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Air Data Sensor (ADS) Fault Detetion and Diagnosis (FDD) is important for the

safety of airraft. In this paper, �rst an extension of the Robust Three-Step Kalman

Filter (RTS-KF) to nonlinear systems is made by proposing a Robust Three-Step

Unsented Kalman Filter (RTS-UKF). The RTS-UKF is found to be sensitive to the

initial ondition error when dealing with ADS fault estimation. A theoretial analysis of

this sensitivity is presented and a novel Adaptive Three-Step Unsented Kalman Filter

(ATS-UKF) is proposed whih is able to ope with not only the estimation of the ADS

faults but also the detetion and isolation of faults. The ATS-UKF ontains three steps:

time update, fault estimation and measurement update. This approah an redue the

sensitivity to the initial ondition error. Finally, the ADS FDD performane of the

ATS-UKF is validated using simulated airraft data. Additionally, its performane

is further validated using real �ight test data to demonstrate its performane under

realisti unertainties and disturbanes. The results using both the simulated data and

real �ight test data demonstrate the satisfatory FDD performane of the ATS-UKF

and verify that it an be applied in pratie to enhane the safety of airraft.
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Nomenlature

Ax, Ay, Az = linear aelerations along the body axis, m/s2

Axm, Aym, Azm = measurements of linear aelerations along the body axis, m/s2

T = thresholds for deteting faults

V = true airspeed, m/s

Vm, αm, βm = air data sensor measurements

f = output faults

f̂ = estimation of output faults

fV , fα, fβ = faults in the air data sensors

p, q, r = roll, pith and yaw rate along the body axis, rad/s

pm, qm, rm = measurements of roll, pith and yaw rate along the body axis, rad/s

α, β = angle of attak, sideslip angle, rad

αvm, βvm = angle of attak, sideslip angle measurements from the vane, rad

γ = innovation of the �lter

φ, θ, ψ = roll, pith and yaw angles along the body axis, rad

φm, θm, ψm = measurements of roll, pith and yaw angles along the body axis, rad

L, l, m, p = dimensions of the state, input, output and output faults, respetively

x̂, P = state estimate and its error ovariane matrix of the �lter

I. Introdution

P

resently, Fault Detetion and Isolation (FDI) has an important role in ahieving fault-

tolerane of airraft [1℄. During the past few deades, many approahes have been proposed

for sensor or atuator FDI [2�4℄. In aerospae engineering, the FDI of sensors and atuators for

�xed-wing airraft is widely studied, as an be found in Patton [1℄, Marzat et. al [5℄, and Hajiyev

and Caliskan [6℄. Investigation of the FDI for Unmanned Aerial Vehiles an also be found [5, 7℄.

For reent advanes, the reader is referred to Goupil [8℄ and Zolghadri [9, 10℄. The Air Data Sen-

sors (ADSs) measure the dynami pressure, airspeed, angle of attak and angle of sideslip of the

airraft, providing essential information on the airraft states to the pilot [11℄. The ADSs are usually
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installed outside the airraft fuselage and an su�er from iing or water aumulation, whih may

result in faults suh as blokage faults [12℄. These faults may negatively in�uene the information

provided to the pilot, whih an lead to atastrophi aidents. In the reent past, there have been

ommerial airraft aidents aused by ADS faults. Due to faults in the ADSs, the �ight rew

of Austral Lineas Aeroeas Flight 2553 improperly referened the airspeed indiator and indued a

struture failure by exeeding safe airspeed limits [13℄. More reently, the �nal report of the Air

Frane Flight 447 aident stated that erroneous airspeed measurements from the pitot probes were

a ontributing fator [14℄. Sine 2003, ommerial airraft have had more than 35 reorded ini-

dents of multiple ADS faults [13℄. There have also been aidents of military airraft aused by ADS

faults. The rash of a B-2 bomber is due to a large bias to the ADSs whih is aused by moisture

in the port transduer units [14℄. These fats indiates the importane of the fault detetion of the

ADSs.

The fault detetion of ADSs has been investigated in a number of studies [12, 15℄. Some

researhers propose to use alternative air data sensing systems suh as a �ush air-data sensing

system [15, 16℄. Nebula et. al propose a virtual air data system against ADS failures [17, 18℄. Looye

and Joos [19℄ propose to use the data from a navigation system to determine the air data information.

On the other hand, the faults of the ADSs an be deteted. Houk and Atlas [11℄ are one of the

�rst to analyze ADS faults. The limitation of their approah is that independent stati pressure

measurements are not always available in Unmanned Aerial Vehile (UAV) appliations [13℄. Cervia

et al. [20℄ and Eubank et al. [13℄ detet the faults using a multiple-redundany air data system. The

air data system studied by Cervia et al. is based on pseudo-quadruplex redundany whih employs

four self-aligning air data probes. Freeman et al. [12℄ investigate analytial redundany instead of

hardware redundany for the ADS fault detetion. They use a longitudinal dynamis model of the

airraft and two linear H∞ �lters are designed to detet the faults and provide robustness to model

errors.

Alternatively, the kinemati model an be used to detet the faults in the ADSs, thereby reduing

the in�uene of model unertainties aused by the alulation of the aerodynami fores and moments

[21, 22℄. Van Eykeren and Chu [23℄ use an adaptive Extended Kalman Filter to detet the faults
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in the ADSs. However, the estimation of the faults is not addressed in their work. In Lu et al.

[24℄, a Seletive-Reinitialization Multiple-Model Adaptive Estimation approah is proposed for the

ADS Fault Detetion and Diagnosis (FDD). The approah improved the FDD performane of the

Multiple-Model-based approahes. However, the omputational load of the approah is intensive

when dealing with simultaneous faults.

In this paper, a newly-developed Robust Three-Step Kalman Filter (RTS-KF) [25℄ is ombined

with the kinemati model to estimate the ADS faults. First, the RTS-KF is extended to ope with

nonlinear systems by proposing a novel Robust Three-Step Unsented Kalman Filter (RTS-UKF).

The RTS-UKF is able to redue linearization error. However, it is found that the RTS-UKF is

sensitive to the initial ondition errors. Seond, the sensitivity of this three-step Kalman Filter to

the initial ondition error is analyzed theoretially. It is proved that the RTS-UKF does not use

some of the measurements to update the state estimation whih auses the sensitivity to the initial

ondition error.

Finally, a novel Adaptive Three-Step Unsented Kalman Filter (ATS-UKF) is proposed whih

does not only estimate the ADS faults, but also detet and isolate the faults. The ATS-UKF

ontains three steps: time update, fault estimation and measurement update. The fault detetion

is performed before the fault estimation. This approah also redues its sensitivity to the initial

ondition. The fault detetion is performed by heking the innovation varianes. In the presene of

faults, the innovation variane inreases. If the innovation variane exeeds a pre-de�ned threshold,

then the fault alarm is triggered. The FDD performane of the ATS-UKF is tested using simulated

airraft data with the objetive of deteting, isolating and estimating ADS faults. Two di�erent

fault senarios (multiple faults and simultaneous faults) are implemented to test the performane

and the results demonstrate the satisfatory performane of the ATS-UKF. The fault types ontain

not only bias and drift fault, but also osillatory faults.

Furthermore, the FDD performane of the ATS-UKF is validated using real �ight test data of

a Cessna Citation II airraft. The sensor measurements from the real �ight test ontain biases and

unertainties and are suitable for testing the performane of the ATS-UKF. Di�erent fault senarios

are generated and the faults are injeted into the real �ight data. The ADS FDD results of the
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ATS-UKF demonstrate its performane and veri�ed that it an be applied in pratie to enhane

the safety of the airraft.

The struture of the paper is as follows: In Setion II, the ADS FDD problem is formulated.

The kinemati model inluding ADS faults is introdued. Setion III extends the RTS-KF to ope

with nonlinear systems by proposing the RTS-UKF. The RTS-UKF is applied to estimate the ADS

faults, whih turns out to be sensitive to the initial ondition. The sensitivity problem is analyzed

theoretially and a novel ATS-UKF is proposed to deal with not only the estimation of the ADS

faults, but also the detetion and isolation of the faults. The performane is tested using a simulated

airraft model. In Setion IV, the performane of the ATS-UKF is further validated using the real

�ight data of the Cessna Citation II airraft. The performane is shown and some remarks are

given. Finally, the onlusions are made in Setion V.

II. Air Data Sensor FDD using the kinemati model

The objetive of this paper is the FDD of the airraft ADSs. However, model-based approahes

are sensitive to model unertainties. In order to make the proposed approah more robust, the

kinemati model of airraft, whih does not involve the omputation of aerodynami fores and

moments, is used instead of the aerodynami model.

A. Airraft kinemati model with ADS faults

The kinemati model of the airraft inluding ADS faults is desribed as

ẋ(t) = f̄(x(t), um(t), t) +G(x(t))w(t) (1)

y(t) = h(x(t), um(t), t) + v(t) + F (t)f(t) t = ti, i = 1, 2, ... (2)

where x ∈ R
L
represents the system states, um ∈ R

l
the measured input, y ∈ R

m
the measurement.

The funtions f̄ and h are nonlinear funtions. G and F are the noise distribution matrix and

output fault distribution matrix. The funtion f ∈ R
p
represents output faults.
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The system equation variables are de�ned as follows:

x = [V α β φ θ ψ]T (3)

um = [Axm Aym Azm pm qm rm ]T = [Ax Ay Az p q r ]T + w (4)

y = [Vm αm βm φm θm ψm]T (5)

w = [wx wy wz wp wq wr ]T (6)

v = [vV vα vβ vφ vθ vψ]
T

(7)

f = [fV fα fβ]
T

(8)

where the input um is the Inertial Measurement Unit (IMU) measurement whih measures the linear

aelerations (Ax, Ay and Az) and angular rates (roll rate p, pith rate q, and yaw rate r) of the

airraft. y is the output measurement whih measures the air data information (true airspeed V ,

angle of attak α, and angle of sideslip β) and Euler angles (roll angle φ, pith angle θ, and yaw

angle ψ). [fV fα fβ ]
T
are the faults of the ADSs, i.e. fV , fα and fβ are the faults in the veloity

sensor, angle of attak sensor, and angle of sideslip sensor, respetively. It is assumed that there

are no faults in the Attitude and Heading Referene System whih measures the Euler angles and

the in�uene of hanging wind suh as turbulene is limited. Therefore, the input noise vetor w(t)

an be assumed to be a ontinuous time white noise proess while the output noise vetor v(t) an

be assumed to be a disrete time noise sequene.

E[w(t)] = 0

E[w(t)wT (tτ )] = Qδ(t− τ) , Q = diag(σ2
wx
, σ2

wy
, σ2

wz
, σ2

wp
, σ2

wq
, σ2

wr
), (9)

E[v(t)] = 0

E[v(ti)v
T (tj)] = Rδ(ti − tj) , R = diag(σ2

vV
, σ2

vα
, σ2

vβ
, σ2

vφ
, σ2

vθ
, σ2

vψ
), (10)

E[w(t)vT (ti)] = 0 , t = ti , i = 1, 2, ... (11)
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The kinemati model is given as follows [23, 24℄:

V̇ = (Axm − wAx − g sin θ
)

cosα cosβ + (Aym − wAy + g sinφ cos θ) sinβ

+ (Azm − wAz + g cosφ cos θ) sinα cosβ (12)

α̇ =
1

V cosβ

[

− (Axm − wAx) sinα+ (Azm − wAz) cosα+ g cosφ cos θ cosα

+ g sin θ sinα
]

+ qm − wq − [(pm − wp) cosα+ (rm − wr) sinα] tanβ (13)

β̇ =
1

V

[

− (Axm − wAx − g sin θ) cosα sinβ + (Aym − wAy + g sinφ cos θ) cosβ

− (Azm − wAz + g cosφ cos θ) sinα sinβ
]

+ (pm − wp) sinα− (rm − wr) cosα (14)

φ̇ = (pm − wp) + (qm − wq) sinφ tan θ + (rm − wr) cosφ tan θ (15)

θ̇ = (qm − wq) cosφ− (rm − wr) sinφ (16)

ψ̇ = (qm − wq)
sin φ

cos θ
+ (rm − wr)

cosφ

cos θ
(17)

and G(x(t)) is de�ned as:

G(x(t)) =









































− cosα cosβ − sinα cosβ − sinα cosβ 0 0 0

sinα/(V cosβ) 0 − cosα/(V cosβ) cosα tanβ −1 sinα tanβ

cosα sinβ/V − cosβ/V sinα sinβ/V − sinα 0 cosα

0 0 0 −1 − sinφ tan θ − cosφ tan θ

0 0 0 0 − cosφ sinφ

0 0 0 0 − sinφ/ cos θ − cosφ/ cos θ









































(18)

Therefore, the measurement model inluding the ADS faults is

Vm = V + fV + vV (19)

αm = α+ fα + vα (20)

βm = β + fβ + vβ (21)

φm = φ+ vφ (22)

θm = θ + vθ (23)

ψm = ψ + vψ (24)
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Table 1: Fault senario of multiple faults

Time interval Sensor Fault type Fault magnitude Fault unit

10 s < t < 20 s V bias 2 [m/s℄

30 s < t < 40 s α drift 0.01t [rad/s℄

50 s < t < 60 s β osillatory −2π sin(πt)/180 [rad℄

The measurement model an be rewritten into

y(t) = x(t) + F (t)f(t) + v(t), t = ti, i = 1, 2, ... (25)

where

F = [I3 03×3]
T

(26)

The objetive of the ADS FDD problem is to detet, isolate and estimate f = [fV fα fβ]
T
. This

paper assumes that there are no faults in the IMU sensors. If there are faults in the IMU sensors,

they an be deteted and estimated by other methods using another set of kinemati model [26℄.

B. Fault senarios for the ADS FDD

In this paper, two di�erent fault senarios are used to test the performane of the approahes.

The fault senario for multiple ADS faults is given in Table 1 while that for simultaneous ADS

faults is given in Table 2. The fault type, magnitude and unit are given in the table. The units of

the drift faults are given by the units of the drift rates. It an be seen that the fault types not only

ontains bias faults but also drift faults and osillatory faults.

C. State observability and fault reonstrutibility

This setion hek the observability of the system desribed by Eqs. (1) and (2). The observ-

ability analysis of the system an be performed by heking the rank of the following observability
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Table 2: Fault senario of simultaneous faults

Time interval Sensor Fault type Fault magnitude Fault unit

10 s < t < 20 s

V osillatory 2 sin(πt) [m/s℄

α drift 0.01t [rad/s℄

β drift −0.01t [rad/s℄

30 s < t < 40 s

V drift −0.2t [m/s

2
℄

α bias −2π/180 [rad℄

β osillatory −2π sin(πt)/180 [rad℄

matrix:

O =

























δxh

δx(Lf̄h)

.

.

.

δx(L
L−1
f̄

h)

























(27)

where the Lie derivative is de�ned as follows:

Lf̄h = δxh · f̄

.

.

. (28)

LL−1
f̄

h = δx(L
L−2
f̄

h) · f̄

It an be readily heked that O is of full rank. Therefore, the system state is observable. In

order to reonstrut the faults, additional onditions are required whih are given in (29).

III. Extension of the Robust Three-Step Kalman Filter

This setion extends the RTS-KF to estimate output faults. First, in Setion IIIA, the RTS-KF

is extended to nonlinear systems by proposing a RTS-UKF. This RTS-UKF is applied to the ADS

fault estimation problem and is found to be sensitive to the initial ondition errors. This sensitivity

problem is analyzed theoretially in Setion III B. Then, in Setion III C, an ATS-UKF is proposed

whih an detet, isolate and estimate the faults. Finally, the ATS-UKF is applied to the ADS FDD

problem in Setion IIID to demonstrate its FDD performane.
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A. Robust Three-Step Unsented Kalman Filter

The RTS-KF [25℄ an be used for output FDD. Consider the airraft kinemati model desribed

by Eqs. (1) and (2). For this system, sine the system state is observable, the existene ondition

of a RTS-KF is [25℄:

m ≥ p, rank Fk = p (29)

In this study, m = 6, p = 3 and rank Fk = 3. Therefore, a RTS-KF an be designed to estimate the

ADS faults.

However, the RTS-KF is designed for linear systems while the kinemati model is nonlinear.

Therefore, the RTS-KF needs to be extended to ope with nonlinear systems. The Unsented

Kalman Filter (UKF) is a nonlinear �lter whih an ahieve a better level of auray than the

Extended Kalman Filter (EKF) [27, 28℄. This setion extends the RTS-KF to nonlinear systems by

proposing a RTS-UKF.

Aording to the tehnique in Lu et al. [22℄, the RTS-UKF an be derived as follows:

Step1 Sigma points alulation and time update

X0,k−1 = x̂k−1|k−1 (30a)

Xi,k−1 = x̂k−1|k−1 − (
√

(L+ γ0)Pk−1|k−1)i, i = 1, 2, ..., L (30b)

Xi,k−1 = x̂k−1|k−1 + (
√

(L+ γ0)Pk−1|k−1)i, i = L+ 1, L+ 2, ..., 2L (30)

w
(m)
0 = γ0/(L+ γ0) (31a)

w
(c)
0 = γ0/(L+ γ0) + (1 − α2

0 + β0) (31b)

w
(m)
i = w

(c)
i = 1/{2(L+ γ0)}, i = 1, 2, ..., 2L (31)

with Xi,k−1 the sigma points of the states (dimension L) at step k − 1. w
(m)
i and w

(c)
i are

the weights assoiated with the ith point with respet to x̂k−1|k−1 and Pk−1|k−1, respetively.

γ0 = α2
0(L + κ)− L is a saling fator, α0 determines the spread of the sigma points around

x̂k−1|k−1, κ is a seondary saling fator, β0 is used to inorporate the prior knowledge of the

distribution of x. In this paper, κ = 0, α0 = 0.8 and β0 = 2.
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After the reation of the sigma points through the nonlinear transformation, the predited

mean and ovariane are omputed as follows

Xi,k|k−1 = Xi,k−1 +

∫ k

k−1

f̄(Xi,k−1, u(t), t)dt (32)

x̂k|k−1 =

2L
∑

i=0

w
(m)
i Xi,k,k−1 (33)

Pk|k−1 =
2L
∑

i=0

w
(c)
i [Xi,k|k−1 − x̂k|k−1][Xi,k|k−1 − x̂k|k−1]

T +Q (34)

X ∗
i,k|k−1 = [X0:2L,k|k−1 X0,k|k−1 − ν

√

Q X0,k|k−1 + ν
√

Q]i (35)

Y∗
i,k|k−1 = h(X ∗

i,k|k−1) (36)

ŷk =

2La
∑

i=0

w
∗(m)
i Y∗

i,k|k−1 (37)

Pxy,k =

2La
∑

i=0

w
∗(c)
i [Xi,k|k−1 − x̂k|k−1][Yi,k|k−1 − ŷk]

T
(38)

Pyy,k =

2La
∑

i=0

w
∗(c)
i [Yi,k|k−1 − ŷk][Yi,k|k−1 − ŷk]

T +R (39)

where La = 2L, ν =
√
L+ γ0 , w

∗(m)
i and w

∗(c)
i are alulated similar to Eq. (31) with the

replaement of L by La, Qd is approximated byG(x̂k|k−1)QG
T (x̂k|k−1)∆t where∆t = tk−tk−1

Step2 Estimation of the faults

γk = (yk − ŷk) (40)

Nk = (FTk P
−1
yy,kFk)

−1FTk P
−1
yy,k (41)

f̂k = Nkγk (42)

P fk = (FTk P
−1
yy,kFk)

−1
(43)

where γk is the innovation, f̂k is the estimation of fk and P fk is its error ovariane matrix.

Nk is the gain matrix whih an ahieve an unbiased estimation of fk.

Step3 Measurement update

Kk = Pxy,kP
−1
yy,k (44)

x̂k|k = x̂k|k−1 +Kk(yk − ŷk − Fkf̂k) (45)

Pk|k = Pk|k−1 −Kk(Pyy,k − FkP
f
k F

T
k )KT

k (46)
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This measurement update is di�erent from that of the normal UKF [22, 27℄ whih is given below

for omparison and quik referene:

Kk = Pxy,kP
−1
yy,k (47)

x̂k|k = x̂k|k−1 +Kk(yk − ŷk) (48)

Pk|k = Pk|k−1 −KkPyy,kK
T
k (49)

It an be seen that the measurement update of the normal UKF, as given by Eqs. (47)-(49),

does not take the fault estimation and error ovariane into aount. Also note that the normal

UKF does not estimate the faults, whih means that it does not ontain Eqs. (40)-(43).

The ADS fault estimation using the RTS-UKF is shown in the following.

ADS fault estimation using the RTS-UKF

The performane of the RTS-UKF will be demonstrated under di�erent initial onditions. The

simulation data is taken from the simulation model of a Cessna Citation II airraft. During 10 s

< t < 17 s. there is a 3-2-1-1 ommand on the aileron. The fault senario is given in Table 1. The

true initial state x0 is as follows:

x0 = [90, 0.056, 0, 0, 0.0037, 0]T (50)

First, the true initial ondition (50) is used as the initial guess x̂0 in the �lter. P0 = 10−3 · I6. The

standard deviations of the measurement noises are:

σwx = σwy = σwz = 0.001 m/s

2

σwp = σwq = σwr = 0.000018 rad/s

σvV = 0.1 m/s, σvα = σvβ = 0.0018 rad

σvφ = σvθ = σvψ = 0.0018 rad

Therefore, Q and R an be inferred from Eqs. (9) and (10). The results are shown in Fig. 1.

The estimation errors of V , α and β, as shown in Fig. 1(a), are lose to zero-mean. The

estimation errors of φ, θ and ψ using the RTS-UKF are given in Fig. 1(b). It an be seen that the

estimation errors are zero-mean exept during the period when there is a maneuver (10 s < t < 17

12
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Fig. 1: Result of state and ADS fault estimation using the RTS-UKF approah and initial

ondition(50) in the presene of multiple faults

s). However, during this period the estimation errors are small, e.g., the maximum estimation error

of φ is less than 2×10−3
rad.

The estimation of fV , fα and fβ is given in Fig. 1(). As an be seen, all the faults are estimated

in an unbiased sense. The estimation errors an be found in Fig. 1(d).

Next, the performane with two di�erent initial onditions for x̂0 is tested. The two initial

onditions are as follows:

x̂0 = [90, 0, 0, 0, 0, 0]T , (51)

x̂0 = [1, 0, 0, 0, 0, 0]T . (52)

The initial ondition (52) signi�antly deviates from the true initial ondition (50) whereas
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ondition (51) slightly deviates from ondition (50). P0 is the same with the previous simulation

and is 10−3 · I6.

The state estimation errors of the RTS-UKF using the initial ondition Eq. (51) are shown in

Fig. 2(a) and 2(b). As an be seen from Fig. 2(a), the estimation errors of V , α and β are larger

than those shown in Fig. 1(a). The estimation errors of φ, θ and ψ, shown in Fig. 2(b), are the

same as those shown in Fig. 1(b).

The state estimation errors of the RTS-UKF using the initial ondition Eq. (52) are shown in

Fig. 2() and 2(d). The estimation errors of V , α and β, shown in Fig. 2(), are signi�antly worse

than those shown in Fig. 1(a) and Fig. 2(a). However, the estimation errors of φ, θ and ψ, shown

in Fig. 2(d), are still zero-mean.

The estimates of fV , fα and fβ using the initial ondition Eqs. (51) and (52) are demonstrated

in Fig. 2(e) and 2(f) respetively. As an be seen from Fig. 2(e), when the initial x0 deviates from

the true state, the estimates of the faults also deviate from their true magnitudes espeially that of

fα. When the initial ondition deviates signi�antly from the true initial ondition, the performane

beomes signi�antly worse, as an be seen in Fig. 2(f).

Based on the above simulation results, it is seen that the RTS-UKF is sensitive to the initial

ondition errors. This sensitivity problem will be analyzed theoretially in the following setion.

B. Problem analysis of the robust three-step �lter

In the previous setions, it was shown that the performane of the RTS-UKF is in�uened by the

given initial ondition. This setion analyzes the problem of the sensitivity to the initial ondition.

Rewrite Eq. (45) into

x̂k|k = x̂k|k−1 + Lkγk (53)

where Lk is de�ned as

Lk := Kk(I − FkNk) (54)

The ovariane matrix Pxy,k, fault distribution matrix Fk, the innovation γk and x an be
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partitioned as follows:

Pxy,k =









P11 P12

P21 P22









, Fk =









Ip

0









,

γk =









γp

γm−p









, x =









xp

xL−p









(55)

Sine Pyy,k is invertible, its inverse an be partitioned as follows:

P−1
yy,k =









R̃11 R̃12

R̃21 R̃22









(56)

where R̃11 ∈ R
p×p

, R̃12 ∈ R
p×(m−p)

, R̃21 ∈ R
(m−p)×p

and R̃22 ∈ R
(m−p)×(m−p)

. Therefore, Eq. (41)

an be omputed by

Nk = [R̃−1
11 0]









R̃11 R̃12

0 0









=

[

Ip R̃−1
11 R̃12

]

(57)

Substituting Eq. (57) into Eq. (54), it follows

Lk = Pxy,kP
−1
yy,k









0 −R̃−1
11 R̃12

0 Im−p









(58)

=









0 L12

0 L22









(59)

where L12 and L22 are de�ned as

L12 := P12(R̃22 − R̃21R̃
−1
11 R̃12)

L22 := P22(R̃22 − R̃21R̃
−1
11 R̃12)

Therefore, the measurement update of the robust three-step �lter, denoted in Eq. (53), an be

further written as follows:

x̂k|k = x̂k|k−1 +









L12γm−p

L22γm−p









(60)
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It an be seen that γp is not used in the measurement update. Sine γp is not used, the estimation of

xp is not updated by measurements of xp. Therefore, the estimation of xp(V , α and β), is sensitive

to the initial ondition. If the initial x0 signi�antly deviates from the true value, it will not be

orreted to the true value. However, the estimation of φ, θ and ψ is not in�uened sine they

are updated by the measurement. This is onsistent with the result shown in Figs. 2(b) and 2(d),

where the estimation of φ, θ and ψ is still good even when that of V , α and β is not.

In ase that p = m and rank Fk = m, it an be found that

Nk = F−1
k (61)

Lk = 0 (62)

Consequently, the measurement update of the three-step Kalman �lter is

x̂k|k = x̂k|k−1 (63)

This means that all the states are not updated by their measurements. In this situation, all the

state estimation will be sensitive to the initial ondition.

Through the analysis in this setion and the performane demonstration of the RTS-UKF in

Setion IIIA, the need for a modi�ation of the RTS-UKF is emphasized. In real life, the exat

initial ondition is di�ult to obtain due to unertainties in the system (whih an also be found in

Setion V). The RTS-UKF will interpret the initialization error as a fault, whih results into wrong

fault estimation. Therefore, the RTS-UKF an not be applied to the FDD of the ADSs.

C. Novel Adaptive Three-Step Unsented Kalman Filter for ADS FDD

Having found the ause for performane degradation of the RTS-UKF, this setion proposes a

novel ATS-UKF to solve the ADS FDD. The sensitivity to the initial ondition of the RTS-UKF

an be solved by performing the measurement update of normal UKF.

It should be noted that the RTS-UKF only onsiders the estimation of the faults. It does not

detet and isolate the faults. The proposed ATS-UKF deals with not only the estimation of the

faults, but also the detetion and isolation.
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In the following, the initial measurement update and FDI sheme are introdued. Then the

omplete FDD system is introdued.

1. Initial measurement update

The solution to redue the sensitivity of the RTS-UKF to the initial ondition is proposed in

this subsetion, whih is to use the measurement update of normal UKF (Eqs. (47)-(49)) when the

state estimation is in�uened by the initialization error. However, when the orretion is su�ient,

i.e., when the measurement update of the UKF is su�ient, needs to be determined. This paper

proposes a riteria whih an determine whether the measurement update of the UKF is su�ient.

The details are given as follows:

Let Cii,k, i = 1, 2, 3 denote the ith diagonal elements of the innovation ovariane matrix Ck

assoiated with the measurements whih are not used in the update of the RTS-UKF at time step

k. (i.e., the measurement of V , α and β respetively in this paper).

De�ne the hange of the innovation variane ∆Cii,k as

∆Cii,k := Cii,k − Cii,k−1, i = 1, 2, 3. (64)

When the following inequality holds, the measurement update an be regarded as su�ient.

The inequality is

∆Cii,k < ηi, i = 1, 2, 3. (65)

where ηi, i = 1, 2, 3 are pre-de�ned onstants whih an be tuned to stop the measurement update.

The priniple is that if there are initialization errors, Cii,k is not onstant. When the �lter ahieves

steady-state, Cii,k is approximately onstant. Therefore, ∆Cii,k should be small. If ∆Cii,k is smaller

than ηi, then it indiates that the �lter has reahed steady-state and the measurement update of

the UKF is su�ient. If ηi is hosen to be small, then the number of initial measurement update

will be bigger while the in�uene of the initial ondition error will be less. Ck an be estimated

using the following [29, 30℄:

Ĉk =
1

N

k
∑

j=k−N+1

γjγ
T
j (66)

where γj denotes the innovation at time step j.
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2. Fault Detetion and Isolation

The fault detetion is performed by monitoring the innovation variane of the �lter. In the

presene of ith fault, Cii,k inreases. The fault detetion and isolation logi at time step k is:

if Cii,k > Ti, FAi = 1. otherwise FAi = 0, i = 1,2,3.

where FA = [FAV FAα FAβ ]
T
are the alarm indiators. Ti are the thresholds whih are designed

to detet the faults in the V , α and β sensors respetively. These thresholds are designed based on

the fault-free ase. It an be seen that the fault detetion and isolation are simultaneously realized.

The weighted fault estimation an be alulated as follows:

f̄i,k = FAi f̂i,k, i = 1, 2, 3. (67)

3. Adaptive Three-Step Unsented Kalman Filter

When the initial measurement update is su�ient, there are two options to ahieve FDD whih

are as follows:

1. After the initial measurement update, the FDI sheme is used to detet and isolate the faults.

The RTS-UKF is used to estimate the faults.

2. After the initial measurement update, the FDI sheme is used to detet and isolate the faults.

If there are no faults deteted, the UKF is used and the fault estimation is onsidered to be

zero. If there are faults deteted, then the RTS-UKF is used for the fault estimation and

measurement update.

The ATS-UKF proposed in this paper, is based on the latter one sine it an redue the ompu-

tational load. The measurement update of the ATS-UKF swithes adaptively between that of the

normal UKF and that of the RTS-UKF through the FDI sheme. The spei� three steps of the

ATS-UKF are given as follows:

1. Time update

This is the same as in the UKF, whih also inludes the sigma point alulation. The steps

are desribed by Eqs. (30)- (39).
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2. Fault estimation

Before estimating the faults, the FDI, whih has been introdued above, is performed. If

FA = 0, then f̂k = 0. If FA 6= 0, then the faults are estimated using the RTS-UKF, whih is

desribed by Eqs. 40-(43). This step is the FDD.

3. Measurement update

As mentioned, during the initial measurement update, the measurement update of the normal

UKF is applied. When the initial measurement update is done, the measurement update of

the ATS-UKF is as follows:

(a) If FA = 0, use the the measurement update of the normal UKF.

In this situation, there are no faults deteted in the system. To redue the omputational

load, the measurement update of the UKF is used. This means that the faults are

onsidered to be zero, so that the faults estimation and measurement update of the

RTS-UKF are not needed. The steps are desribed by Eqs. (47)-(49).

(b) If FA 6= 0, use the measurement update of the RTS-UKF.

In this situation, faults are deteted. Therefore, the measurement update of the

RTS-UKF is needed to obtain an unbiased state estimation and fault estimation, whih

an not be ahieved using the normal UKF. The steps are desribed by Eqs. (44)-(46).

D. ADS FDD using the ATS-UKF

In this setion, the FDD as well as the state estimation performane of the proposed ATS-UKF

is demonstrated using two di�erent fault senarios. The initial ondition is the same as in Eq. (52).

The threshold to stop the initial measurement update is η = [5 × 10−3, 2 × 10−5, 2 × 10−5]T and

the threshold to detet the fault is T = [0.2, 1× 10−4, 5× 10−5]T .

1. Multiple FDD

In this senario, onseutive ADS faults are generated, whih are shown in Table 1. The results

using the ATS-UKF are shown in Fig. 3.
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Fig. 3: Result of state estimation and ADS FDD using the proposed ATS-UKF approah in the

presene of multiple faults

It is found that using the above thresholds, the initial measurement update is only performed for
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two time steps. The estimation of V , α and β is shown in Fig. 3(a). Despite the fat that the initial

x0 signi�antly deviates from the true state, the estimation is still satisfatory. This means that

the sensitivity to the initial ondition of the RTS-UKF is takled by the ATS-UKF. The estimation

of φ, θ and ψ, as shown in Fig. 3(b), is also satisfatory. This demonstrates the state estimation

performane of the ATS-UKF.

The fault detetion and isolation is ahieved by heking FAV , FAα and FAβ , whih is shown

in Fig. 3(). From the �gure, it an be seen that fV is deteted instantaneously. The detetion of

fα takes longer than that of fV . This is beause fα is a drift fault whih is a slow time-varying

fault. fβ is also deteted instantaneously. However, FAβ swithes from 1 to 0 nine times. This is as

expeted sine the osillatory fault rosses zero nine times. When the magnitude of the fault is zero,

it an be regarded as no fault. From the �gure, it is obvious that fault isolation is also ahieved.

For instane, when FAV = 1, both FAα and FAβ are equal to zero, whih means only fV ours.

The estimation of fV , fα and fβ is shown in Fig. 3(d). As an be seen, all the faults are estimated

in an unbiased sense. The weighted fault estimation, alulated using Eq. (67), is shown in Fig. 3(e).

The error of the estimation of fV , fα and fβ is shown in Fig. 3(f). It is seen that all the estimation

errors are zero-mean. This demonstrates the fault estimation performane of the ATS-UKF. It is

also notied that when there are no faults or the faults are not deteted, the estimates of the fault

are zero and so are the estimation errors. This is due to the fat that when there are no faults

deteted, the measurement update of the UKF is used and the faults are onsidered to be zero.

The fault detetion of the osillatory faults, shown in Fig. 3(), shows a hattering behavior.

To detet the presene of osillatory failures, the detetion logi of osillatory faults in Goupil [31℄

is used. The basi idea is to ount the rossings of the fault estimate (shown in Fig. 3(e)) through

a positive and negative threshold within a sliding time window. In this paper, the osillatory faults

are deteted if one full osillation is deteted. The result of deteting the osillatory fault is shown in

Fig. 4(a). In the �gure, OFC denotes osillatory failure ase (OFC). As an be seen, an osillatory

fault is only deteted in the β sensor. If we take the bigger value of FAi and OFCi (i is assoiated

with the sensor of V , α and β), the fault detetion inluding the detetion of the osillatory fault

an be obtained, whih is demonstrated in Fig. 4(b). In the �gure, the red dashed line indiates
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Fig. 4: Result of fault detetion and isolation using the proposed ATS-UKF approah in the

presene of multiple faults

that the deteted fault is an osillatory fault.

2. Simultaneous FDD

In this senario, simultaneous faults are generated whih are shown in Table 2. The ATS-UKF

is used to detet, isolate and estimate these faults. The results are given in Fig. 5.

The estimation of V , α, β and φ, θ and ψ using the ATS-UKF is shown in Fig. 5(a) and

Fig. 5(b), respetively. As an be seen, even in the presene of simultaneous faults, the state

estimation performane of the ATS-UKF is still satisfatory.

The fault detetion and isolation performane is shown in Fig. 5(). As an be seen, there are

no false alarms, whih demonstrates its good performane. For the detetion of fα and fβ during

10 s< t < 20 s, and fV during 30 s< t < 40 s, there are detetion delays sine there are drift faults.

The red dashed lines in the �gure indiate that the deteted faults are osillatory faults.

Fig. 5(d) and 5(e) show the estimation and weighted estimation of fV , fα and fβ , respetively.

It an be seen that the fault estimation performane is satisfatory. All faults are estimated in an

unbiased sense inluding the osillatory faults. The estimation error of fV , fα and fβ is shown in

Fig. 5(f). It an be seen that the error is zero-mean, whih on�rms the good estimation performane
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Fig. 5: Result of state and ADS FDD using the proposed ATS-UKF approah in the presene of

simultaneous faults

of the ATS-UKF.
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IV. Performane validation using real �ight data

In the previous setion, the FDD performane of the ATS-UKF is tested using simulated airraft

data. In this setion, the FDD performane of the ATS-UKF is validated using real �ight test data

of the Cessna Citation II airraft. Air data information suh as α and β are measured for post �ight

analysis. The real �ight data ontains unertainties suh as biases and spikes. Additionally, in real

�ight, external disturbanes, suh as hanging wind, an also in�uene the air data measurements.

Therefore, the real �ight data poses hallenges to the ADS FDD problem and provides a realisti

validation of the performane of FDD approahes suh as the ATS-UKF.

The primary objetive of the �ight test is aerodynami model identi�ation where a number of

maneuvers were performed by the airraft in order to obtain su�ient exitation. Sine there were

no faults during the �ight, sensor faults are injeted into the real �ight data to validate the FDD

performane of the ATS-UKF. Besides the fault senarios presented in Tables 1 and 2, a fault-free

ase is also studied.

The real �ight data used in this paper is the same as that in Lu et. al [26℄. In Lu et. al,

the estimated wind turns out to be time varying. This an test the ADS FDD performane of the

ATS-UKF under the ondition of winds.

The update rates of the on-board sensors are given in Table 3.

Table 3: Update frequenies of di�erent measurements

Measurements Unit Update frequeny

V [ m/s ℄ 100 Hz

un, vn, wn [ m/s ℄ 1 Hz

α, β [ rad ℄ 100 Hz

φ, θ [ rad ℄ 100 Hz

ψ [ rad ℄ 10 Hz

A. Real-life measurement model

For simulated airraft data, the measurement model is given in Eqs. (19) - (24). If f = 0,

the measurements are only orrupted by white Gaussian noises, as an be seen from the equations.

25



However, this is never the ase in real life. In this �ight test, the air data information, suh as α

and β, is measured by multiple vanes on a boom (shown in Fig. 6) whih is mounted on the nose

of the airraft. The angle of attak and angle of sideslip measured by the vanes are denoted by

αvm and βvm, respetively. The measurements αvm and βvm is di�erent from Eqs. (20) and (21),

respetively. The measurement model for the real-life measurements is given as follows [32�34℄:

Vm = V + vV (68)

αm = Cα0 + (1 + Cup)α +
xαq

V
+ vα (69)

βm = Cβ0 + (1 + Csi)β − xβr

V
+
zβp

V
+ vβ (70)

φm = φ+ vφ (71)

θm = θ + vθ (72)

ψm = ψ + vψ (73)

where xα, xβ and zβ are the position of the vanes in the body frame, Cα0, Cβ0, Cup and Csi are the

boom orretion parameters. In this paper, zβ is assumed to be zero. The parameter estimation

an be found in Lu et al. [34℄. For the ADS FDD using real �ight data, this measurement model

is used. However, it should be noted that in this real-life measurement model, boom bending is

onsidered to be negligible for the maneuvers �own.

Fig. 6: The vanes on the boom for measuring the angle of attak and angle of sideslip. Photo

redits by Daan Pool.
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B. ADS FDD using real �ight data in the absene of faults

Using the real-life measurements, unertainties and disturbanes suh as varying winds an also

have a negative in�uene on the FDD performane, whih an result in false alarms. Under this

ondition, the FDD approahes should not give false alarms. In this setion, the ATS-UKF is tested

in a fault-free ase to verify whether it gives false alarms.

In order to show the e�etiveness of the ATS-UKF, the RTS-UKF is also applied to estimate

the ADS faults. The initial ondition x0 given for the RTS-UKF is the �rst measurement whih is:

[104.8733, 0.0796, 0.0073, −0.0019, 0.0733, 4.6692]T (74)

The initial ondition x0 given for the ATS-UKF is:

[1, 0, 0, 0, 0, 0]T (75)

In this manner, the initial ondition given for the RTS-UKF is lose to the true state whereas

that of the ATS-UKF signi�antly deviates from the true state. The threshold to stop the initial

measurement update is η = [5 × 10−3, 2 × 10−5, 2 × 10−5]T and the threshold to detet the fault

is T = [0.2, 1× 10−4, 5× 10−5]T , whih are the same as those used in the previous setion.

The estimation of V , α and β using the RTS-UKF is given in Fig. 7(a). The fault estimation

using the RTS-UKF is given in Fig. 7(b). As an be seen, the estimated faults deviate from their

true magnitudes. This result shows that the RTS-UKF is not able to be applied for real appliations

unless modi�ations are made.

The results of the ATS-UKF are shown in Figs. 7() - 7(f). The estimation of V , α and β, and φ,

θ and ψ are shown in Fig. 7() and 7(d) respetively. The estimates of α and β using the ATS-UKF

are di�erent from those using the RTS-UKF. The fault detetion result, shown in Fig. 7(e), indiates

that there are no faults. This demonstrates that the ATS-UKF does not give false alarms in the

presene of no faults even when the real �ight data is used. The weighted estimates of fV , fα

and fβ, shown in Fig. 7(f), are zero-mean. This on�rms the fault estimation performane of the

ATS-UKF.
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Fig. 7: State estimation and ADS FDD of the real-life measurement model of the airraft using

the RTS-UKF and the ATS-UKF approah in the absene of faults
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C. ADS FDD using real �ight data in the presene of multiple faults

In this subsetion, the ADS FDD performane of the ATS-UKF will be veri�ed using the real-

life measurement model in the presene of multiple faults (given in Table 1). The initial ondition

for RTS-UKF is the same as in (74) and that of the ATS-UKF is the same as in (75).

The results using these two approahes are shown in Fig. 8.

The estimation of V , α and β using the RTS-UKF is shown in Fig. 8(a). The fault estimation is

shown in Fig. 8(b). Although the initial ondition of the RTS-UKF is hosen to be the measurements,

the estimation of the faults are still biased. This shows the drawbak of the RTS-UKF when it is

used in pratie beause the initial ondition error will be estimated as a bias fault.

The estimation of V , α, β and φ, θ, ψ using the ATS-UKF is presented in Fig. 8() and 8(d)

respetively. It an be seen that the estimates of α, β are again di�erent from those of the RTS-UKF

shown in Fig. 8(a).

The fault detetion and isolation using the ATS-UKF is given in Fig. 8(e). No false alarms are

generated and the isolation is also orret. It an be seen that the performane is as good as that in

Fig. 4(b) where the simulation data is used. The osillatory fault is also deteted, whih is shown

by the red dashed line.

The weighted estimation of fV , fα and fβ using the ATS-UKF is presented in Fig. 8(f). Even

though the initial ondition of the ATS-UKF deviates from the true state signi�antly, its perfor-

mane is not sensitive to the initial ondition. Sine the faults are estimated in an unbiased sense,

the estimates of α, β using the ATS-UKF are more reliable than those using the RTS-UKF.

D. ADS FDD using real �ight data in the presene of simultaneous faults

In this subsetion, simultaneous faults (given in Table 2) are injeted into the real �ight data

to validate the performane of the ATS-UKF. The result of the RTS-UKF is also presented, whih

is given in Fig. 9. From this �gure, it is seen the fault estimation of the RTS-UKF is again biased

although the initial x0 is hosen to be the measurements. This highlights the limitation of the

RTS-UKF when used in reality.

The results using the ATS-UKF is shown in Fig. 10. The state estimation is presented in
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Fig. 8: State estimation and ADS FDD of the real-life measurement model of the airraft using

the RTS-UKF and the ATS-UKF approah in the presene of multiple faults
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Fig. 9: ADS FDD of the real-life measurement model of the airraft using the RTS-UKF approah

in the presene of simultaneous faults

Fig. 10(a) and 10(b) respetively.

The fault detetion and isolation using the ATS-UKF is shown in Fig. 10(). No false alarms

are observed from the �gure and the osillatory faults are also deteted. The performane is as good

as that in Fig. 5() where the simulation data is used. This on�rms the FDI performane of the

ATS-UKF.

Estimation and weighted estimation of fV , fα and fβ using the ATS-UKF are shown in Fig. 10(d)

and 10(e), respetively. All fault estimates ahieve an unbiased estimation. The fault estimation

errors are demonstrated in Fig. 10(f). Although the errors are not zero-mean, they are small

ompared to the states.

V. Conlusions

This paper deals with the Air Data Sensor (ADS) Fault Detetion and Diagnosis (FDD) of

airraft. First, the Robust Three-Step Kalman Filter (RTS-KF) is extended to the Robust Three-

Step Unsented Kalman Filter (RTS-UKF) to ope with nonlinear systems. Seond, the RTS-UKF is

found to be sensitive to the initial ondition. The problem is analyzed theoretially and subsequently,

a novel Adaptive Three-Step Unsented Kalman Filter (ATS-UKF) is proposed to detet, isolate

and estimate the ADS faults. The ATS-UKF ontains three steps: time update, fault estimation
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Fig. 10: State estimation and ADS FDD of the real-life measurement model of the airraft using

the ATS-UKF in the presene of simultaneous faults

and measurement update. The ATS-UKF is validated using simulated airraft data, whih shows
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good FDD performane.

The performane of the ATS-UKF is further validated using real �ight data of the Cessna

Citation II airraft to test its performane under real-life unertainties. It was found that although

the measurement data ontains biases whih an not be removed ompletely and the initial ondition

is far from the true state, the ATS-UKF is still able to maintain its satisfatory FDD performane.

This demonstrates that it an be applied in pratie.

This ATS-UKF, whih deals with ADS FDD, an be inorporated into Fault Tolerant Control

(FTC) systems to further enhane the safety of the airraft. It an detet faults without giving false

alarms. In addition, it an provide both unbiased state estimation and fault estimation, whih are

important for the reovery from sensor faults.

In the future, the ATS-UKF should be integrated into a FTC system. Finally, it is highly

reommended that a real-world �ight experiment is designed and exeuted to detet and estimate

ADS faults in airraft during �ight.
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