in Fig. 14 after 200 time steps. Again, it

can be observed that the adaptive mesh yields almost

identical results as the full mesh resolution. However, at

refinement level L = 5, different structures are obtained

for the full and the adaptive mesh. This is due to the

inherent small numerical differences for adaptive and full

treatment which can lead to different local minima in

principle. For most examples, only very small deviations are

observed, but in this case the evolutionary thermodynamic

topology optimization finds a different local minimum for

the adaptive case compared with full mesh refinement.

As expected, the stiffness increases with increasing mesh

refinement as seen in Fig. 15a. Even for mesh refinement

with L = 5, the adaptive mesh yields a result with higher

stiffness than the one obtained for full mesh refinement.

The measure of non-discreteness shrinks for higher levels

of mesh refinement (see Fig. 15b). The benefit of adaptive

finite element strategies is presented in Fig. 15c: the number

of unknowns is smaller for adaptive simulations and this gap

enlarges with mesh refinement. The advantage of a reduced

number of unknowns is shaded for coarse levels due to the

additional numerical costs caused by adaptivity. However,

for finer meshes, this drawback is overcompensated and the

adaptive simulation is faster.

Fig. 13 L-shaped cantilever: Domain specification and boundary

conditions

4.3 Bridge-like setting

The last 2d example is the bridge-like setting as shown

in Fig. 16. Here, we make use of symmetry conditions at

the left-hand side. Furthermore, the displacements are fixed

at the support corner at the lower right. On a centered

horizontal line, a constant force is acting in negative y

direction which might be caused by a roadway. For this

problem, the parameters in Table 1 are employed except for

the density which is chosen as ρ̄ = 0.2.

The optimal structure is presented for various mesh

refinements in Fig. 17 after 100 time steps: an arch connects

the support points and makes use of the entire design height

available. The roadway, thus the horizontal line with line

loads, is joint to the arch by pillars where the roadway lies

above the arch and by hanging structures where the roadway

lies under the arch. The hanging structures are both vertical

lines as well as rope-like structures close to the center.

While the arch remains more or less unmodified during

mesh refinement, the joints between arch and roadway can

be resolved with much higher accuracy.

The impact of mesh refinement in terms of stiffness, mea-

sure of non-discreteness, degrees of freedom and runtime is

collected in Fig. 18. The already observed characteristics

are present here also: finer levels of mesh refinement yield

stiffer structures by simultaneously reducing the measure of

non-discreteness. Furthermore, the numerical advantage of

adaptive strategies is more pronounced for larger levels of

refinement, resulting in a runtime saving of more than one

order of magnitude for level 7.

4.4 Three-dimensional cantilever

We present a three-dimensional setting for a wall-fixed can-

tilever. The domain specifications and boundary conditions

as illustrated in Fig. 19 are used. Half of the domain is

computed and extended by symmetry boundary condition.

The domain is fixed at the rear while a downward-pulling

force is applied at the bottom front center. The simulation

parameters are chosen as indicated in Table 1.

In Fig. 20, the results after 200 optimization steps

are shown for full and adaptive refinement strategies.

Very similar final structures can be observed while the

computational mesh consists of less elements in the adaptive

case. Employing a regularization parameter adapted to the

mesh size allows to resolve finer structures on finer meshes

such as a thin material plane. In Fig. 21, the corresponding

statistics for the computation on the different mesh levels

are shown. Better stiffness and measure of non-discreteness

are obtained for finer meshes similar to the two-dimensional

cases. The runtimes on fine meshes are better for adaptive

refinement than for full refinement. This is in agreement

with the savings in degrees of freedom which become
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Fig. 14 L-shaped cantilever: Density distribution (material in red) for

uniform (left) and adaptive (center) meshing with the employed adap-

tive mesh (right) for the optimized structure at optimization step 200.

On every mesh level, the regularization parameter is chosen according

to the mesh size allowing more detailed structures on finer meshes
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(a) Stiffness over the optimization steps (left) and the final stiffness per mesh level (right)

(b) Measure of non-discreteness per step (left) and the final result per mesh level (right)

(c) Number of degrees of freedom (left) and the runtime (right) for adaptive and full meshing

Fig. 15 L-shaped cantilever: Comparing full and adaptive meshing for different maximal levels of refinement using a mesh adaption in every

optimization step in the adaptive case

significant for the finer resolutions. The results for a

fixed regularization parameter β = 0.08 are presented in

Fig. 22. Again, the adaptive meshing is capable to produce

qualitatively the same results as a fully refined mesh. The

fixed regularization parameter imposes a minimal structural

size as can be observed by the computed topologies on finer

meshes. The refinement only sharpens the resolution in this

case but does not allow to resolve more detailed structures.

112



Adaptive thermodynamic topology optimization

Fig. 16 Bridge-like setting: Domain specification and boundary

conditions

5 Conclusions

We presented a sophisticated study for the adaptive

treatment of the thermodynamic topology optimization. As

main finding, the stabilization parameter has to be chosen

in an elementwise fashion in order to allow small gradient

penalizations locally while maintaining stability globally.

This choice leads to qualitatively the same results as a

fully refined mesh with the same minimal mesh size but

the required degrees of freedom, memory consumption

and runtime are significantly reduced. Thus, by adaptive

mesh refinement and a locally chosen regularization, the

design space can be limited during the thermodynamic

topology optimization for computational savings while still

maintaining the search space broad enough to allow for

the same optimized structure as fully refined meshing. The

savings due to adaptivity become more dominant with finer

mesh resolution and we expect even larger savings for

very fine resolutions. The employment of fine meshes, as a

general rule of thumb, improves the stiffness of the obtained

structures.

In contrast, if the regularization parameter is fixed

globally to the smallest element size, checkerboarding is

observed and the iteration count of the employed geometric

multigrid solver is disadvantageously impacted. If the

regularization is chosen globally as a large value, this limits

the obtainable structure sizes to an internal length scale

although it provides mesh independent results. However, the

employment of fine meshes is not meaningful with a large

regularization since fine structures can not be computed

due to the imposed large internal length scale. From a

computational point of view, it is thus advisable to choose

for a given mesh the regularization large enough to maintain

stability but as small as admissible to compute as many

structural features as possible. This strategy requires to

shrink the regularization parameter with mesh refinement

and has been employed in this work. From a manufacturing

point of view, it is advisable to choose the regularization

parameter as fine as the minimal structural size which can

still be manufactured. The mesh size can then be chosen

accordingly and further refinement will not add more

structural details but only sharpen the structural boundary

representation. Adaptivity is used for computational savings

in this case.

χ (full mesh) χ (adaptive mesh) adaptive mesh

3
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5
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Fig. 17 Bridge-like setting: Density distribution (material in red) for

uniform (left) and adaptive (center) meshing with the employed adap-

tive mesh (right) for the optimized structure at optimization step

100. On every mesh level, the regularization parameter is chosen

according to the mesh size allowing more detailed structures on finer

meshes
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(a) Stiffness over the optimization steps (left) and the final stiffness per mesh level (right)

(b) Measure of non-discreteness per step (left) and the final result per mesh level (right)

(c) Number of degrees of freedom (left) and the runtime (right) for adaptive and full meshing

Fig. 18 Bridge-like setting: Comparing full and adaptive meshing for different maximal levels of refinement using a mesh adaption in every

optimization step in the adaptive case
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Fig. 19 3D cantilever: Domain specification and boundary conditions for the 3D optimization. The coarse finite element mesh L = 1 is shown

which is mirrored by symmetry boundary conditions

χ (full mesh) χ (adaptive mesh) adaptive mesh
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Fig. 20 3D cantilever: Density field after 200 optimization with a mesh size adapted regularization parameter β = 2h2. Shown are the elements

with values χ ≥ 0.5 for full and adaptive refinement with remeshing in every optimization step. Results are mirrored at the symmetry plane
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(a) Stiffness over the optimization steps (left) and the final stiffness per mesh level (right)

(b) Measure of non-discreteness per step (left) and the final result per mesh level (right)

(c) Number of degrees of freedom (left) and the runtime (right) for adaptive and full meshing

Fig. 21 3d cantilever: Comparing full and adaptive meshing for different maximal levels of refinement using a mesh adaption in every optimization

step in the adaptive case
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Fig. 22 3d cantilever: density field after 200 optimization with a fixed regularization parameter β = 0.08. Shown are the elements with values

χ ≥ 0.5 for full and adaptive refinement with remeshing in every optimization step. Results are mirrored at the symmetry plane

As an interesting mesh adaption variation, the interplay

between coarse and fine resolutions can be used to first

obtain a coarse initial global structure and then zoom into

relevant spots, e.g., at truss nodes, to resolve details with

higher mesh accuracy.
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