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Adaptive Threshold Modulation for
Error Diffusion Halftoning
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Abstract—Grayscale digital image halftoning quantizes each
pixel to one bit. In error diffusion halftoning, the quantization
error at each pixel is filtered and fed back to the input in order to
diffuse the quantization error among the neighboring grayscale
pixels. Error diffusion introduces nonlinear distortion (directional
artifacts), linear distortion (sharpening), and additive noise.
Threshold modulation, which alters the quantizer input, has been
previously used to reduce either directional artifacts or linear
distortion. This paper presents an adaptive threshold modulation
framework to improve halftone quality by optimizing error diffu-
sion parameters in the least squares sense. The framework models
the quantizer implicitly, so a wide variety of quantizers may be
used. Based on the framework, we derive adaptive algorithms
to optimize 1) edge enhancement halftoning and 2) green noise
halftoning. In edge enhancement halftoning, we minimize linear
distortion by controlling the sharpening control parameter. We
may also break up directional artifacts by replacing the thresh-
olding quantizer with a deterministic bit flipping (DBF) quantizer.
For green noise halftoning, we optimize the hysteresis coefficients.

Index Terms—Adaptive quantization, halftoning, limit cycles,
raster image processing.

I. INTRODUCTION

D
IGITAL image halftoning quantizes a grayscale image to

one bit per pixel for display and printing on binary de-

vices. In halftoning by error diffusion [1], the quantization error

is linearly filtered and fed back to the input in order to diffuse

the quantization error among neighboring grayscale pixels, as

shown in Fig. 1(a). Traditionally, the error filter has a finite

impulse response (FIR) and the quantizer is a thresholding de-

vice with a fixed threshold at mid-gray. Error diffusion degrades

the original image by nonlinear distortion (limit cycles), linear

distortion (sharpening), and additive noise. The additive noise

is shaped to be either highpass (i.e., blue noise) or bandpass

(i.e., green noise). For conventional error diffusion, as shown

in Fig. 1(a), the shape of the additive noise is highpass. The

frequency distortion depends primarily on the error filter being

used. Limit cycles appear as directional artifacts [2], and are

common in sigma–delta modulation methods such as error dif-

fusion [3].
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Threshold modulation alters the quantizer input, e.g., to re-

duce directional artifacts or linear distortion. Fig. 1(b) and (c)

shows two examples of threshold modulation—edge enhance-

ment error diffusion and green noise halftoning. In green noise

halftoning [4], [5], a filtered version of the output is added to

the input of the quantizer. This approach clusters halftone dots

so that the halftone would be more robust to ink spread and

dot gain when printed. Edge enhancement error diffusion is ex-

plained next.

The Floyd–Steinberg error filter, which is shown in Fig. 2(a),

is a simple nonseparable filter with four dyadic coefficients.

Floyd–Steinberg halftones exhibit modest sharpening with re-

spect to the original grayscale image. The longer Jarvis [6], [7]

and Stucki [8] error filters, which are shown in Fig. 2(c) and (d),

exhibit significant sharpening of the original image.

In edge enhancement error diffusion, Eschbach and Knox [9]

modify conventional error diffusion to adjust halftone sharp-

ness, as shown in Fig. 1(b). Their threshold modulation method

scales the image by a constant and adds the result to the

quantizer input. As increases, the sharpness of the resulting

halftone increases. In a global sense, one value of exists that

minimizes sharpening, assuming that the image is wide sense

stationary and the input and output of the quantizer are jointly

wide sense stationary [10]. Smaller values of would cause

blurring, and larger values would cause sharpening, with respect

to the original grayscale image. Hence, can be set to reduce

linear distortion.

Kite et al. [10], [11] develop a formula for the globally

optimal value of that causes the signal components to be

rendered in the halftone without sharpening when using a

thresholding quantizer. The quantizer is modeled as a linear

gain plus uncorrelated noise. If the gain value is chosen to be

the linear minimum mean square error (LMMSE) estimator of

the quantizer output [10], [12], then the error is guaranteed to

be uncorrelated with the quantizer input. Since the model lin-

earizes the quantizer, halftoning may be analyzed using linear

system theory. The linear gain value affects signal shaping in

error diffusion and the additive uncorrelated noise affects the

noise shaping [10], [12]. The linear gain value does not signifi-

cantly affect the noise-shaping behavior of error diffusion [3],

[10]. This approach assumes that the input and output of the

quantizer are jointly wide sense stationary stochastic processes.

Since we must approximate statistical averages with sample

averages, computing the LMMSE estimator is computationally

intensive.

In the most general case, the optimal value of for sharpness

compensation depends on

1) error filter coefficients ;
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(a) (b)

(c)

Fig. 1. Block diagrams for various forms of error diffusion. (a) Error diffusion halftoning with a standard thresholding quantizer. (b) Edge enhancement error
diffusion halftoning with a standard thresholding quantizer and scalar gain L. (c) Green noise error diffusion halftoning with standard thresholding quantizer,
hysteresis 2–D FIR filter F , and scalar gain G.

(a) (b)

(c) (d)

Fig. 2. Common error filters for error diffusion. (a) Floyd–Steinberg (raster),
(b) Floyd–Steinberg (serpentine), (c) Jarvis (raster), and (d) Stucki (raster).

Fig. 3. Generalized error diffusion with threshold modulation.

2) quantizer function ;

3) input grayscale image.

This suggests a low complexity spatially adaptive algorithm for

estimating the optimal value for to give a what-you-see-is-

what-you-get (WYSIWYG) halftone. We define a WYSIWYG

halftone as a halftone that preserves the average sharpness of

the original grayscale image. This paper develops a framework

Fig. 4. Deterministic bit flipping quantizer.

Fig. 5. Original grayscale Lena image.

for spatially adaptive algorithms using adaptive threshold mod-

ulation. We show that the adaptive algorithm developed in this

paper converges in the mean to the optimal value of if the

input and output of the quantizer are jointly wide sense sta-

tionary (WSS), and the input image is WSS. In a nonstationary

environment, the algorithm tracks local variations in the input

image.

Three different approaches modify Floyd–Steinberg error dif-

fusion to reduce directional artifacts [6]–[8]. The first approach
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uses longer error filters such as Jarvis [6], [7] and Stucki [8] fil-

ters. The second approach uses nonraster scans [13], [14]. A ser-

pentine scan, which scans odd rows from left to right and even

rows from right to left, reduces horizontal artifacts. However,

it does not reduce artifacts from other directions and may add

artifacts not seen in a raster scan [15]. The third approach uses

threshold modulation. One type of threshold modulation adds

dither (low-amplitude noise) to the quantizer input [15], [16] to

break up limit cycles. Adding dither [17], however, adds noise in

the halftone. It also increases computational complexity because

the pseudo-random numbers either have to be generated on-line

or stored in a long array. In a second type of threshold modula-

tion, Wong [18] designs an adaptive algorithm to minimize the

quantization error using a weighted mean-squared error (MSE).

These halftones have better visual quality than those generated

by adding dither.

In this paper, we present a framework for the on-line least

squares optimization of error diffusion parameters to improve

halftone quality. Because the framework uses an implicit

LMMSE estimator for the quantizer function, a wide variety

of quantizers can be used. Based on the framework, we derive

adaptive algorithms to optimize two threshold modulation

methods for error diffusion: 1) edge enhancement halftoning

and 2) green noise halftoning. For green noise halftoning, the

algorithm optimizes the hysteresis coefficients for optimal

distribution of dots of a specified size. In this case, the algo-

rithm is shown to converge when the input and output of the

quantizer are jointly WSS. For edge enhancement halftoning,

the algorithm adapts to minimize linear frequency distortion

(sharpening) to obtain WYSIWYG halftones. We demonstrate

the ability of the framework to handle different quantizers by

using a thresholding quantizer and a deterministic bit flipping

quantizer. The deterministic bit flipping quantizer, which is

used in one-dimensional sigma–delta modulators [19], breaks

up limit cycles. Using a deterministic bit flipping quantizer

with adaptive sharpness control, we simultaneously break up

direction artifacts and minimize frequency distortion.

Section II analyzes error diffusion halftoning. It shows that

when the least mean squares (LMS) algorithm [20] is used to

adapt the error filter to minimize a local MSE criterion, it does

not optimize the threshold modulation parameters. Section III

derives a general framework for optimizing threshold modula-

tion parameters to minimize a local MSE criterion. The deriva-

tion shows that the LMMSE estimator for the quantizer is im-

plicit, which enables a wide variety of quantizers to be used.

Section IV optimizes parameters in edge enhancement error

diffusion [9] for generating WYSIWYG halftones for the fol-

lowing cases:

1) standard quantizer function and fixed error filter;

2) standard quantizer function and adaptive error filter;

3) nonstandard quantizer function and fixed error filter.

The first case optimizes the sharpness control parameter

in modified error diffusion [9] to compensate for linear fre-

quency distortion. This section also presents a low-complexity

WYSIWYG halftoning algorithm using a deterministic bit

flipping quantizer to break up limit cycles. Section V shows that

green noise halftoning is a special case of adaptive threshold

modulation. We apply adaptive threshold modulation to opti-

mize the hysteresis filter coefficients in green noise halftoning.

Section VI concludes the paper. In the Appendix, we prove that

in the case of edge enhancement halftoning (a.k.a., modified

error diffusion halftoning) and green noise digital halftoning,

our algorithms converge in the mean to the optimal solution,

under suitable statistical assumptions about the input and output

of the quantizer and the input process. Throughout the paper,

we use the grayscale Lena or peppers images to

illustrate our algorithms. However, we validated the algorithms

on ten test images obtained from the USC image database.

II. ERROR DIFFUSION

This section analyzes two extreme examples of error diffu-

sion systems. Section II-A describes conventional error diffu-

sion which uses a fixed error filter and a thresholding quan-

tizer. Error diffusion degrades the original image by nonlinear

distortion (directional artifacts), linear distortion (sharpening),

and additive noise. Section II-B describes error diffusion using

threshold modulation and an adaptive error filter. Section II-B

also derives an LMS algorithm to adapt the error filter coeffi-

cients in an attempt to minimize the squared error between the

input and the output. We show that this LMS approach does

not consider the threshold modulation parameters in the update

equations.

A. Error Diffusion with a Fixed Error Filter

Fig. 1(a) shows conventional error diffusion. We use to

denote the graylevel of the input image at pixel , where

. We use to represent the output halftone

pixel, where , to denote the input to

the quantizer, and to denote the quantization error. Here,

1 is interpreted as the absence of a printer dot and is inter-

preted as the presence of a printer dot. denotes the stan-

dard quantizer function given by

(1)

The quantization error at location is given by

(2)

The linear map , a.k.a. the error filter, filters the previous quan-

tization errors

(3)

where is fed back to the input, and the set defines the

extent of the error filter coefficient mask. The mask is causal

with respect to the image scan, and . Typical raster

scan masks for the Floyd–Steinberg filter [1] and Jarvis filter [6]

are shown in Fig. 2(a) and (c), respectively.

For serpentine scans using Floyd–Steinberg filters, the mask

is shown Fig. 2(a) for odd rows and Fig. 2(b) for even rows.



DAMERA-VENKATA AND EVANS: ADAPTIVE THRESHOLD MODULATION FOR ERROR DIFFUSION HALFTONING 107

(a) (b)

Fig. 6. (a) Jarvis and (b) Floyd–Steinberg halftones using a raster scan. Fig. 2 gives the error correction coefficients.

Fig. 7. Adaptation of L for WYSIWYG Jarvis and Floyd–Steinberg
halftoning. The horizontal lines indicate the corresponding “optimal” values of
L assuming staionary processes.

Fig. 8. Radially averaged error spectra on Lena image using Jarvis error filter.

Fig. 9. Radially averaged error spectra using optimal L (assuming stationary
processes) and adaptive L on a piecewise constant grayscale ramp. Note the
low-frequency improvement of the adaptive method.

To ensure that all of the quantization error is diffused, must

satisfy the constraint [18]

(4)

The quantizer input and output are given by

(5)

(6)

B. Error Diffusion with Threshold Modulation and an

Adaptive Error Filter

Fig. 3 generalizes error diffusion. denotes an arbi-

trary quantizer function, where the subscript indicates that

it may be nonstandard. The linear map changes at each
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(a) (b)

Fig. 10. WYSIWYG error diffusion halftones. (a) Jarvis error filter and (b) Floyd–Steinberg error filter.

(a) (b)

(c)

Fig. 11. Performance of the adaptive algorithm on a mixed document. (a) Original grayscale image, (b) result of Jarvis filter, and (c) result of using adaptive L.
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pixel in the image. The function is a differen-

tiable threshold modulating function that modulates the quan-

tizer input. Its parameters control the threshold

modulating function

(7)

(8)

(9)

From (7) and (9), the squared error between the output and input

is

(10)

Wong [18] suggests the following approach to minimize the

local mean squared error given by (10) by using an adaptive

LMS algorithm, in which the weighting is omitted for simplicity

(11)

(12)

where controls the convergence rate of the algorithm. To sat-

isfy (4)

(13)

where is a constant chosen to satisfy

(14)

Wong’s derivation of the update equations does not con-

sider (8). Hence, the parameters of the modulating function

are not optimized. The next section demon-

strates how the parameters of the modulating function may be

modified to minimize an MSE measure.

III. GENERALIZED ADAPTIVE THRESHOLD MODULATION

Fig. 3 shows generalized error diffusion. Using (8), the

squared error between the output and input is

(15)

For any

(16)

where

(17)

Fig. 12. Radially averaged error spectra on mixed document using Jarvis error
filter.

Fig. 13. Adaptation of both edge sharpening parameter L and error filterH.

Fig. 14. Low-complexity WYSIWYG halftoning with reduced artifacts
generated by adapting sharpness parameter L and using a DBF quantizer.

For the purpose of computing the derivative, we use a linear min-

imum mean squares error (LMMSE) estimator for the quantizer.
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(a) (b)

(c) (d)

Fig. 15. Comparison of error images in various halftoning schemes. (a) Error image for adaptive DBF halftoning, (b) error image for nonadaptive DBF halftoning,
(c) error image for fixed Floyd–Steinberg halftoning, and (d) error image for fixed Jarvis halftoning.

We model the output of a scalar quantizer with input as

[21]

(18)

where

Cov
(19)

By substituting (18) and (19) into (17)

(20)

The parameters of the modulating function are updated as fol-

lows:

(21)

(22)

The constant may be absorbed into the convergence pa-

rameter . Thus, the update equations do not depend on com-

puting the LMMSE estimator in (18). Next, we use this algo-

rithm to optimize modified error diffusion [9] and green noise

[4] halftoning.

IV. ADAPTIVE THRESHOLD MODULATION IN MODIFIED ERROR

DIFFUSION

This section develops low-complexity adaptive WYSIWYG

halftoning methods. In a WYSIWYG halftoning technique,

the sharpness of the halftone and the original grayscale image

should be approximately the same. In other words we attempt

to minimize linear frequency distortion in the halftone. A user

controlled sharpness may be added as a preprocessing step

before halftoning. We consider several cases in which the ob-

jective is to minimize linear frequency distortion with respect to
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(a) (b)

Fig. 16. Green noise halftones of a grayscale piecewise constant ramp using a Stucki error filter with G = 0:5. (a) Floyd–Steinberg hysteresis filter and (b)
adaptive hysteresis filter.

Fig. 17. Radially averaged error-spectra for fixed and adaptive hysteresis
green noise halftoning.

the original image. Section IV-A fixes the error filter and uses

a thresholding quantizer function . Section IV-B adapts

the error filter but still uses the standard quantizer function

. Section IV-C fixes the error filter but uses a nonstandard

quantizer function . We compare our algorithms with

traditional error diffusion schemes based on the correlation of

the quantization error image [22] with the original image.

A. Adapting Sharpness for a Fixed Error Filter and a

Thresholding Quantizer

Eschbach and Knox [9] show that the sharpness of a halftone

may be changed by adding a fraction of the input image to the

quantizer input as in Fig. 1(b). We seek to find the optimal

that will preserve the average sharpness of the grayscale image.

That is, we want the signal component of the halftone to be the

same as the original image [3], [10]. The threshold modulating

function, by inspection of Fig. 1(b), is given by

(23)

By substituting (23) into (15) and differentiating the result

(24)

(25)

The Appendix shows that in the case of a WSS stochastic

process, if the input and the output of the quantizer are jointly

WSS processes, and the parameter is appropriately chosen,

then the algorithm introduced in this section converges in the

mean to the globally optimal value of that minimizes “linear

distortion” between the input grayscale image and the output

halftone. Here minimizing linear distortion means flattening the

signal transfer function of the error diffusion system [3], [10],

[12]. Since natural images are nonstationary in general, the al-

gorithm need not converge to a particular value, but rather tracks

slowly varying image features.

Fig. 7 shows the values of over the entire image for Jarvis

and Floyd–Steinberg halftones, on the Lena image, along with

the optimal value of , found by computing the LMMSE esti-

mator for the Lena image assuming stationary processes—see

(39) in the Appendix. Fig. 8 shows a plot of the radially aver-

aged [23] error spectrum obtained by using the fixed Jarvis filter

with and without the adaptive algorithm. At the low and mid fre-

quencies where quantization noise is small, the adaptive algo-

rithm, which reduces the linear frequency distortion between the

image and the signal component of the halftone, has lower error.

At the high frequencies, however, the quantization noise domi-

nates the error spectrum. The adaptive algorithm also introduces

more adaptation noise when the parameter is changed rapidly
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(a) (b)

Fig. 18. Result of fixed and adaptive green noise halftoning on Lena image (G = 0:5). (a) Floyd–Steinberg hysteresis filter and (b) adaptive hysteresis filter.

to high frequency features. This noise is however buried in the

shaped quantization noise present at high frequencies. Similar

spectra were obtained with the Floyd–Steinberg error filter and

on several other test images.

In practice, it is computationally expensive to compute the

optimal using (39) and (19) on an image by image basis, even

if we assume stationary processes. The adaptive algorithm pre-

sented above overcomes this problem, since the LMMSE esti-

mator is implicitly modeled. Fig. 9 shows the effect of using a

fixed computed using (19) and (39) on a piecewise constant

grayscale ramp image ( was in this case) using the

Jarvis error filter, and the effect of using the adaptive algorithm.

The adaptive method performs better at the very low frequen-

cies because it tracks changes in the piecewise constant input

image.

Fig. 10 shows the results of the adaptive halftoning on

the Lena image using raster scanning with fixed Jarvis and

Floyd–Steinberg error filters, respectively. Fig. 6 shows the

results of standard error diffusion using Jarvis and Floyd–Stein-

berg filters. A visual inspection shows that the WYSIWYG

property has been obtained in Fig. 10 (since there is no visible

sharpening with respect to the original image), while the

halftones in Fig. 6 appear sharper than the original grayscale

image shown in Fig. 5. These visual observations are further

supported by using a measure of sharpness of the signal

component of an error diffused halftone, which we describe in

Section IV-E.

Fig. 12 shows the error spectrum for the Jarvis filter, on

Fig. 11(a) which is a composite of a natural image with an

image containing text. The algorithm is seen to adapt to the

slowly varying structure of the natural image, but introduces

noise while adapting over the rapidly varying text regions.

Fig. 11(b) and (c) shows the resulting halftones. It may be

desirable in practice to sharpen/enhance text by pre-sharpening

or using a constant value of over the text regions [9].

This is a limitation of the adaptive algorithm presented in this

section.

B. Adapting Sharpness and the Error Filter Coefficients

We adapt both and the error filter simultaneously

to remove directional artifacts and retain the WYSIWYG prop-

erty. is adapted according to (11) with as sug-

gested in [18]. Fig. 13 shows the resulting halftone. The initial

guess for the error filter was the set of Floyd–Steinberg coef-

ficients, and raster scanning was used. The resulting halftone

retains the WYSIWYG property, while the directional artifacts

of Floyd–Steinberg error diffusion are also minimized.

C. Adapting Sharpness and a Deterministic Bit Flipping

Quantizer

Magrath and Sandler [19] introduce deterministic bit flipping

(DBF) quantizers to reduce limit cycles in sigma–delta mod-

ulators. DBF is implemented with a modification to the basic

quantizer function, as shown in Fig. 4. This quantizer is equiv-

alent to using a standard quantizer, followed by deterministi-

cally flipping certain output bits when the quantizer input was

in a predetermined range. DBF can be implemented at a much

lower complexity than random dithering, and produces higher

frequency noise [19]. This is crucial in halftoning applications

because we can break up limit cycles by modifying the quantizer

function without adding much visible noise. Such a nonstandard

quantizer function has not been used previously in halftoning

applications.

We may also combine the nonstandard DBF quantizer with

the adaptive sharpness control scheme to produce WYSIWYG
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halftones with no directional artifacts at a low computational

complexity. The DBF quantizer function is

otherwise.
(26)

The value of was chosen as the least value that eliminated

limit cycles in a piecewise constant grayscale image with ten

uniformly spaced graylevels between 0 and 1 (limit cycle be-

havior for graylevels between 1 and 0 is identical to the above

case, with 1 replaced by 1). Based on this test, 0.2 was chosen

as a suitable value of for the DBF quantizer in error diffu-

sion. Fig. 14 shows the output halftone using the DBF quantizer.

We use raster scanning and a fixed Floyd–Steinberg error filter.

Comparing Fig. 14 with the halftone produced by adapting

and adapting in Fig. 13 shows that they are of comparable

quality. Section IV-D shows that the complexity of the DBF

algorithm is far lower than that of the adaptive error filter ap-

proach.

D. Complexity of Adaptive DBF vs. Adaptive Error Filter

Techniques

The nonstandard DBF quantizer function differs from

the standard quantizer function by only one comparison,

because

otherwise.
(27)

Thus, the DBF quantizer in (27) requires one extra comparison

over the standard thresholding quantizer. Updating according

to (24) and (25) requires an extra three additions and three mul-

tiplications per pixel because is already computed

as part of error diffusion. Using (11)–(14), the adaptive error

filter method [18] with filter coefficients requires

additions and multiplications per pixel. The com-

plexity of the adaptive DBF method over the adaptive error filter

method [18] may be measured using the complexity ratio

complexity of adaptive DBF

complexity of adaptive error filter
(28)

If the complexity of an addition is times the complexity of a

multiplication, , then

(29)

When applying the two adaptive methods on Floyd–Steinberg

halftoning using a conventional digital signal processor, ,

and .

E. Cause of Sharpening in Error Diffusion

Knox defined the error image in error diffusion to be the ma-

trix of quantization errors scaled and displayed as an image [22].

Kite [11] shows that the correlation of the error image with

respect to the original is directly related to the frequency dis-

tortion produced by error diffusion. Fig. 15(a) shows the error

image of the halftone generated by adaptive sharpness using

a DBF quantizer, as proposed in this paper. Fig. 15(b) shows

the error image of the halftone using a DBF quantizer, without

adaptive sharpness control. Some of the correlated image com-

ponents are visible in the error image. Fig. 15(c) and (d) shows

Floyd–Steinberg and Jarvis halftones, respectively. The greater

the correlation of the original image with the error image, the

sharper the halftone. For Fig. 15(a)–(d), the correlations with

respect to the original image were 0.0001, 0.14, 0.25, and 0.45,

respectively. Also, the DBF quantizer successfully eliminates

the directional artifacts of the Floyd–Steinberg halftoning. Thus,

both frequency distortion and artifacts are minimized by the

WYSIWYG adaptive DBF algorithm.

We validated all of the adaptive algorithms introduced in this

section by testing the error images of 10 halftones. All error

images had low correlation ( ) with respect to the original

image. This correlation dropped by two orders of magnitude

over the (no sharpness control) case.

V. OPTIMAL GREEN-NOISE DIGITAL HALFTONING

Fig. 1(c) shows the setup for output-dependent feedback

proposed by Levien [4]. The effect of adding a filtered version

of the output of the quantizer input results in clustering of

output pixels. Green noise makes printing devices, such as laser

printers, much easier to predict. The benefits of green-noise

halftoning are in printing processes with nonideal printing

conditions [5]. Lau, Arce and Gallager [5] report that the

quantization noise contains intermediate frequency between

blue noise patterns and ordered dither patterns. They call it

“green noise.” The hysteresis constant controls the size of

the dot clusters in green noise digital halftones.

We use the theory developed in Section III to adapt the

hysteresis filter coefficients . All algorithms involving

the method shown in Fig. 1(c) need to use serpentine scanning

to avoid strong diagonal artifacts. By analyzing Fig. 1(c), we

derive the following equations governing green noise digital

halftoning:

(30)

(31)

(32)

The quantization error and are computed as usual using

(2) and (5), respectively.

By inspection of Fig. 1(c)

(33)

Therefore, the adaptation equations for the hysteresis filter co-

efficients become

(34)

Note that the two sums in the quantizer function are computed

anyway and do not add complexity to the adaptation process.
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To form the final updates, we add a constraint to guarantee that

the hysteresis filter coefficients are nonnegative and sum to one.

This ensures that the hysteresis filter does not change the dot

size.The set of filters satisfying the constraints forms a closed

convex set in [24] where denotes the cardinality of

. The adaptation equation in this case is given by

(35)

where is the Hilbert space projection onto the closed

convex set , denotes the vector of filter coefficients

and the argument of denotes the standard update (21) in

vector notation.

The Appendix shows that the adaptive algorithm described in

this section converges in the mean to the globally optimal solu-

tion under suitable statistical assumptions. The Appendix dis-

cusses a method to compute the orthogonal projection operator

.

To illustrate the framework of Section III, we adapt a four-tap

hysteresis filter. The error filter coefficients are the Stucki coef-

ficients. The initial guess for the hysteresis filter coefficients are

the Floyd–Steinberg coefficients. This corresponds to the 4-tap

hysteresis filter, 12-tap error filter green noise scheme used in

[5].

Fig. 16(a) shows the halftone obtained on a grayscale ramp

by using the Floyd–Steinberg hysteresis coefficients, while

Fig. 16(b) shows the halftone obtained by using the adaptive

algorithm described in this section. In both cases the dot size

was held constant by fixing as suggested in [5]. The

adaptive algorithm breaks up the directional artifacts obtained

on using the Floyd–Steinberg hysteresis filter [5]. Fig. 17 shows

the improvement in the error spectra of the adaptive green noise

halftone at the lower frequencies. Fig. 18 shows the results of

fixed and adaptive hysteresis error filter on the Lena image.

The adaptive algorithm breaks up the long “worm” artifacts

seen in the smooth regions of the image.

The Appendix shows that the above algorithm converges in

the mean if the input and output of the quantizer are jointly

wide sense stationary. This assumption need not hold true for

natural images. However, the mean value of the iterate is a good

value to use if fixed hysteresis coefficients are desired. In our

simulations, we use as the convergence parameter in

our adaptive algorithms.

VI. CONCLUSION

In this paper, we introduce a general framework for adapting

the parameters of a differentiable threshold modulating func-

tion to minimize a mean square error measure. Competing

techniques that adapt error filter coefficients and inject noise

by adding dither do not optimize the threshold modulating

parameters and have higher implementation complexity. Based

on the framework, we develop a low-complexity algorithm

to minimize the linear distortion (sharpening) in error dif-

fused halftones. The savings on a conventional digital signal

processor are a factor of 3.67 for Floyd–Steinberg halftoning

and a factor of 10.33 for Jarvis halftoning, when compared

with adaptive error filter algorithms [18]. By preserving the

sharpness of the grayscale image, a separate preprocessing

method may be applied for customized image enhancement.

Using the framework, we optimize hysteresis coefficients

in green noise halftoning, and the edge sharpening parameter

in edge enhancement halftoning. By replacing a thresholding

quantizer with a deterministic bit flipping quantizer, we break

up directional artifacts caused by limit cycles. The framework

may be further improved by incorporating human visual

models in the objective function and by using variable step size

adaptive algorithms.

APPENDIX

In the Appendix, we prove that the adaptive algorithms pro-

posed in this paper converge in the mean when the input and

output of the quantizer are jointly wide sense stationary, and

the quantizer may be modeled using a linear gain model [3],

[10]. The linear gain model depends on the accuracy of mod-

eling the quantizer with a scalar gain for the signal component.

This model has been validated in [10], [21], and accurately pre-

dicts linear effects in halftoning such as linear distortion (sharp-

ening) and noise shaping.

A. Adaptive Modified Error Diffusion

Proposition 1: The optimal value of , under the as-

sumptions stated above is given by , where

Cov Var is the LMMSE estimator

for the quantizer output, a.k.a. the “linear gain” of the quantizer.

Proof: For the optimal result in the global sense we need

to take expectations on both sides of (24) and set the result to

zero. This means that the optimal solution , satisfies

(36)

Using the linear gain approximation for the quantizer func-

tion this becomes

(37)

Also, since the optimal solution leads to an error image, uncorre-

lated with the input image [10], [22], we can make the following

approximation based on the linear gain model [10], [12]:

(38)

By substituting (38) into (36) and solving for

(39)

This completes the proof.

In fact, this condition is the same as the globally optimal value

of derived by Kite et al. using frequency domain methods

[10]. What is crucial, however, is that the optimal , satis-

fies (36). We will use this fact to establish the following theorem.

Theorem 1: The adaptive algorithm proposed in Sec-

tion IV-A converges in the mean to the globally optimal

solution if .

Proof: The update equation for the adaptive parameter

in the th iteration/adaptation is given by (24) and (25), which

can be written as

(40)
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where we have made use of the linear gain model, by intro-

ducing the parameter . By rewriting (40)

(41)

By subtracting from both sides of (41) and taking expec-

tations

(42)

Since satisfies (36)

(43)

By substituting (43) into (42)

(44)

Therefore

(45)

where is an arbitrary initial guess. Hence if

, or , then

the adaptive algorithm converges in the mean to the optimal

value of . This means that under the assump-

tions we have made at the beginning of this Appendix. This

completes the proof of the theorem.

B. Adaptive Green Noise Error Diffusion

We denote the hysteresis filter at the th iteration as a vector

and the output image pixels covered by the hysteresis filter

mask at location by the vector . Thus, the hys-

teresis filter output at location ( ) and iteration is given

by .

Theorem 2: The adaptive algorithm proposed in Section V

converges in the mean to a globally optimal solution if

Tr and the output vector and the

hysteresis filter vector are statistically independent. Tr

refers to the trace of the autocorrelation matrix which is

defined as the sum of its diagonal elements.

This assumption is similar to the independence assumption

made for conventional LMS adaptive filters [25], which says

that the data (input) and the LMS weight vector are statistically

independent.

Proof: The unconstrained optimal solution must satisfy

(46)

However, we impose the requirement that the elements of the

constrained optimal solution must be positive and sum to

one. Since the constraint set is a closed convex set in ,

where is the dimension of , we can define a projection op-

erator onto by

(47)

The constrained optimal solution is characterized using the pro-

jection operator [26], [27] by

(48)

which may be rewritten as

(49)

where and is the identity matrix.

It follows from the development in Proposition 1 in [26] as well

as [27] and the fact that the unconstrained solution satisfies (46),

that the iteration

(50)

converges in mean to , if where

is the maximum eigenvalue of the matrix . Since Tr

, the theorem follows. The iteration converges to a global

optimum because the Hessian of the objective function to be

minimized over the convex set , is given by a positive semi-

definite . is positive semi-definite because

is an autocorrelation matrix.

Computation of the Projection Operator : To enforce that

the iterates do not leave the constraint set , we introduce the

auxiliary variable such that

(51)

and

(52)

In terms of , the adaptation equation given by (21) becomes

(53)

with

(54)

To enforce (52), we normalize the update as follows:

(55)
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The projected parameters satisfying the constraints are

given by

(56)

We use the operator that maps the iterate into the constraint set

as an approximation to the true projection operator .
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