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Abstract In this paper we propose an adaptive P2P

video streaming framework to address the challenges

due to bandwidth heterogeneity and peer churn on the

Internet. This adaptive streaming framework consists

of two major components, source rate adaptation and

adaptive overlay topology formation, to maximize the

video quality and fully utilize the overall peer upload

capacity. In the source rate adaptation, the video server

adapts the video source rate automatically based on the

local measurement of peers’ download rates, so that the

P2P network is not overloaded beyond its bandwidth
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capacity and peers are able to achieve smooth video

playback. To combat bandwidth heterogeneity, we pro-

pose to construct a desirable link-level homogeneous

overlay topology using a Markov chain Monte Carlo

method, so that peers achieve an equal per-connection

upload/download bandwidth. In this link-level homo-

geneous network, video flows do not encounter any

bottlenecks along the delivery paths, and peers achieve

high download rates to ensure smooth video playback.

We also design a fully distributed algorithm to imple-

ment the dual mechanisms of the adaptive topology

formation and the source rate maximization. To eval-

uate the performance of our streaming framework,

we conduct both mathematical analysis and extensive

simulations. The simulation results confirm our analysis

and show that the proposed distributed algorithm is

able to maximize the video playback quality with fast

convergence.

Keywords P2P video streaming ·

Topology formation · Random walk

1 Introduction

The emerging peer-to-peer (P2P) networks have ap-

peared to be the most promising driving wheel for

the large scale video streaming on the Internet [1–3].

Unlike IP multicast, P2P networks do not rely on

any dedicated network infrastructure and hence offer

the possibility of a rapid IPTV service deployment

at low cost. To date, P2P video streaming systems

have already achieved a number of large-scale deploy-

ments, accommodating tens of thousands of simultane-

ous users [4].
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In P2P streaming networks, peers contribute their

uplink bandwidth to assist video streaming to other

peers, thus alleviating the bandwidth load on dedicated

streaming servers so that the system is scalable to sup-

port millions of users simultaneously. Yet, the road to

providing high-quality video streaming over P2P net-

works has been facing various technical challenges due

to heterogeneous and dynamic nature of P2P networks.

– Bandwidth heterogeneity: Peers normally use differ-

ent access networks and reside in diverse Internet

service providers (ISPs); therefore, their upload

bandwidth may vary significantly. When video traf-

fic flows along the overlay paths between peers, the

network throughput is often throttled by the bottle-

neck peers in the middle, and the streaming rates of

the downstream nodes deteriorate drastically. Note

that the upload rate of a peer is upper bounded

by its download rate, a peer with a small download

rate wastes its upload bandwidth capacity. To fully

utilize peer’s upload capacity, bandwidth hetero-

geneity is an important issue in designing efficient

P2P streaming systems.

– Peer churn: Peers are inherently dynamic and may

depart the network at any time; therefore, their

upload capacity is not reliable for peers. Peer’s

download rate may be highly variable and suffer

from intermittent connectivity. To avoid potential

interruptions of video playback encountered by

streaming clients, the streaming overlay should be

repaired quickly due to peer departures.

To address the above two challenges, we propose an

adaptive P2P video streaming framework, which con-

sists of two major components: source rate adaptation

and adaptive topology formation. In video streaming, it

is crucial to provide users with satisfactory perceptual

visual quality. Video coding plays an important role in

determining visual quality of the video. With a smaller

compression ratio, peers enjoy less loss of visual quality,

but require a higher download rate to support continu-

ous playback. Hence, the resulting visual quality, which

peers can perceive, is determined by both video com-

pression quality and network transport capability. Be-

cause network available bandwidth is usually unknown

in advance, it is difficult (if still possible) to select an

appropriate video compression rate and corresponding

playback rate before video transmission. To achieve

a good trade-off between video quality and network

transport, we propose a source rate adaptation scheme

to automatically tune the playback rate based on local

measurement of peer’s download rate from the source.

After an appropriate playback rate is selected, the next

question to answer is how to ensure peers to download

above this rate for smooth media playout. To enable

peers to maintain their desired data rate after multiple

overlay relays, we design an adaptive topology for-

mation algorithm to construct a homogeneous overlay

in terms of link capacity, namely link-level homoge-

neous overlay. This overlay is constructed for two main

purposes: first, it eliminates the bottleneck for video

streaming over P2P networks; second, by assigning high

capacity peers with more upload connections, peer’s

upload bandwidth is fully utilized to provide the best

achievable video quality in the global network. We

presented our preliminary results in [5] and this paper

is a significant extension of [5] in developing a complete

analytical model and much more simulation results. In

summary, we make the following contributions in this

paper:

– We propose a novel adaptive peer-to-peer stream-

ing framework, which adapts the overall video play-

back rate based on local network measurements

and maximizes the perceptual visual quality of

peers. The bandwidth supply of P2P networks is

usually unknown and keeps changing due to peer

churn, the proposed adaptive system is able to

automatically balance the bandwidth supply and

demand for high-quality video streaming with full

bandwidth utilization.

– We construct a link-level homogeneous (LLH)

overlay network using a Markov chain Monte Carlo

method, where the per-connection bandwidth con-

verges to the same value. In such an LLH network,

the amount of download rate of peers can be con-

trolled by setting the number of download connec-

tions they have as each connection possesses an

equal bandwidth capacity. Hence, we can achieve

load-balanced bandwidth allocation by controlling

the overlay topology. Note that this LLH approach

is also effective in improving the download perfor-

mance of file-sharing networks [6].

– We design a distributed algorithm to achieve the

LLH topology formation for P2P streaming. We

develop a fluid-flow model to analyze the perfor-

mance of the proposed algorithm and show that the

network converges to the link-level homogeneity.

The accuracy of the model is evaluated via exten-

sive simulations.

The rest of the paper is organized as follows. We

end this section with an overview of the related

work. In Section 2, we present the proposed video

streaming framework in detail. In Section 3, we an-

alyze the proposed topology formation method using

a fluid-flow based analysis. We conduct a simulation
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study to evaluate the topology formation algorithms in

Section 4. Finally, we conclude the paper in Section 5.

1.1 Related work

Wide-range applications of P2P video streaming and

their impact on changing the Internet traffic pattern

have spurred a large body of research since 2000. Given

the limited bandwidth supply of peers, it is critical to

ensure that the overall bandwidth is sufficient to meet

the bandwidth demand of all the peers. One common

approach is to deploy the call admission control (CAC)

[7, 8]. Kumar et al. analyzed the video streaming quality

in P2P streaming systems with two types of peers using

a fluid-flow model [7]. With the assumption of the full

utilization of peer’s upload bandwidth, they computed

the maximal achievable video playback rate. When the

overall bandwidth is not sufficient to feed all peers’

playback, they propose to adopt the admission control

in order to ensure that the bandwidth demand of the

peers does not exceed the bandwidth supply. Huang

et al. studied how to construct a profitable P2P VoD

network [8]. They classify the network into the surplus

mode, the balanced mode or the deficit mode, respec-

tively, based on the criteria whether the overall band-

width supply is larger than, equal to or less than the

bandwidth demand of the peers. They argued that the

optimal system performance is achieved in the balanced

mode only. Unlike [7, 8], we propose to adaptively

tune the video compression rate based on the local rate

measurement. Hence, our streaming system does not

reject any subscribers. Instead, all the users share the

service degradation when the bandwidth supply is not

sufficient.

Apart from ensuring the sufficiency of overall band-

width supply for the system, it is also necessary to

allocate the bandwidth and enforce quality of service

(QoS) at the peer level. To address this issue, many

theoretical works take the mathematical programming

approach [9–11]. This usually leads to a joint topology

formation and resource allocation optimization formu-

lation. The optimal solution is chosen out of all the pos-

sible connection combinations between peers, and data

transmission rates are assigned for these connections. A

disadvantage of this mathematical programming ap-

proach is that it normally requires iterative adaptations

and intensive communications between peers, which

are expensive in large-scale, highly dynamic P2P net-

works. This concern has motivated the recent works

[12–14] on the incremental topology formation [9].

Given peer churn, the network evolves accordingly

by locally refining the overlay topology of a peer

with its neighbors, whereas all the other peers remain

unchanged.

On constructing an optimal mesh topology for video

streaming, Magharei and Rejaie [12] showed that each

peer has an acceptable range of outgoing connections

proportional to its upload bandwidth. Using simula-

tions, they demonstrated that the network performs

best with the optimal bandwidth utilization and min-

imum buffer requirements when the per-connection

bandwidth is the same. In such an overlay topology,

video flows will not encounter any bottleneck connec-

tions. This desirable property is also maintained in our

proposed bandwidth allocation scheme. Nevertheless,

our work is accomplished independently and parallel

to [12]. In addition, how to construct such a link-level

homogeneous topology is not described in [12] and

we propose a distributed algorithm to achieve such an

overlay in this paper.

Sung et al. described an incentive scheme using for

P2P video streaming [15]. In [15], an overlay multicast

tree is formed with each branch of the tree having the

same capacity. Such an overlay is similar to our pro-

posal and [12]. By maintaining the in-coming branches

to a peer proportional to the branches it serves, the pro-

posed system in [15] encourages peers to download at

a rate proportional to their upload rates, and provides

incentives for peers to upload.

In [13], Small et al. suggested to construct the overlay

mesh topology using a greedy algorithm called Out-

reach. In Outreach, when a peer is bootstrapped, it first

connects to a deputy peer, which is a normal node in

the overlay. Based on the information stored at the

deputy peer, a newly-arrived peer selects multiple peers

with the largest available bandwidth as its parent nodes.

Constrained by the myopic operations, Outreach may

select parental peers with sub-optimal performance,

so a global optimal performance can be difficult to

achieve.

In Chunkyspread [14], Venkatraman et al. proposed

to form the balanced overlay network towards a full

bandwidth utilization. Each peer has a predefined

transmission load which is proportional to its upload

capacity. The workload is maintained locally within

a certain region. However, this transmission load of

peers does not take other peers’ bandwidth capacity

into consideration. Hence, Chunkyspread can hardly

achieve a good load balance for the global network.

In [16], Kwong and Tsang proposed a basic random

walk framework for the P2P topology formation and

provided mathematical analysis for the heterogeneous

P2P networks. Then, they advanced to a more general

framework [17] by introducing two control parameters

in the peer sampling process. However, in [16, 17], the
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authors did not consider any P2P applications on top

of the constructed overlay topology and the research

efforts purely focused on the topology-formation as-

pects. In this paper, we apply the topology forma-

tion framework in [16, 17] for P2P video streaming

applications. To address the challenges in P2P stream-

ing, the main goal is to form a topology with a link-level

homogeneous property so as to eliminate overlay-link

bottlenecks in delivering video streams between peers.

We also propose a distributed algorithm to achieve

such a link-level homogeneous overlay and conduct

extensive simulations for performance evaluation.

2 System design

In this section, we present the proposed video stream-

ing system in detail. We start with the notations for

assisting the discussions and then elaborate the design

philosophy and system components. Finally, we de-

scribe the algorithm implementation of the proposed

adaptive topology formation algorithm and the source

rate maximization scheme.

2.1 Notations

The notations used in the paper are summarized in

Table 1. We model the P2P streaming overlay net-

work using a directed graph G(t) = {V(t), E(t)} at time

t, where V(t) denotes the set of participating peers,

including the video server s, and E(t) denotes the

set of overlay links between peers. N(t) is the peer

population size, where N(t) = |V(t)| and N(t) ≥ 2. In

this paper, we use the terms “peer” and “node” in-

terchangeably. In this overlay streaming network, each

node may download streaming content from multiple

parent nodes; at the same time, it may upload streaming

content to multiple child nodes. Let Ii(t) denote the

number of download connections or in-degree of peer i.

Let Oi(t) denote the number of upload connections or

out-degree of peer i. Let Ci denote the upload capacity

of peer i. Let di(t) denote the achieved download rate

of peer i, where di(t) is computed by summing the flow

rates of all in-degree connections. To characterize the

impact of peer churn, all these variables, except Ci, are

functions of time t. We assume that for each node i

the upload capacity Ci is a known system parameter.

Note that the proposed topology formation algorithm

is adaptive to the changes of peers’ capacities in the

network.

Without loss of generality, we only consider one

video channel which all the peers are watching. The

source node s remains in the network with an in-degree

Table 1 Notations

V(t) Set of peer nodes including the server node

at time t

E(t) Set of overlay connections at time t

N(t) Number of nodes including the server node

in the network at time t, N(t) = |V(t)|
N Average number of nodes in the

network in the stable state

Ii(t) In-degree of node i at time t

Oi(t) Out-degree of node i at time t

di(t) Download rate of node i at time t

ti The time when node i joins the network

Ci Upload capacity of node i

〈C 〉 Average node upload capacity

r(t) Video playback rate at time t

δ Capacity per out-degree value of nodes

at the link-level homogeneous state

δD Capacity per out-degree value achieved

by the distributed algorithm

δs(t) Capacity per out-degree of the

server at time t

m Number of random walkers generated when

a peer joins the network

s Server node

πi(t) Probability that node i is selected as a

parent node using the distributed algorithm

Z (t) Sum of capacity square per out-degree values

of the network at time t

Z Average sum of capacity square per out-degree

values of the network at the stable state

pij Probability that a random walker at

node i is forwarded to node j

P Transition matrix of the random walkers

with elements pij

λ Mean arrival rate of nodes to the network

µ Mean departure rate of each node;
1

µ
is the mean sojourn time of each node

nmin Minimum number of neighbors of a node

in the Markovian plane

nmax Maximum number of neighbors of a node

in the Markovian plane

TT L Time-To-Live, number of steps that the

random walkers traverse the network

Ai(t) Neighbor set of peer i on the

Markovian plane at time t

ki(t) Degree of peer i on the Markovian plane

at time t, ki(t) = |Ai(t)| + 1, including the

self-loop

| · | Cardinality of a set

〈·〉 Expectation of a random variable

Is(t) = 0 at any time and a download rate ds(t) = 0.

The source streaming rate r(t) can be controlled and

adjusted by the server node s to fully utilize the upload

capacity contributed by peers and maximize the video

quality.
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2.2 System overview

The proposed P2P video streaming system is shown

in Fig. 1. There are two software components in the

system: a rate-adaptive source and a peer streaming

engine. The rate-adaptive source has an adaptive-rate

video encoder, e.g., MPEG (Motion Picture Experts

Group) [18] over a UDP/IP protocol suite. This adap-

tive encoder is able to tune the amount of video bits

to compress different video frames by selecting an ap-

propriate quantizer scale parameter (QSP) [19], which

is controlled by the rate controller. At the receiver

side, the downloaded video is decoded by the MPEG

decoder and finally sent to the media player for video

playback at the playback rate r(t).

In our design, we assume that each node can always

retrieve the desired video content from any selected

parent node. This could be attained by implementing

the random linear network coding [20]. Instead of for-

warding the received video streams directly, each peer

forwards the coded video blocks, which are the linear

combinations of the downloaded video blocks. As the

video content is evenly spread in the coded streams

[11, 20], the receivers can download video blocks with-

out any duplicate.

We also assume that the transmission bottleneck is

the upload capacity of peers, instead of the network

core or the download side. In the case of the service

deployment of P2P video applications within an ISP,

the bandwidth bottleneck normally occurs at the access

link since the ISP generally provisions sufficient band-

width inside its network. A recent measurement study

[21] partially confirms that the bottlenecks are in the

residential access and not in the network core. In prac-

tice, the backbone network is usually over-provisioned

and optimized using traffic engineering techniques [22].

In our system, video streams are carried using the

UDP transport. Therefore, peers are able to allocate

the upload bandwidth explicitly among the out-going

connections. In this work, we adopt the equal band-

width allocation among out-going connections; there-

fore, the upload bandwidth of each out-going link from

peer i can be computed as Ci

Oi(t)
.

The proposed system aims to fully utilize the upload

capacities of peers and maximize the video playback

rate given the constraint on the upload capacities of

peers. The system is governed by the following opti-

mization problem J in Eqs. 1–3. Equation 2 ensures

that the total bandwidth demand from peers does not

exceed the overall bandwidth supply. Equation 3 en-

sures that the video playback rate does not exceed the

download rate of any peers for smooth playback.

J : maximize r(t) (1)

s.t.
∑

i∈V(t)

Ci ≥
∑

i∈V(t)\{s}

di(t), (2)

di(t) ≥ r(t), ∀i ∈ V(t)\{s}, (3)

where V(t)\{s} represents all the receiving peers ex-

cluding the server s.

Note that Problem J is a linear programming formu-

lation. By examining the Karush-Kuhn-Tucker (KKT)

conditions of Problem J, we can compute the optimal

playback rate of Eq. 1 at time t as

r∗(t) =

∑

j∈V(t)

Cj

N(t) − 1
, (4)

Fig. 1 The proposed P2P
video streaming system
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and ∀i ∈ V(t)\{s},

d∗
i (t) = r∗(t) =

∑

j∈V(t)

Cj

N(t) − 1
. (5)

The derivation steps of Eq. 4 can be found in

Appendix A. Equations 4 and 5 show that in the

optimal state every peer is required to achieve the

same download rate as the video playback rate. This is

intuitive as in this case the playback rate is maximized

to the rate all the nodes can support and bandwidth

is fully utilized. This result has also been shown in

multiple contexts [7, 23, 24].

Note that Eq. 5 only shows the property of the peers’

download rate. Two crucial issues still remain: i) how

to ensure that the server adapts the source rate follow-

ing Eq. 4 because both
∑

i∈V(t)

Ci and N(t) are unknown

(Although Ci of each individual peer is assumed known,

to compute
∑

i∈V(t)

Ci in the network-wide is difficult, if

still possible, when the network is dynamic and of large-

scale.); ii) how to ensure that peers download at the

optimal rate by Eq. 5 because the download rates are

often throttled by the hidden bottlenecks in the overlay

and are not easily predictable. To address the above

two issues, we propose to construct a link-level homo-

geneous overlay in which all the overlay connections

have an equal bandwidth allocation as shown in Eq. 6.

Ci

Oi(t)
= δ, ∀i ∈ V(t), (6)

where

δ =

∑

i∈V(t)

Ci

∑

i∈V(t)

Oi(t)
. (7)

Therefore, the download rate of peer i is computed as

di(t) = Ii(t)δ, ∀i ∈ V(t)\{s}, (8)

because each in-coming flow is eliminated from any

bottlenecks and achieves the allocated rate δ. In addi-

tion, Eq. 8 shows that we can allocate peers with their

desired rates by controlling their in-degrees. Hence, to

achieve Eq. 5, we need that every peer has an equal in-

degree, i.e., Ii(t) = m, ∀t > 0 and i ∈ V(t)\{s} in Eq. 8.

Therefore, we have

di(t) = mδ =

∑

j∈V(t)

Cj

N(t) − 1
= d∗

i (t), ∀i ∈ V(t)\{s}, (9)

because
∑

i∈V(t)

Oi(t) =
∑

i∈V(t)\{s}
Ii(t) = m (N(t) − 1) and

δ =
∑

i∈V(t)

Ci

m(N(t)−1)
.

With the link-level homogeneity, to select the op-

timal video playback rate by Eq. 4, the server does

not need to collect any explicit feedback from peers.

The server converges to the link-level homogeneous

state with lim
t→∞

Cs

Os(t)
= δ. If the server estimates δ by

measuring its own capacity per out-degree value, the

server can compute the download rates of its child peers

and adjust the playback rate to achieve r∗(t) = d∗
i (t)

accordingly based on Eqs. 5 and 9. In this manner, the

server node achieves the source rate adaptation.

In our streaming framework, we do not differentiate

peers; hence, we enforce a universal playback rate r(t).

However, with some modification, we can enable a

differentiated service in which different peers achieve

different download rates and diverse video quality,

respectively. This could be achieved by assigning peers

with different in-degree values in Eq. 8 according to

their required video quality. This differentiated video

playback can be realized by using the multiple descrip-

tion codes (MDC).

In summary, the proposed streaming framework en-

sures that peers download at the optimal rate shown

in Eq. 5 by constructing the link-level homogeneous

overlay. Because the server also behaves as a normal

uploading peer and converges to such a desirable link-

level homogeneous state, the server can measure the

video streaming rate to the peers and determine the

appropriate video rate accordingly. In the rest of this

section, we describe two algorithms on constructing

such a link-level homogeneous overlay. The topology

formation algorithm mainly determines how a peer

joins the streaming topology upon its arrival and how

the topology repairs itself due to peer departures from

the network.

2.3 Algorithm design for topology formation

To construct a link-level homogeneous overlay, we

first propose a centralized algorithm as a benchmark

scheme, which requires a central controller to coor-

dinate peers. This algorithm is efficient and imple-

mentable in a small-sized network; however, it is not

scalable for a large-sized network. Therefore, we also

propose a fully distributed algorithm, which shares the

same design philosophy without requiring any global

network information.

2.3.1 Centralized algorithm

To implement this centralized algorithm, we assume

that a central controller is used to collect network infor-

mation and control the topology formation. The global
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network information includes peers’ upload bandwidth

and the current out-degrees of all the participating

peers.

Peer joining When peer i joins the network at time t,

to connect it to the overlay network, the controller sorts

all the participating peers, including the server node,

in a descending order according to their capacity per

out-degree values as
{

Ci1

Oi1
(t)

,
Ci2

Oi2
(t)

, . . . ,
Ci|V(t)|

Oi|V(t)| (t)

}

, where

Ci1

Oi1
(t)

≥ Ci2

Oi2
(t)

≥ · · · ≥ Ci|V(t)|
Oi|V(t)| (t)

. For those peers with zero

out-degree, we manually set their out-degree values to

be ε for the computation purpose, where ε is a constant

and 0 < ε < 1. Note that the value of ε only affects the

initial positions of peers in this ordered list and does

not impact the final sorting order once those peers have

at least one child node. Then, the controller selects

the first m peers from this ordered list. When peer i

connects to the network, its initial out-degree is 0 and

its initial in-degree is m.

Peer departing When peer i departs from the network,

all its child peers lose a download link, and their down-

load rates decrease accordingly. To compensate this

rate reduction, the controller will rebuild a new link

for these peers. The rebuilding procedure is similar

to the joining procedure, whereas on each rebuilding

event, only one peer currently with the largest capacity

per out-degree value is chosen to be connected as the

parent node.

Using the centralized algorithm, as peers are con-

tinuously joining and departing, the capacity per out-

degree values of all live peers converge to the same

equilibrium value in Eq. 6. We illustrate the basic idea

using a simple example shown in Fig. 2. Suppose that

there are five peers A, B, C, D and E. Their capacity

per out-degree values are shown along the vertical

A

C
a

p
a

c
it
y
 p

e
r 

O
u

t-
d

e
g

re
e

 V
a

lu
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average capacity  

per out-degree (t)

peer arrival

capacity per out-degree 

decreses due to peer arrivals

B C D E

Peers

capacity per out-degree increses 

due to child-peer departures

δ

Fig. 2 Evolution of the capacity per out-degree values in an
example network

axis. Initially, the network is heterogeneous in terms of

capacity per out-degree or link bandwidth. However,

when new peers join, peers with large capacity per

out-degree are connected and their link bandwidth de-

creases. In this example, A and D are connected by the

new peer. The out-degrees of A and D increase accord-

ingly; hence, their out-going link bandwidth decreases.

When their child nodes depart, peers with small capac-

ity per out-degree (e.g., peers B and E) will have their

capacity per out-degree increased. Finally, as peers

continuously join and depart, the network converges

to the link-level homogeneous state with all the peers’

capacity per out-degree approaching the same value.

Note that the convergence of peers’ capacity per out-

degree is driven by the peer arrivals and departures.

The proposed algorithm is resilient to peer churn and

can converge faster when the network becomes more

dynamic. This effect will be demonstrated in Section 4

via simulations.

2.3.2 Distributed algorithm

The previous centralized algorithm achieves the link-

level homogeneity in the formed topology; however,

this algorithm is not scalable for a large-scale dynamic

peer-to-peer network. We now propose a distributed

algorithm to construct a link-level homogeneous over-

lay topology using a probabilistic sampling procedure.

The analysis of this distributed algorithm is conducted

in Section 3.

In this distributed algorithm, instead of seeking help

from the central controller, the joining or rebuilding

peers distributively find the appropriate parent peers

in the network using the local information. Specifically,

when peer i connects to the network (in the joining

or rebuilding procedure), it selects an existing node

j ∈ V(t) with the following probability

π j(t) =
C2

j

Oj(t)

∑

k∈V(t)

C2
k

Ok(t)

=
C2

j

Oj(t)

Z (t)
, (10)

where

Z (t) �
∑

k∈V(t)

C2
k

Ok(t)
. (11)

By selecting parent peers following Eq. 10, peer j with

a large capacity but a small out-degree is selected with

a high probability. Here, the choice of π j(t) is due to the

requirements of the desirable link-level homogeneity

which will be shown in the analysis section.
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Distributed node selection using a Markov chain Monte

Carlo (MCMC) method To implement the random

peer selection procedure in Eq. 10 in a distributed

manner, we use a Markov chain Monte Carlo (MCMC)

method based on a random walk algorithm [25].

The basic idea is to construct a discrete-time ergodic

Markov chain, embedded in the overlay topology. The

states of the Markov chain are the nodes in the overlay

graph, and the steady-state distribution of the formed

chain equals to the targeted probability distribution

defined in Eq. 10. The peer selection process is imple-

mented using the distributed random walk algorithm.

To select a peer by Eq. 10, a peer first issues a random

walker starting at a randomly selected peer (or state)

of the network. This walker is then routed among con-

nected nodes based on the transition probability matrix

of the Markov chain. The random walk is actually a

process which starts from a random initial state of the

Markov chain and then converges to the stable state

after a sufficient number of state transitions. When the

random walk process converges, the walker stays at a

node according to the steady-state probability of the

Markov chain and therefore accomplishes the selection.

To implement the random walk algorithm, we ex-

plicitly maintain two planes separately in the overlay

network as shown in Fig. 3, namely, the Markovian

plane and the overlay plane. The Markovian plane

maintains the Markov chain and is only used to route

the random walkers. The overlay plane is the formed

overlay topology used for video delivery and this topol-

ogy exhibits the link-level homogeneity. To ensure the

convergence of the random walk algorithm, the Markov

Markovian Plane

Overlay Topology

i jp

ji
p

jj
p

i i
p

G (t)

j

i

Fig. 3 Distributed peer selection using a double-plane
architecture

chain embedded in the Markovian plane must be er-

godic, i.e., aperiodic, reversible and irreducible [26].

Therefore, we construct the Markovian plane to be an

undirected graph with a self-loop connection at each

node [27]. This setting ensures that the Markov chain

is aperiodic.

The main reason that we construct a Markovian

plane is to help the random walk converge quickly.

Because the length of the random walks significantly

impacts the cost and the accuracy of peer selection, the

Markovian plane should be constructed to minimize the

cost of random walks with good accuracy [28]. To this

end, we construct the Markovian plane as regular as

possible in which the degree of each node is kept within

a fixed region [nmin, nmax], where nmin and nmax are

predefined constants and nmin < nmax. This is because

random regular graphs have been shown to be efficient

in mixing time [29]. Using simulations, they showed

that the random regular graphs have the smallest mix-

ing time among the studied unstructured topologies.

The maintenance of the Markovian plane is similar

to the management of the virtual connections used

for the rarest first algorithm in BitTorrent [30]. This

mechanism appears to be of robustness and low cost in

practice.

After constructing the graph of the Markovian plane,

we still need to assign the connections with an appro-

priate transition probability matrix P = [pij] so that the

constructed Markov chain converges to the targeted

probability distribution in Eq. 10. Thus, we use the

celebrated Metropolis-Hastings algorithm as follows.

Denote Ai(t) as the neighbor set of peer i on the

Markovian plane at time t. The degree of peer i is

|Ai(t)| + 1, including the self-loop connection. Given

the targeted steady-state probability π(t) = {πi(t), ∀i ∈
V(t)} in Eq. 10, P is given as

pij =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
|Ai(t)|+1

min
{

C2
j ·Oi(t)·(|Ai(t)|+1)

C2
i ·Oj(t)·(|A j(t)|+1)

, 1
}

, j ∈ Ai(t),

1 −
∑

k∈Ai(t)

pik, j = i,

0, otherwise,

(12)

where pij is the transition probability from state i to

state j. As shown in Eq. 12, peer i only needs to

have the local information to compute the transition

probability pij.

Algorithm implementation We are now ready to

present the implementation of the distributed algo-

rithm in detail. On peer arrivals and departures, both
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the overlay plane and the Markovian plane are incre-

mentally updated.

Peer joining To join the network, peer i first contacts

a bootstrap server and fetches a peer list. Note that

the peer list accommodates more than nmax nodes and

is timely obtained from the server. This mechanism is

commonly used in P2P applications, such as BitTorrent.

Then, peer i randomly chooses m initial nodes from this

peer list and forwards a random walker to each of them.

Each walker is then relayed among peers and traverses

the Markovian plane based on the transition probabil-

ity in Eq. 12. This process is described in Algorithm 1.

The walker stops after some predefined Time-to-Live

(TT L) steps, with each self-loop traversal counted as

one step. Peers, which receive the stopped walkers, are

selected as parent nodes to upload video stream to peer

i in the overlay topology.

Algorithm 1 Peer joining algorithm using random

walkers
Issue a walker to peer i0 in the peer list

Set n ← 0

while n ≤ TT L − 1 do

Select a peer j ∈ V(t) with probability pin j based

on Eq. 12 in the Markovian plane

n ← n + 1

in ← j

end while

Select peer in as a parent node

After updating the overlay topology, peer i joins

the Markovian plane by randomly connecting to 1
2
nmax

peers selected from the peer list, where 1
2
nmax > nmin.

Then both peer i and the selected parent nodes update

their local transition probabilities using Eq. 12.

Peer departing When peer i departs from the network,

each of its child peers in the overlay graph loses a par-

ent node. To compensate for the degraded download

rate, these child peers select a new parent node by

issuing a walker to rebuild a new link. This procedure

is similar to the joining procedure. Hence, each node in

the overlay topology is responsible to maintain its own

in-degree to be m, whereas its out-degree is adapted

automatically in this distributed algorithm. As a result,

the download performance of each peer is guaran-

teed by the constant number of the download connec-

tions and the guaranteed flow rate of each in-coming

connection.

When a node departs, all its neighbor peers lose a

link in the graph of the Markovian plane. To repair

the graph, if the nodes’ degrees are less than nmin, they

rebuild a new link by randomly selecting a peer in the

Markovian plane. Otherwise, they do nothing. In this

process, if a peer’s degree in the Markovian plane has

already reached nmax, when the peer receives a con-

nection setup request, it will deny this connection re-

quest. Therefore, the degree of peers in the Markovian

plane is controlled within [nmin, nmax]. The pseudo codes

associated with the above operations are described in

Algorithm 2.

Algorithm 2 Formation of the Markovian plane at peer

i ∈ V(t)

INPUT ki(t): degree of peer i on the Markovian

plane at time t

Step 1: run the joining procedure

Send requests and connect to peers randomly

selected in the peer list until ki(t) = 1
2
nmax

Step 2: run the rebuilding procedure, when

neighboring nodes depart

if ki(t) < nmin then

Send connection requests to peers in the peer list

Rebuild new connections until ki(t) = nmin

end if

Step 3: run topology maintenance on receiving

connection requests

if ki(t) < nmax then

Accept the request

else

Reject the request

end if

2.4 Bandwidth adaptive playback rate control

On adjusting the playback rate, the server first esti-

mates the converged download rates of peers using

Eq. 8 by measuring its own capacity per out-degree

value. Based on this measurement, the video server

adjusts the playback rate by Eq. 13.

r(t) = mδs(t), (13)

where δs(t) is the capacity per out-degree value of the

server node at time t.

3 Algorithm analysis

In Section 2, we proposed a distributed algorithm to

construct a link-level homogeneous overlay topology

for high-performance P2P streaming. In this section,

we analyze this link-level homogeneous property of the

constructed topology G in that the node capacity per

out-degree value achieved by our proposed distributed
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algorithm, δD, converges to a constant value. Because

we have assumed that the network bottleneck is at

the upload link of the peers, the performance of this

link-level homogeneity can be demonstrated using the

metric, capacity per out-degree, of each peer at the

upload side. In what follows, we first describe the net-

work model. Then, we study the transient evolution

of the out-degree of individual peers, and show that

peer’s capacity per out-degree value converges to an

equilibrium point for the whole network. Finally, we

discuss the possible algorithm extensions to enhance

the performance of the topology formation and ex-

amine the tradeoff of the parameter settings in the

algorithm.

3.1 Network model

We assume that each newly-arrived peer can connect

to some parent peers very quickly. The search time of

parent nodes is negligible. Each peer stays in the P2P

network for a random amount of time duration, which

is denoted as the peer life time. After this life time,

the peer departs from the network. We also assume

that both the peer arrival process and the departure

process are independent. The peer arrival process is

assumed to follow the Poisson process with the av-

erage rate λ, and the life time is independently and

exponentially distributed with mean 1
µ

. With the above

assumptions, this P2P network can be modeled as an

M/M/∞ queue. Note that these modeling assumptions

were also used in [31]. In [31] Pandurangan et al.

showed that the network converges exponentially fast

to a certain stable state when the mean peer arrival

rate equals the mean departure rate. To simplify the

analysis, we approximate the peer population N(t) with

the average population of peers N = 〈N(t)〉, because

our analysis focuses on the system performance at the

stable state, in which λ = Nµ (that is, the peer arrival

rate is equal to the total peer departure rate so that the

number of peers in the network remains constant on

average).

At the stable state, although the average peer pop-

ulation N converges to the value of λ
µ

, a node’s out-

degree still exhibits some dynamic behaviors when this

node stays in the network. Let ti denote the instant

when node i joins the network. The out-degree Oi(t)

of node i is a function of the joining instant ti and

current time t. To highlight this, we denote the out-

degree of node i by Oi(ti, t) instead of Oi(t) in this

section. We start our analysis with the transient process

of Oi(ti, t) at the stable state of the network and

show its convergence to the link-level homogeneous

property.

3.2 Transient evolution and equilibrium

value of Oi(ti, t)

The transient evolution of Oi(ti, t) can be characterized

by the differential equation as

dOi(ti, t)

dt
= (λm + N(t)µm) πi(t) − Oi(ti, t)µ, (14)

where we approximate the discrete out-degree value

by a continuous variable. Equation 14 computes the

changing rate of Oi(ti, t) over time t due to peer arrivals

and departures. The first term on the right-hand-side

of Eq. 14, (λm + N(t)µm), denotes the overall walkers

generated by the arrival and departure peers. In par-

ticular, λm is the average walker generation rate by

the newly-arrived peers. Note that peers arrive at the

average rate λ and each new peer issues m walkers at its

arrival using the distributed algorithm. N(t)µm denotes

the average walker generation rate by the rebuilding

peers. The overall peer departure rate is N(t)µ because

there are N(t) peers and each peer has the average

departure rate µ. As shown in Appendix B, if each peer

is of a constant in-degree m, the average peer’s out-

degree is approximately m. Therefore, each peer de-

parture triggers m peers to generate walkers to rebuild

links. Hence, the overall generation rate of walkers

due to peer departures is N(t)µm. Because the walkers

finally stay at peer i with probability πi(t), Oi(ti, t) thus

increases at the rate (λm + N(t)µm) πi(t). Because peer

i has Oi(ti, t) child peers with each peer departing the

network at the average rate µ, the second term on the

right-hand-side of Eq. 14 computes the changing rate

of Oi(ti, t) due to the departures of the child peers of

peer i.

Next, we will show that the out-degree values of

peers converge to an equilibrium value as shown in

Eq. 15. Specifically, based on the transient evolution

of Oi(ti, t) as shown in Eq. 14, when peer i stays in

the network long enough, its out-degree converges to

a constant value as

lim
t→∞

Oi(ti, t) = Ci

4m

π 〈C 〉
. (15)

The derivation of Eq. 15 is as follows. At the stable

state, λ = Nµ. Substituting it into Eq. 14 and approxi-

mating N(t) by the average number of peers N , we have

dOi(ti, t)

dt
= 2λmπi(t) − Oi(ti, t)µ. (16)

Substituting Eq. 10 into Eq. 16, we have

dOi(ti, t)

dt
= 2λm

C2
i

Oi(ti,t)

Z (t)
− Oi(ti, t)µ, (17)
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where

Z (t) =
∑

j∈V(t)

C2
j

Oj

(

t j, t
) . (18)

As shown in Eq. 18, Z (t) is a function of multiple

random variables, including V(t), t j and Cj. We as-

sume that these random variables are independent. To

solve Eq. 17, we approximate Z (t) using its expectation

〈Z (t)〉 as

〈Z (t)〉 =

〈

∑

j∈V(t)

C2
j

Oj

(

t j, t
)

〉

. (19)

We compute Eq. 19 by summing the expected capacity

square per out-degree of peers which are still alive

in the network at time t. On average during the time

period of [0, t], λt peers have joined the network in

total. Nevertheless, some of these peers may have al-

ready departed from the network at time t. Let us first

consider a randomly selected peer j, which has the

joining time t j ∈ [0, t]. The probability that peer j is still

in the network at time t is e−µ(t−t j). Note that the arrival

time t j is uniformly distributed in [0, t] because in a

Poisson process the arrival time of a random element

is uniformly distributed in [0, t] (see the remark of

Section 5.3.5 on page 318 in [32]). We also assume that

the upload capacities of peers follow some probability

distribution.

〈Z (t)〉 =

〈

∑

j∈V(t)

C2
j

Oj

(

t j, t
)

〉

=

〈

∫ t

0

λte−µ(t−t j)
C2

j

Oj

(

t j, t
)

1

t
dt j

〉

=

〈

∫ t

0

λe−µ(t−t j)
C2

j

Oj

(

t j, t
)dt j

〉

. (20)

Equation 20 is now only the expectation with respect to

Cj. At the stable state, Eq. 20 becomes

Z = lim
t→∞

〈Z (t)〉 = lim
t→∞

〈

∫ t

0

λe−µ(t−t j)
C2

j

Oj

(

t j, t
)dt j

〉

, (21)

where Z is a constant unrelated to time t as shown in

Appendix C. Substituting Eq. 21 into Eq. 17, we have

dOi(ti, t)

dt
= 2λm

C2
i

Oi(ti,t)

Z
− Oi(ti, t)µ. (22)

Solving Eq. 22, we have

Oi(ti, t) = Ci

√

2mN

Z

(

1 − e−2µ(t−ti)
)

, t ≥ ti. (23)

Hence, the out-degree Oi(ti, t) converges to

lim
t→∞

Oi(ti, t) = Ci

√

2mN

Z
. (24)

As shown in Eq. 23, when µ increases, the out-

degree value converges faster to the equilibrium point

Ci

√

2mN

Z
. This suggests that if the network becomes

more churning when peers depart at a higher rate, the

peers’ out-degrees converge faster. This effect is be-

cause the convergence to the link-level homogeneous

state is driven by peer arrivals and departures. To

compute Z in Eq. 24, we substitute Eq. 23 into Eq. 21

which yields

Z =
π2 〈C 〉2

8m
N . (25)

The derivation steps of Eq. 25 are shown in Appen-

dix C. Plugging Eq. 25 into Eq. 24, we obtain Eq. 15

in that when t → ∞, Oi(ti, t) converges to a constant,

Ci
4m

π〈C 〉 . Therefore, the capacity per out-degree value

achieved by our proposed distributed algorithm is

δD = lim
t→∞

Ci

Oi(ti, t)
= 〈C 〉

π

4m
. (26)

Equation 26 shows a desired LLH property that the

capacity per out-degree of peer i approaches to a con-

stant. The download rate of peer i, i ∈ V(t)\{s}, using

our proposed distributed algorithm, is hence

di(t) = mδD = 〈C 〉
π

4
. (27)

With m increasing, δD becomes smaller. However, the

achieved download rate of peers is not affected by m as

shown in Eq. 27.

3.3 Algorithm enhancement

As δ = 〈C 〉
m

shown in Eq. 7, it is important to note that

δD < δ with δD = π
4
δ, in that the converged capacity

per out-degree value using the distributed algorithm is

smaller than that of the centralized algorithm. In this

part, we propose two directions which could reduce

the gap between δD and δ, but requires more signalling

overheads.

One possible reason of the gap between δD and δ is

that the randomized peer selection scheme used in the

decentralized algorithm introduces some probabilistic

sampling errors. Specifically, using Eq. 10 to proba-

bilistically select parent peers, some overloaded peers

with small capacity per out-degree value may still be

selected. These sampling errors can only be repaired

when the child peers of the overloaded peers depart;
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Fig. 4 The effect of a on δ′

hence, the random peer selection slows the conver-

gence to link-level homogeneity. To remedy this, we

can enhance the accuracy of the peer selection with the

modified probability π j(t) in Eq. 10 as

π j(t) =

Cα+1
j

Oα
j

(

t j, t
)

∑

k∈V(t)

Cα+1
k

Oα
k(tk, t)

, (28)

where α is a positive real number and α equals 1 in

Eq. 10. By increasing α, the peers with larger capacity

per out-degree values tend to be selected with higher

probabilities; the overloaded peers will hence be se-

lected with smaller probabilities (see [17] for a more

detailed discussion on α). In an extreme case, when

α → ∞, π j(t) → 1 if peer j has the largest capacity

per out-degree value and 0 for other peers. This is the

same as the centralized algorithm. However, a larger

TTL value is required because more peers need to be

examined in the selection process and hence a higher

overhead is incurred.

Another way to reduce the gap between δD and δ

is by enabling peers to quickly repair the errors if the

overloaded parent peers are connected. To the end,

we can enable peers to proactively disconnect a parent

peer and re-select a new one at a mean rate µ′ using the

Table 2 Default settings of the simulator

m nmin nmax TT L ε λ

5 10 40 10 0.5 10

Table 3 Capacity distribution of peers in the simulation

Upload capacity (kbps) 256 512 896 2048 5120

Percentage 25% 30% 20% 15% 10%

distributed algorithm. In this case, the evolution of the

out-degree of peer i is

Oi(ti, t) = Ci

√

N

Z ′

(

2mµ + mµ′

µ + µ′

)

(

1 − e−2(µ+µ′)(t−ti)
)

,

t ≥ ti. (29)

As indicated by Eq. 29, this proactive disconnection has

the effect of increasing the departure rate of child peers;

hence, the overloaded peers with too many child peers

can quickly reduce their workloads and their capacity

per out-degree converges to the equilibrium value as

δ′ = lim
t→∞

Ci

Oi(ti, t)
=

〈C 〉 A (1 + a)

m (2 + a)
, (30)

where a = µ′

µ
, A =

∫ 1

0
1√

1−x2(1+a)
dx.

The derivation steps of Eqs. 29 and 30 are shown

in Appendix D. The value of δ′ with different a is

plotted in Fig. 4 where m = 5 and 〈C 〉 = 1216 kbps,

which are computed based on the parameter settings

in Tables 2 and 3. Note that in this example, the ideal

capacity per out-degree is δ = 〈C 〉
m

= 243 kbps. When

a → ∞, A → 1 as shown in Eq. 52 in Appendix D.

Therefore, by Eq. 30, we have δ′ → 〈C 〉
m

= δ. By making

the re-selection rate µ′ sufficiently large, we can tune

the converged capacity per out-degree value to ap-

proach the value achieved by the centralized algorithm.

However, this proactive operation should be conducted

carefully since the network becomes even more dy-

namic with much more frequent link disconnections

and reconnections. The perceived video quality may

suffer as a result. Hence, a achieves a tradeoff between

the convergence of the link-level homogeneity and the

video quality. When a = 0, our algorithm exploits

the network dynamic itself to achieve the link-level

homogeneity for the P2P network.

4 Performance evaluation

4.1 Simulation setup

We conduct a simulation study to evaluate the per-

formance of the proposed adaptive P2P streaming

framework. The simulation is conducted using a

session-level, event-driven simulator coded in C++. In

each simulation run, there are 50, 000 peer arrivals.
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The peer arrivals follow the Poisson process with a

mean rate λ (peers per second). Each peer arrival is

associated with two system parameters: peer life time

and peer index. The peer life time follows the expo-

nential distribution with a mean 1
µ

(seconds). Once the

life time of the peer is over, the peer departs from

the network. The peer index increases incrementally as

peers arrive continuously. In this live streaming system,

there exists a server node indexed with 0. This server

always stays alive in the network. In the simulation

experiments, the network size initially starts with one,

where there is only one server node. As the network

size increases, the overall departure rate, N(t)µ, also

increases and the network size becomes stable when

the mean overall peer arrival rate (λ) equals to the

mean overall peer departure rate (Nµ). The average

peer population is then N = λ
µ

at the stable state. In

our experiments, we keep the average peer population

in the stable state to be 5000 and control λ to achieve

different peer churn levels in terms of peer arrivals and

departures. The simulation results are averaged over

10 individual simulation runs. The default parameter

settings of the simulator are shown in Table 2. The

bandwidth distribution of peers is configured as shown

in Table 3 to capture the peers’ heterogeneous upload

capacities.

In our experiments, we examine whether the link-

level homogeneity can be achieved using the pro-

posed topology formation algorithms. In particular,

given different levels of bandwidth heterogeneity and

peer churn, will this link-level homogeneity still be

maintained in the formed overlay topology? Our eval-

uation is conducted from two performance perspec-

tives: network-level and peer-level. The network-level

performance provides macro understanding on the pro-

posed algorithms whereas we also take a close investi-

gation on the streaming performance of some randomly

selected peers. Our experimental results also character-

ize the impact of various factors, including peer churn,

upload bandwidth distribution, the number of random

walkers and so on, on the link-level homogeneity of the

constructed streaming topology.

4.2 Network-wide link-level homogeneity

Ideally, utilizing the proposed topology formation al-

gorithms, the resultant overlay topology should lead

to a constant capacity per out-degree value of each

peer. In this subsection, we examine the capacity per

out-degree value of each peer of the two proposed

algorithms and two heuristic algorithms at randomly-

selected snapshots after the simulation reaches a stable

state. Consequently, we are also able to obtain peers’

download rates and the playback rate adapted at the

server.

4.2.1 Centralized algorithm

In the centralized topology formation, a central con-

troller manages the construction of the overlay topol-

ogy. This controller needs to collect the peer infor-

mation across the whole network. This requirement

may be prohibited in a large-scale P2P network; never-

theless, the performance of the centralized algorithm

provides a benchmark. In Fig. 5, we plot the distribution

of capacity per out-degree value of peers using the

centralized algorithm at t = 3500 s. The peers are sorted

according to the increasing order of peer indices along

the x-axis. Most peers’ capacity per out-degree values

converge to the theoretical value δ = 243 kbps, which

is computed using Eq. 7.

In Fig. 6, we plot the download rate of peers at

the same time instant. All the peers have roughly the

same download rate of 1, 216 kbps. This rate matches

well with the theoretical value computed using Eq. 5.

This value also matches the playback rate adjusted by

the server, 1, 216 kbps. In addition, this value is the

optimal streaming encoding rate as shown in Eq. 4, at

which peers can achieve the maximal achievable visual

quality.

4.2.2 Distributed algorithm

In Figs. 7 and 8, we examine the network-level perfor-

mance of the proposed distributed algorithm. In Fig. 7,
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Fig. 5 Capacity per out-degree value using the centralized algo-
rithm at t = 3500 s
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Fig. 6 Download rate using the centralized algorithm at
t = 3500 s

we plot the histogram of the capacity per out-degree

values of peers using the distributed algorithm. This

histogram curve starts with a sharp impulse followed

by a fast decaying tail. This curve suggests that in

the constructed topology most participating peers have

roughly an equal capacity per out-degree value. The

peers at the end of the tail have a very large capacity

per out-degree value. A closer look indicates that these

peers are newly-joined peers in the network. Because

these peers have not been connected by any other

peers as their child nodes, their out-degree values are

small. This observation can be shown clearly in Fig. 8,

where we plot the capacity per out-degree value of the
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Fig. 7 Histogram of capacity per out-degree using the distributed
algorithm at t = 3500 s

Fig. 8 Distribution of capacity per out-degree using the distrib-
uted algorithm at t = 3500 s

existing peers as the function of the peer index. We

observe that the present peers with the index between

[0, 34000] have roughly equal capacity per out-degree

values. However, the newly-arrived peers with the in-

dex between [34000, 35000] have very large capacity

per out-degree values, and contribute in the tail of the

curve in Fig. 7. Note that the peer indices also indicate

the time instants when the peers join the network, in

that a peer with a large index joins the network late.

Peers which stay in the network long have converged

capacity per out-degree value. Comparing Figs. 5 and 8,

we can observe that using the centralized algorithm, the

capacity per out-degree of peers converges much faster

than that using the distributed algorithm. Note that

the converged capacity per out-degree value matches

well with the theoretical value computed using Eq. 26,

where δD = 191 kbps.

In Fig. 9, we plot the download rate of peers using

the distributed algorithm. The download rate of each

peer is computed by summing all its parent nodes’

capacity per out-degree values. Most of the peers

have roughly the same download rate; nevertheless,

those newly-arrived peers with the peer index between

[34000, 35000] have large capacity per out-degree val-

ues. On the other hand, as the capacity per out-degree

values of these newly-arrived peers are transient and

converging, those large download rates gradually con-

verge to the equilibrium. The playback rate in Fig. 9

is computed using Eq. 13. Many peers have download

rates larger than this value and all the peers have

download rates larger than 80% of the playback rate. In

addition, as shown in Fig. 9, the playback rate is almost

the same as the expected download rate of peers which

is 955 kbps computed using Eq. 27. This result shows
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Fig. 9 Download rate using the distributed algorithm

that our adaptive playback rate control is effective to

adapt to the optimal video quality shown in Eq. 4 using

local measurements at the source.

In Fig. 6, the maximum playback rate is 1216 kbps

using the centralized algorithm; nevertheless, using the

distributed algorithm, as shown in Fig. 9, the maximum

playback rate is 955 kbps. The distributed algorithm

only achieves a sub-optimal performance in terms of

the delivered video playback rate compared with the

centralized algorithm. The achieved optimality ratio

is then 955
1216

= 0.78. Unlike the distributed algorithm,

the capacity per out-degree curve of the centralized

algorithm does not have the heavy tail. This indicates

that the centralized algorithm is much more efficient in

utilizing the bandwidth of the newly-arrived peers and

converges faster than the distributed algorithm.

4.2.3 Comparisons with random and greedy algorithms

We also compare the proposed centralized and dis-

tributed algorithms with two heuristic algorithms, the

random algorithm and the greedy algorithm. In the

random selection algorithm, each peer randomly selects

its neighbors and then joins the overlay topology. This

random topology formation scheme is commonly used

in the data-driven content delivery such as BitTorrent

[30] and CoolStreaming [28]. In the greedy algorithm,

each peer maintains a neighbor list. When a peer needs

to connect to a parent peer, it first measures the capac-

ity per out-degree value of all its neighbors, and then

selects the one with the largest value as its parent node.

Similar greedy algorithms are adopted in [9, 13].

In Fig. 10, we plot the capacity per out-degree values

of peers using the four topology formation algorithms,

respectively. The centralized algorithm performs the
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Fig. 10 Capacity per out-degree using the four topology forma-
tion algorithms

best with a sharp impulse, with nearly 90% of the peers

achieving the same capacity per out-degree value. Our

distributed algorithm is less efficient than the central-

ized algorithm; however, it still significantly outper-

forms the random algorithm and the greedy algorithm.

Unlike the myopic behaviors of the greedy algorithm,

our sampling approach takes the bandwidth supply into

consideration to construct a more efficient topology.

4.3 Convergence of the distributed algorithm

The previous experiments show that our distributed

algorithm achieves a good link-level homogeneous

property. In the remaining experiments, we evaluate

the convergence property and the impact of various fac-

tors on our distributed topology formation algorithm.

Figure 11 plots the capacity per out-degree value of

peers at different time instant t. At different time

instants, the capacity per out-degree value of peers

converges to the same value.

We then study the dynamic evolution of peer’s out-

degree to the link-level homogeneous state. Specifi-

cally, we report the simulation results of the peer-level

performance and investigate a typical peer in depth.

This peer is randomly selected from the network. To

facilitate the investigation on its out-degree evolution,

this selected peer always stays in the network and never

departs. The final simulation results are the average of

10 independent simulation runs.

We examine the evolution of the out-degree of the

investigated node. The simulation results are compared

with the theoretical curve based on Eq. 23 as t → ∞. In
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Fig. 11 Capacity per out-degree at different time t using the
distributed algorithm

this experiment, we initially set the capacity of the in-

vestigated node to be 2048 kbps. At t = 1, 500 seconds

and t = 3, 000 s, we change its capacity to 896 kbps and

5120 kbps, respectively. Figure 12 shows the evolution

of the out-degree of this peer under these capacity

changes. We observe that the out-degree of this peer

evolves adaptively and converges to the theoretical

values.

4.4 Impact of various factors on the distributed

algorithm

In what follows, we examine the impact of peer churn,

upload bandwidth distribution and the number of ran-

Fig. 12 Evolution of out-degree of the investigated peer

dom walkers on the link-level homogeneity of the

constructed streaming topology using the proposed dis-

tributed algorithm.

4.4.1 Impact of peer churn

Besides bandwidth heterogeneity, another difficulty in

designing an efficient P2P streaming network is due to

peer churn. We define the churn rate as the frequency

of arrival and departure events in a unit of time in

our experiments. As the churn rate increases, the net-

work becomes more dynamic; therefore, the streaming

system must adapt and be repaired faster to minimize

video playback freezing. In these experiments, we in-

vestigate the impact of peer churn on the network per-

formance. In particular, we show that as the peer arrival

rate increases, the convergence of peers’ out-degrees

can also speed up, which suggests that our system can

adapt faster to combat the increasingly flash-crowd

environment to maintain the streaming performance.

In our experiments, we control the peer churn rate

by tuning the arrival rate λ. As λ increases, the mean

departure rate µ also increases as µ = λ
N

where N is

fixed to be 5000. Based on Eq. 23, with the peer arrival

rate increasing, the peer out-degree converges faster.

To examine this effect, we ran the experiments with λ =
10 peers/second and λ = 40 peers/second, respectively.

In Fig. 13, we observe that with λ increasing the out-

degree of the investigated peer can converge faster to

the equilibrium value. In particular, the simulation re-

sults match well with the theoretical analysis in Eq. 23.

This exhibits that our proposed distributed algorithm is

resilient to the high churns and can adapt faster with an

increasing churn rate.

Fig. 13 Impact of peer arrival rate on the investigated peer’s out-
degree
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4.4.2 Impact of changing capacity distribution

We examine the impact of changing capacity bandwidth

on the proposed distributed algorithm. We first ran

the simulation using the default parameter settings. At

t = 2000 s when the 20000-th peer joins the network, we

change the capacity distribution in Table 3 by increas-

ing the corresponding capacity values by a factor of 3.

Therefore, on average the capacity of the peers, which

arrive after the capacity changes, increases by three

times. This experiment is used to simulate the scenario

as reported in [4], where peers in different regions and

countries may join the network at different time periods

due to the diurnal effect. Peers in different countries

may have diverse bandwidth capacities. As a result, the

capacity distribution of peers in the network may be

changed significantly. Therefore, there may not exist

a single video playback rate suitable for the whole

broadcast duration. As such issues are quite general

in P2P video streaming, we believe that the proposed

adaptive-rate video streaming is particularly useful.

Now suppose that the peers arriving at t ∈ [0, 2000]
seconds (with the peer index approximately between

[0, 20000]) are from a small-capacity region, i.e., re-

gions with less access bandwidth. The peers, which

arrive after 2000 s, are from a large-capacity region,

i.e., regions populated with broadband network access.

We simulate the case where the composition of peers

changes over time when peers from different regions

join the network to watch the video at different times.

In Fig. 14, we observe that in the initial state, where

all the peers are from small-capacity regions, the down-

load rate of the investigated peer is approximately

1 Mbps. At t = 2000 s, as peers from large-capacity re-

gions starts to join the network, the overall bandwidth

Fig. 14 Impact of changing bandwidth distribution

available in the network increases gradually and the

download rate of the investigated peer increases as

well. After a transient period, at around t = 4000 s,

most peers from the small-capacity region depart from

the network; peers in the network are mainly from

large-capacity regions. Therefore, the overall band-

width stops increasing and the download rate of the

investigated peer also converges to a new equilibrium

of 3 Mbps. Note that this rate is three times the previ-

ous download rate when all the peers in the network

are from small-capacity regions. During this process,

we also observe that the playback rate is adaptive

to this change and increases from around 1 Mbps to

3 Mbps. This observation verifies that our proposed

algorithm can effectively adapt to the dynamic capacity

changes and fully utilize the available bandwidth to

maximize the video quality. In practice, the compo-

sition of peers changes slowly and smoothly, and the

playback rate adaptation is conducted over a longer

time scale than peer churn. Therefore, during this rate

adaptation process, peers usually do not experience any

rapid video quality fluctuation.

4.4.3 Impact of the number of random walkers

The number of random walkers used in the distributed

algorithm has impact on the link-level homogeneous

property of the constructed topology. In Fig. 15, we in-

crease m from 5 to 9. When m increases, the converged

capacity per out-degree value of peers becomes smaller,

which can be explained using Eq. 26. On the other

hand, the download rate of peers remain unchanged
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Fig. 15 Distribution of capacity per out-degree values with
increasing m at t = 3500 s
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regardless of the value of m as shown in Eq. 27. An

advantage of using a large value of m is to maintain a

downloading diversity to prevent a simultaneous failure

of the parent nodes. However, a large value of m can

incur a high overhead in topology maintenance.

5 Conclusion

In this paper we propose an adaptive P2P video stream-

ing system. This system automatically maximizes the

video playback quality given the limited bandwidth

supply in the network. On providing peers with maxi-

mized video playback quality, we construct a link-level

homogeneous overlay topology to eliminate the bottle-

neck along the delivery paths of video flows. Equipped

with the source rate adaptation and the homogeneous

overlay construction, the proposed framework is able

to fully utilize the bandwidth supply and provide users

with a good video viewing experience. In particular, in

order to construct a link-level homogeneous topology,

we propose two algorithms for the implementation: the

centralized version and the distributed version. We be-

lieve that this approach is also effective for the general

resource allocation problems in overlay networks to

improve the end-to-end overlay throughput.

Appendix

A Solution of problem J in Eqs. 1–3

Problem J is a linear programming problem. The KKT

conditions [33] are both necessary and sufficient for

Problem J. Let d∗
i (t), ∀i ∈ V(t)\{s}, be the optimal

solution of Problem J. We introduce the Lagrange

multiplier ϕ to relax the constraint of Eq. 2. ϕ is the

shadow price if upload capacities are not fully utilized.

We also introduce the Lagrange multiplier ψi to relax

the constraint of Eq. 3. ψi is the shadow price if peer

i does not achieve the required download rate. Then,

we have

L(di(t), r(t); ϕ, ψi) = r(t) + ϕ

⎛

⎝

∑

i∈V(t)

Ci −
∑

i∈V(t)\{s}

di(t)

⎞

⎠

+
∑

i∈V(t)\{s}

ψi (di(t) − r(t)) .

We obtain the KKT conditions as follows.

∑

i∈V(t)\{s}

di(t)≤
∑

i∈V(t)

Ci; di(t)≥r(t), ∀i ∈ V(t)\{s}, (31)

ϕ ≥ 0; ψi ≥ 0, ∀i ∈ V(t)\{s}, (32)

ϕ

⎛

⎝

∑

i∈V(t)

Ci−
∑

i∈V(t)\{s}

di(t)

⎞

⎠=0; ψi (di(t)−r(t))=0,

∀i∈V(t)\{s}, (33)

∂L

∂di

= −ϕ + ψi = 0, ∀i ∈ V(t)\{s}, (34)

∂L

∂r
= 1 −

∑

i∈V(t)\{s}

ψi = 0. (35)

By Eq. 34, we have ϕ = ψi, ∀i ∈ V(t)\{s}. If ϕ = 0,

we have ψi = 0, ∀i ∈ V(t)\{s}; however, this con-

flicts with Eq. 35. Therefore, ϕ = ψi > 0, ∀i ∈ V(t)\{s}.
Because ϕ > 0 and ψi > 0, by Eq. 33, we have

∑

i∈V(t)

Ci −
∑

i∈V(t)\{s}
di(t) = 0 and di(t) − r(t) = 0, ∀i ∈ V(t)\{s}, re-

spectively. Therefore,

∑

i∈V(t)

Ci − (N(t) − 1)r(t) = 0.

Finally, we have

d∗
i (t) = r∗(t) =

∑

j∈V(t)

Cj

N(t) − 1
, ∀i ∈ V(t)\{s}. (36)

B Derivation of the average out-degree of nodes

In the following, we show that if each node is of a

constant in-degree m, the average out-degree of nodes

is approximately m.

Note that
∑

i∈V(t)

Oi(ti, t) =
∑

i∈V(t)\{s}
Ii(t) as the overall

out-degree equals to the overall in-degree, the expected

out-degree of nodes is

1

N(t)

∑

i∈V(t)

Oi(ti, t) =
1

N(t)

∑

i∈V(t)\{s}

Ii(t).

Because
∑

i∈V(t)\{s}
Ii(t) = (N(t) − 1)m as each node has

in-degree m except the server s, we have

1

N(t)

∑

i∈V(t)

Oi(ti, t) =
1

N(t)
(N(t) − 1)m.

When N(t) ≫ 1, we have

1

N(t)

∑

i∈V(t)

Oi(ti, t) ≈ m. (37)
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C Derivation of Eq. 25

To derive Z , substituting Eq. 23 into Eq. 21 yields

Z = lim
t→∞

〈∫ t

0

λe−µ(t−ti)
C2

i

Oi(ti, t)
dti

〉

= lim
t→∞

〈

λCi

∫ t

0

e−µ(t−ti)

√

2mN

Z

(

1 − e−2µ(t−ti)
)

dti

〉

. (38)

Note that the 〈·〉 operation is taken with respect to the

peer capacity Ci in Eq. 38. Therefore, we have

Z = 〈C 〉 lim
t→∞

∫ t

0

λ
√

2mN

Z

e−µ(t−ti)

√
1 − e−2µ(t−ti)

dti. (39)

By denoting τ = t − ti, Eq. 39 becomes

Z =
λ 〈C 〉
√

2mN

Z

lim
t→∞

∫ t

0

e−µτ

√
1 − e−2µτ

dτ. (40)

Then, changing the integration variable x = e−µτ and

plugging it into Eq. 40, we have

Z =
1

µ

λ 〈C 〉
√

2mN

Z

∫ 1

0

1
√

1 − x2
dx. (41)

Note that
∫ 1

0
1√

1−x2
dx = π

2
and plugging it into Eq. 41;

therefore, we have

Z =
π

2µ

λ 〈C 〉
√

2mN

Z

. (42)

Plugging λ = Nµ into Eq. 42, we obtain

Z =
π

2

〈C 〉
√

2mN

Z

N . (43)

Solving Eq. 43 for Z , we finally have

Z =
π2 〈C 〉2

8m
N . (44)

D Derivation of Eqs. 29 and 30

If the nodes reselect their parent nodes periodically,

Eq. 14 becomes

dOi(ti, t)

dt
=

(

λm + N(t)µm + N(t)mµ′) πi(t)

− Oi(ti, t)µ − Oi(ti, t)µ′, (45)

where the term N(t)mµ′ appears because the nodes re-

select each parent at an average rate µ′; Oi(ti, t)µ′ is the

additional rate of out-degree reduction because node i

has Oi(ti, t) child nodes which are disconnected from

node i at the average rate µ′ due to this reselection

operation. Solving Eq. 45, we have

Oi(ti, t) = Ci

√

N

Z ′

(

2µm + mµ′

µ + µ′

)

(

1 − e−2(µ+µ′)(t−ti)
)

,

t ≥ ti, (46)

where Z ′ = lim
t→∞

〈

∑

i∈V(t)

C2
i

Oi(ti,t)

〉

. As shown in Eq. 46, the

convergence rate to the link-level homogeneous state

increases by µ′. Z ′ can be computed in the same manner

as in Appendix C by substituting Eq. 46 into Eq. 21.

Z
′ = lim

t→∞

〈

∫ t

0

λe−µ(t−ti)

×
C2

i

Ci

√

N

Z ′

(

2µm+mµ′

µ+µ′

)

(

1−e−2(µ+µ′)(t−ti)
)

dti

〉

. (47)

Denoting a = µ′

µ
and substituting it into Eq. 47, we have

Z
′ = 〈C 〉

√

Z ′ (1 + a)

Nm (2 + a)
lim

t→∞

∫ t

0

λe−µ(t−ti)

×
1

√

(

1 − e−2µ(1+a)(t−ti)
)

dti,

√
Z ′ = 〈C 〉

√

N (1 + a)

m (2 + a)
lim

t→∞

∫ t

0

λe−µ(t−ti)

N

×
1

√
1 − e−2µ(1+a)(t−ti)

dti. (48)

Denoting A = lim
t→∞

∫ t

0
λe−µ(t−ti)

N

1√
1−e−2µ(1+a)(t−ti)

dti and plug-

ging λ = Nµ, we have

A = lim
t→∞

∫ t

0

µe−µ(t−ti)
1

√
1 − e−2µ(1+a)(t−ti)

dti.

Changing the integration variable x = e−µ(t−ti), we ob-

tain a simplified expression of A in Eq. 49.

A =
∫ 1

0

1
√

1 − x2(1+a)
dx. (49)

Plugging Eq. 49 into Eq. 48, we have

Z
′ =

A2 〈C 〉2 (1 + a)

m (2 + a)
N . (50)

Substituting Eq. 50 into Eq. 46, we have

Oi(ti, t) = Ci

m (2 + a)

〈C 〉 A (1 + a)

√

(

1 − e−2(µ+µ′)(t−ti)
)

, t ≥ ti.



Peer-to-Peer Netw Appl

Hence, as t → ∞, the converged capacity per out-

degree value due to the proactive reselection of parent

nodes is

δ′ = lim
t→∞

Ci

Oi(ti, t)
=

〈C 〉 A (1 + a)

m (2 + a)
. (51)

Note that the integration with respect to x in Eq. 49 is

conducted in [0, 1). As a → ∞, x2(1+a) → 0. Therefore,

lim
a→∞

A = lim
a→∞

∫ 1

0

1
√

1 − x2(1+a)
dx = 1. (52)
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